
__
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”
SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2010 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: +1 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE WEB ADDRESS: http://www.sae.org

SAE values your input. To provide feedback
 on this Technical Report, please visit
 http://www.sae.org/technical/standards/J2841_201009

SURFACE
VEHICLE
INFORMATION
REPORT

 J2841 SEP2010

Issued 2009-03
Revised 2010-09

Superseding J2841 MAR2009

(R) Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

RATIONALE

Describing the fuel and electrical energy usage of plug-in hybrid electric vehicles (PHEVs) is very challenging for the
reason that these values vary greatly depending upon the distance traveled between charging. Detailed test procedures
recommended for PHEVs are found within SAE J1711, this document serves to supply appropriate UF curves for the
equations in that document that weigh the charge depleting mode operation with the charge-sustaining operation
depending upon the charge-depleting mode distance measured from the test. The original issue of SAE J2841 introduced
the Utility Factor based upon a mileage-based “Fleet” analysis of the US DOT National Household Transportation Survey
data. This issue of SAE J2841 adds more options to the Utility Factor calculations by analyzing another data set from a
Georgia Tech called the “Commute Atlanta” in order to find a vehicle-weighted analysis.

1. SCOPE

This SAE Information Report establishes a set of “Utility Factor” (UF) curves and the method for generating these curves.
The UF is used when combining test results from battery charge-depleting and charge-sustaining modes of a Plug-in
Hybrid Electric Vehicle (PHEV). Although any transportation survey data set can be used, this document will define the
included UF curves by using the 2001 United States Department of Transportation (DOT) “National Household Travel
Survey” and a supplementary dataset.

1.1 Purpose

In use, the fuel and energy consumption rates of a PHEV vary depending upon the distance driven between charge
events. For PHEVs, the baseline assumption regarding any UF is that operation starts fully charged and begins in
charge-depleting mode. Eventually, the vehicle must change to a charge-sustaining mode. The vehicle miles traveled
between charge events determines how much of the driving is performed in each of the two fundamental modes. A
second assumption is that charging occurs every day after the day's driving is complete, i.e. once per day. In the absence
of PHEV driver behavior data, the two additional unknown driver behavior issues of (1) how often charging occurs during
the day (“opportunity charging”) and (2) how often a driver will forget to charge, are assumed to be equally offsetting, thus
the baseline assumes one charge per day of operation.

Given the previous assumptions, a UF describes the fraction of driving in each of the fundamental modes using a given
set of recorded in-use driving data. Driving statistics from the 2001 National Household Travel Survey and a
supplementary dataset are used as inputs to the UF creation to provide UF curves applicable to a vehicle’s charge-
depleting mode results. SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 j2

84
1_

20
10

09

http://www.sae.org/technical/standards/J2841_201009
https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 2 of 45

2. REFERENCES

2.1 Applicable Documents

SAE 810265, Burke, A.F. and Smith, G.E., “Impacts of Use-Pattern on the Design of Electric and Hybrid Vehicles”

SAE J1711, “Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric
Vehicles, Including Plug-in Hybrid Vehicles”

SAE J1715, “Hybrid Electric Vehicle (HEV) & Electric Vehicle (EV) Terminology”

2001 National Household Travel Survey (NHTS), U.S. Department of Transportation, website:
http://www.bts.gov/programs/national_household_travel_survey/

Commute Atlanta Study Overview, Georgia Tech. School of Civil and Environmental Engineering, website:
http://commuteatlanta.ce.gatech.edu/

Federal Register, Vol. 71 No. 248, Page 77904, December 27, 2006

3. DEFINITIONS

3.1 HYBRID ELECTRIC VEHICLE (HEV)

A road vehicle that can draw propulsion energy from both of the following sources of stored energy: (1) a consumable fuel
and (2) a rechargeable energy storage system (RESS) that is recharged by an electric motor-generator system, an
external electric energy source, or both.

3.2 PLUG-IN HYBRID-ELECTRIC VEHICLE (PHEV)

A classification describing an HEV with an energy storage system that is designed to be recharged from an external (off-
vehicle) electric energy source, typically an AC electrical power supply system.

NOTE: Equivalent to “Off-Vehicle Charge Capable HEV,” “Grid-Connected HEV,” and “Externally Chargeable HEV”

3.3 VEHICLE MILES TRAVELED (VMT)

Vehicle Miles Traveled (VMT) is the total distance traveled by a vehicle in units of miles.

3.4 UTILITY FACTOR (UF)

The UF indicates the limited utility of a particular initial operating mode - for PHEVs, the CD mode. An operating mode
with a very long range, for example, will have a very high utility and, thus, a UF that approaches 1.0. The UF is a function
of a vehicle’s charge depleting range. The UF is defined by using the assumptions that (1) the vehicle starts the day from
a routinely achieved, fully charged state and (2) the vehicle is charged to said state before every day of vehicle travel. As
will be discussed later in the document, many possible utility factors can be created and care must be exercised when
deciding which utility factor to use for a particular analysis.

3.5 FLEET UTILITY FACTOR (FUF)

The FUF is a utility factor based on the total miles traveled for a specific fleet of vehicles. This UF is created by dividing
the depleting miles by the total miles traveled. This UF is particularly useful to calculate the expected fuel and electric
energy consumption of an entire fleet of vehicles. The FUF evaluated between 0 and 400 miles is shown in Appendix B.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 3 of 45

3.6 INDIVIDUAL UTILITY FACTOR (IUF)

An IUF (IUF) considers all vehicles equally as opposed to using daily VMT weighting which is highly weighted towards
long distance trips. This particular utility factor is analogous to the average individual response to a survey of fuel and
electric energy consumption rates for a set of vehicles. Two possible options for an IUF are the Single Day and Multiple
Day IUFs, which are differentiated by the availability of multiple survey days in the data.

3.7 SINGLE DAY INDIVIDUAL UTILITY FACTOR (SDIUF)

The SDIUF is a specific IUF created when only a single day of travel is available. For most analysis, data from a multi-
day survey is more representative for generating IUFs. This is due to the variations of a driver’s behavior not being
adequately captured using a single day travel survey.

NOTE: The 2001 NHTS survey data only includes data from a single day per household.

3.8 MULTIPLE DAY INDIVIDUAL UTILITY FACTOR (MDIUF)

The MDIUF is a specific IUF created when multiple driving days are available from a travel survey dataset. The MDIUF
better incorporates a driver’s day-to-day variation into the utility calculation. This is the recommended utility factor to use
when calculating an IUF to estimate an individual vehicle’s expected fuel economy. The MDIUF evaluated between 0 and
400 miles is shown in Appendix B.

3.9 SPECIFIC UTILITY FACTOR (SUF)

A Specific Utility Factor is a utility factor that uses a filtered subset of data to create a utility factor that represents a certain
driving style. The reasoning behind this type of UF is that certain driving styles may have different distance distributions
for daily miles traveled and thus may be analyzed with different UFs. For example, if one assumes that a certain driving
style leads to shorter daily distances, it might be useful to use a shorter distance subset of a travel survey to create a UF
curve for that driving style. Cycle-specific utility factors can be created for either FUFs or IUFs. Note: the applicability of a
particular SUF is directly related to the ability to confidently separate driving styles given the amount of information in a
particular dataset.

3.10 CITY SPECIFIC FLEET UTILITY FACTOR (CSFUF)

The CSFUF is a Specific Fleet Utility Factor created for City (Urban) driving. Two examples of a CSFUF curve can be
found in Appendix E.

3.11 HIGHWAY SPECIFIC FLEET UTILITY FACTOR (HSFUF)

The HSFUF is a Specific Fleet Utility Factor created for Highway driving. Two examples of a HSFUF curve can be found
in Appendix E.

3.12 CHARGE-DEPLETING (CD) MODE

Operating mode of a HEV in which the vehicles run by consuming only the electric energy from the mains or along with
the fuel energy simultaneously or sequentially until the CS Mode state.

3.13 CHARGE-SUSTAINING (CS) MODE

Operating mode where the HEV runs by consuming the fuel energy while sustaining the electric energy of the RESS.

3.14 CHARGE-DEPLETING RANGE (RCD)

Generally speaking, this is the distance a vehicle can travel in Charge-Depleting Mode. Several different range
calculations are possible and are specified in SAE J1711.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 4 of 45

4. DERIVATION OF UTILITY FACTORS

4.1 Illustrating the Utility Factor Concept

The derivation of a UF requires a data set of daily driving distances by a number of drivers. The following example will
illustrate the derivation. Let there be a driving data set of five (5) vehicles that all have different daily miles traveled. Let
the charge-depleting range be 40 miles in this example. For this CD range, each vehicle has a different percentage of
operation in CD mode. If the miles traveled were less than or equal to 40 miles, then 100% of the driving is in CD mode. If
a driver’s miles traveled are higher than the CD range, then the CD range divided by the total miles defines this driver’s
fraction of CD mode travel. Figure 1 illustrates this example driving dataset.

Depleting range
= 40mi

80% depleting, 20% sustaining

67% depleting, 33% sustaining

50% depleting, 50% sustaining

50

60

80

40

30

100% depleting, 0% sustaining

1 2 3 4 5

100% depleting, 0% sustaining

Vehicle:

distance driven
on sample day

= sustaining

= depleting

FIGURE 1 - SAMPLE ILLUSTRATION OF AN ORDERED SET OF DAILY DRIVING DISTANCES

To calculate a VMT-weighted UF for this fleet of vehicles, all of the depleting miles are divided by the total miles. In the
numerator, the distance is either the driven distance or the CD range, whichever value is lowest, summed over all drivers.
The denominator is the sum of the total miles driven by the fleet. For this example, the calculation is shown in Figure 2.
Given the usefulness of this factor for describing the expected fuel consumption of an entire fleet of vehicles, it is referred
to as the Fleet Utility Factor (FUF)

8060504030
4040404030)40(

++++
++++=UF

FIGURE 2 - FLEET UTILITY FACTOR CALCULATED FOR EXAMPLE ILLUSTRATION

As an alternative to the FUF, the Individual Utility Factor (IUF) considers all vehicles equally as opposed to using a VMT
weighting which is highly weighted towards long distance trips. If one wanted to find an individual vehicle-weighted utility
factor (IUF), as opposed to a VMT weighted utility factor, this would be found by summing the individual fractions of CD
operation versus total miles driven for all drivers and then dividing by the total number of drivers. The fraction of CD
operation is defined as 1.0 for drivers driving less than or equal to the CD range and the fraction of CD operation for
drivers driving farther than the specified CD range is defined as the charge depleting range divided by the total distance
traveled. This utility factor is described in Figure 3. Given the relevance of this utility factor for individual vehicles, this
type of utility factor is commonly referred to as an Individual Utility Factor (IUF). In the case of the NHTS, where only one
day of driving data is available, this type of utility factor would be termed a Single Day Individual Utility Factor (SDIUF).

Depleting Miles

Total Miles SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 5 of 45

()5.067.08.011
5
1)40(++++=UF

FIGURE 3 - INDIVIDUAL UTILITY FACTOR CALCULATED FOR EXAMPLE ILLUSTRATION

Which factor to use for analysis of a particular PHEV depends upon the purpose of the analysis. If the intent is to predict
the combined fuel usage of a fleet of vehicles, then the mileage-weighted Fleet UF concept (FUF) should be used. If the
intent is to find a prediction of an individual vehicle’s expected fuel economy, then a vehicle-weighted Individual Utility
Factor (IUF) result should be used.

While the expected fuel consumption of a collection of drivers on a single day can be calculated from the NHTS data, it is
also useful to observe daily driving distance over a period of time. This is because drivers will typically have a varying
driving distance profile over the course of the year due to business trips, vacations, etc. Since this data is not directly
available from the NHTS data, an additional data set was used to incorporate longer term driving behavior. The
supplementary dataset used for this analysis was from a Commute Atlanta (CA) survey of roughly 530 vehicles. Although
this dataset is much smaller, it contains multiple days of driving data and therefore provides insight into longer term driving
patterns that the NHTS data alone is unable to address. With this supplementary dataset, a new Multi-day Individual
Utility Factor (MDIUF) may be calculated in a similar fashion to the SDIUF with the inclusion of the multiple driving days.
When using an individual utility factor, it is recommended that a MDIUF be used.

4.2 Defining Utility Factor Equations

Let S be a reference set of driving data, which is a finite set of driving distances, and let RCD be a given CD range. Let di
be a daily distance driven by a particular vehicle. Let Ns be the total number of vehicles multiplied by the total number of
driving days considered in the set S. Equation 1 illustrates the membership in this set.

{ }

SNdddS ,...,, 21=
 (Eq. 1)

When S is ordered such that (1+≤ ii dd), the sorted daily driving distances can be plotted, as shown in Figure 4.

1 N

Daily
Driving
Distance

Ordered Driver Number

FIGURE 4 - ORDERED REFERENCE SET OF N DAILY DRIVING DISTANCES

Depleting Fractions

Number of Vehicles

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 6 of 45

1 N

Daily
Driving
Distance

D

A1

A2

A3

ND

FIGURE 5 - DATA PARTITIONS FOR UTILITY FACTOR (UF) DERIVATION

Consider the partitions illustrated in Figure 5 for the following parameters. The fraction of drivers traveling less than D
miles per day is described in Equation 2.

 N
N

DF D=)(
 (Eq. 2)

The fraction of VMT driven in the initial mode up to D miles (charge-depleting or EV range, D) is depicted in Equation 3.

 321

21)(
AAA

AADUF
++

+=
 (Eq. 3)

Thus, the UF calculation, given the initial data set S , is the sum of the minimum of either RCD or the driving distance of dk
data, divided by the sum of all the distances. This calculation is shown in Equation 4.

()

∑

∑

∈

∈=

Sd
k

Sd
CDk

CD

k

k

d

Rd
RUF

,min
)(

 (Eq. 4)

As discussed previously, an IUF may be desirable when conveying information for an average vehicle. The basic buildup
of this utility factor is similar to the previous discussion, but rather than a percentage of total miles traveled, this utility
factor represents the expected depleting fraction enabled by a particular depleting range relative to the set of vehicles.
Equation 5 illustrates this calculation.

()

nVehicles

d

Rd

RIUF

nVehicles

i
nDays

j
ji

nDays

j
CDji

CD

∑
∑

∑
=

=

=

=

1

1
,

1
, ,min

)(
 (Eq. 5)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 7 of 45

5. NHTS AND COMMUTE ATLANTA SURVEY BACKGROUND

“The National Household Travel Survey (NHTS) is a U.S. Department of Transportation (DOT) effort sponsored by the
Bureau of Transportation Statistics (BTS) and the Federal Highway Administration (FHWA) to collect data on both long-
distance and local travel by the American public. The joint survey gathers trip-related data such as mode of transportation,
duration, distance and purpose of trip. It also gathers demographic, geographic, and economic data for analysis
purposes.” - Obtained February 2010 from http://www.bts.gov/programs/national_household_travel_survey/

The 2001 NHTS was conducted during the period March 2001 through May 2002. Each sampled household was
assigned a travel day to report all trips made on that day. Travel days were assigned for all seven days of the week,
including holidays. The travel day began at 4 AM and ended at 3:59 AM of the following day. On a typical day, 4 AM
represents the time when the fewest number of people are in the middle of a trip.

“In 2004, Commute Atlanta monitored one full year of baseline travel activity from more than 275 participating households.
These volunteer households allowed the research team to professionally install a GT Trip Data Collector in their vehicles.
Approximately 465 vehicles in these households were equipped with instrumentation to monitor second-by-second vehicle
speed and position for every trip. Researchers remotely monitor the travel patterns of these vehicles, uploading vehicle
and engine operating data via a cellular data connection. General travel data, such as number of trips per household per
day and selected travel routes, are used to evaluate transportation demand models currently used in Atlanta's
transportation planning process. Vehicle position and speed data are used to identify locations of recurrent traffic
congestion…”

“More than 100 households participated in Phase II value-pricing research designed to assess household travel response
to simulated payment of transportation costs on a per-mile basis. A similar number of households will experience real-time
congestion pricing later this year. Analytical efforts for this project are expected to continue throughout 2007.” - Obtained
February 2010 from http://commuteatlanta.ce.gatech.edu/

By filtering the Commute Atlanta dataset, the multi-day driving patterns of the survey drivers may be calculated and used
as a multi-day supplement to the NHTS data.

The CA dataset was found to have FUF and SDIUF distributions similar to the NHTS dataset and was therefore decided
to be a reasonable supplement to the NHTS dataset. The following Figures 6 and 7 compare the Commute Atlanta and
NHTS data sets relative to the FUF and SDIUF curves. The plots on the right side of Figures 6 and 7 are an expanded
view of the curve between 0 and 100 miles.

FIGURE 6: FLEET UTILITY FACTOR COMPARISON: COMMUTE ATLANTA (CA) VERSUS NHTS (FULL AND <100 MI)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 8 of 45

FIGURE 7 - SINGLE-DAY INDIVIDUAL UTILITY FACTOR COMPARISON: COMMUTE ATLANTA (CA) VERSUS NHTS
(FULL AND <100 MI)

6. UTILITY FACTOR PROCESSING AND VALUES

6.1 Data Processing

The 2001 NHTS data in the “Day Trip File” named DAYPUB comes in SAS, database, and ASCII format. It consists of
separate individual trips from the entire survey. The total number of records in the file is 642 292. The data were reduced
by using the filters and selected parameters listed in Table 1.

TABLE 1 - FIELDS USED TO EXTRACT SET OF DAILY DRIVING DISTANCES FROM NHTS DATA

Field Filter Remarks
DRVR_FLG =1 1 = Subject was driver on this trip
SMPLSRCE =1 1 = National Sample
TRPMILES >0 Trip distance in miles
TRVL_MIN >0 Time to complete entire trip in minutes
VEHTYPE = 1, 2, 3, or 4 Type of vehicle, 01=Car, 02=Van,

03=SUV, 04=Pickup truck, 05=Other
truck, 06=RV, 07=Motorcycle, 91=Other

One last step was taken before the UF equations could be applied. For each household vehicle (unique “HOUSEID” and
“VEHUSED” label in data set) that was used on the travel day, trip distance and trip time were summed to arrive at daily
vehicle usage. The resulting data provides daily driving distances for roughly 32 000 vehicles and is used alongside the
supplementary dataset as the input for the utility factor analysis in this document.

6.2 Utility Factor Exponential Equation Fits

The various UF results can be described by entering the depleting range into the general form shown in Equation 6,
where x is the input depleting range. The coefficients for the FUF and MDIUF fit calculations are shown in Table 2. The
UF results are valid from 0 to the normalized distance where the Utility Factor converges to 1.0. The equation structure
for fitting a UF curve was arrived at experimentally and was found to provide a good fit with relatively few coefficients or
significant digits. The fit coefficients were found using a modified least squares approach, which ensures that the fits are
monotonic. The fit coefficients for the FUF are identical to those found in the previous version of SAE J2841. For the
MDIUF, the fitting algorithm was further adjusted to achieve a mix of low relative error and a minimum number of
coefficients/significant digits. The maximum fit-error was less than 0.004 and 0.007 for the FUF and MDIUF respectively.
An example fitting script is shown in Appendix A and may be adjusted to find the desired coefficient number and
resolution to be used in Equation 6.

 UF = 1 – exp{ -[C1*(x/norm_dist) + C2*(x/norm_dist)2+ … + C10*(x/ norm_dist)10]} (Eq. 6)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 9 of 45

TABLE 2 - UTILITY FACTOR EQUATION COEFFICIENTS

Value FUF Fit MDIUF Fit
norm_dist 399.9 400

C1 10.52 1.31E+01
C2 -7.282 -1.87E+01
C3 -26.37 5.22E+00
C4 79.08 8.15E+00
C5 -77.36 3.53E+00
C6 26.07 -1.34E+00
C7 - -4.01E+00
C8 - -3.90E+00
C9 - -1.15E+00

C10 - 3.88E+00

Max Error 0.00391 0.00658

Due to some unique processing requirements, the Multi-day Individual utility factor has a limited set of points available for
data fitting. More specifically, the MDIUF data was fit using 20 points distributed across the entire 400 mile range. In
order to provide a more accurate fit in the regions of typical interest, the majority of the fit points were allocated between 0
and 50 miles. To evaluate that this reduced set of points was sufficient to match UF shaped data, a fit was created using
the full FUF curve and the 20 point reduced set. Figure 8 shows that the reduced point fit is close to the full-data fit and
suggests that the 20 points used for fitting the MDIUF should be suitable.

FIGURE 8 - FULL AND 20 POINT FUF CURVE ERROR PLOT

Utilizing Equation 6 and the coefficients in Table 2, the Fleet Utility Factor and Multi-day Individual Utility Factor curves are
shown in Figure 9. The plot on the right side of Figure 9 shows an expanded view of the Utility Curves in the 0 to 100 mile
range. Appendix B contains a table of the FUF and MDIUF equations evaluated at 1 mile increments and rounded to the
nearest 0.001. For non-integer distances, it is recommended that the proper UF fit equation be evaluated to calculate the
UF.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 10 of 45

FIGURE 9 - FUF AND MDIUF WITH RESPECT TO CHARGE-DEPLETING RANGE

7. CITY AND HIGHWAY SPECIFIC UTILITY FACTORS

7.1 Calculating City and Highway Specific Utility Factors

In the FUF and MDIUF, all driving data from a particular survey is included together to create the UF curve. However,
different types of driving may differ in the distribution of distance traveled. For example, some high-speed drivers will likely
travel farther than the majority of stop-and-go drivers. Because energy consumption for a PHEV is a function of distance
driven between charges, a UF which is specific to either a particular style of driving may be useful. A UF constructed for
use with a particular type of driving is referred to as a Specific Utility Factor (SUF) and can be created as either an FUF or
IUF.

The City and Highway Specific UFs can be built from a data set that contains the distance driven between charges for one
or more vehicles over one or more days. For simplicity, one charge per day is assumed. The equations are normalized to
work with data sets of one or more days of data per vehicle. Each data point in the set is assigned a weight with a value
between zero and one. Using this data, the cycle-specific FUF for a fleet is shown in Equation 7. More information
regarding the properties of Specific UFs can be found in Appendix D.

()
()

∑ ∑

∑ ∑

= =

= =

⋅⋅

⋅⋅
=

K

k

N

n
nknk

k

K

k

N

n
nkcdnk

k
cdFleet k

k

dw
N

dRw
NRSUF

1 1
,,

1 1
,,

1

,min1

 (Eq. 7)

Similarly, the cycle-specific IUF for an individual is shown in Equation 8.

 (Eq. 8)

ூ௡ௗ௜௩௜ௗ௨௔௟ሺܴ஼஽ሻܨܷܵ ൌ ∑ ቌ൭∑ ೢೖ,೙·೏ೖ,೙ಿೖ೙సభ∑ ೏ೖ,೙ಿ಼೙సభ ൱·൭∑ ೢೖ,೙·೘೔೙ቀೃ಴ವ,೏ೖ,೙ቁಿೖ೙సభ∑ ೢೖ,೙·೏ೖ,೙ಿೖ೙సభ ൱ቍೖ಼సభ
∑ ൭∑ ೢೖ,೙·೏ೖ,೙ಿೖ೙సభ∑ ೏ೖ,೙ಿೖ೙సభ ൱ೖ಼సభ

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 11 of 45

TABLE 3 - CYCLE-SPECIFIC UF EQUATION VARIABLES

Variable Definition

nkd , Distance driven on each day.

K Number of vehicles in data set
N Number of days in data set

cdR Charge decreasing range.

nkw , Weighting applied to each day, contains a value between zero and one.

These equations are a special case of the composite UF calculation. In the case where all weights are equal to one, these
equations are identical to the composite UF calculations. These equations assume that the data set results in the sum of
weights and distances having a non-zero value; the total distance traveled is greater than zero. For an SUF, if a vehicle
has no weighted distance, that vehicle should be removed from the data set for that cycle-specific calculation. For these
SUFs, if the weighted distance traveled is zero, the SUF is undefined.

One particular option for creating SUF curves may be computed from travel surveys, such as the NHTS, using only the
trip distances and trip travel times. Since only trip information is available, each trip is wholly assigned to either city or
highway driving. In the NHTS, only average trip time and trip distance is available and thus an allocation must be based
on calculated vehicle speed alone. For example, consider the common assumption of 55% of vehicle miles traveled
(VMT) in urban settings and 45% in highway settings for partitioning trips into bins for city and highway driving. The
slowest 55% of VMT is assigned to city driving. The trips that are associated with this travel are considered to be city
driving samples. The remaining trips are assigned to highway driving. Figure 10 shows the cumulative VMT from the
NHTS versus the average trip speed. This chart is generated by taking each trip, calculating the average speed for the
trip, then sorting the list and plotting the cumulative distance versus the average trip speed. The speed below which 55%
of VMT occurs is 42 mph. For illustration purposes, an additional set of SUF curves have also been included in the final
coefficients table with a 43% city versus 57% highway split. More discussion regarding the two different split proportions
may be found in the Federal Register, Vol. 71 No.248.

FIGURE 10 - CUMULATIVE VMT VERSUS AVERAGE TRIP SPEED

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 12 of 45

To calculate the urban weight for a day’s travel, nkd , ,use

{ }

∑

∑

=

=

≤
=

nk

nk

M

m
mnk

M

m
thresholdmnkmnk

nkurban

t

sst
w

,

,

1
,,

1
,,,,

,,

 0 else , if

 (Eq. 9)

To calculate the highway weight for a day’s travel, nkd , ,use

{ }

∑

∑

=

=

>
=

nk

nk

M

m
mnk

M

m
thresholdmnkmnk

nkhighway

t

sst
w

,

,

1
,,

1
,,,,

,,

 0 else , if

 (Eq. 10)

In either equation, if no travel occurs (e.g.

∑
=

N

n
mnkt

1
,, equals zero), the weight is assigned a value of zero. In both of these

equations, the variables in Tables 3 and 4 are used.

TABLE 4 - CYCLE-SPECIFIC UF EQUATION VARIABLES

Variable Definition

nkM , Number trips taken by vehicle k on day n

mnks ,,
7.2 Average trip speed for trip m by vehicle k on day n

thesholds
7.2.1.1.1.1 Trip speed threshold between urban and highway

mnkt ,,
7.2.1.2 Distance driven on trip m by vehicle k on day n

Using this process with the 2001 NHTS data and city/highway splits of 55/45 and 43/57 percent city to percent highway
driving, the City and Highway Specific FUF curves are shown in Figure 11. As a supplement to Equations 7-10, Appendix
C provides an example Python script file which can be used to parse the NHTS data and create the City and Highway
Specific FUF curves discussed in this document.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 13 of 45

FIGURE 11 - CITY AND HIGHWAY SPECIFIC FUF VALUES

The corresponding fit coefficient table for these curves is shown in Table 5. Appendix E contains tables of the CSFUF
and HSFUF equations evaluated at 1 mile increments and rounded to the nearest 0.001. For non-integer distances, it is
recommended that the appropriate UF fit equation be evaluated to calculate the UF.

TABLE 5 - FIT COEFFICIENTS FOR EXAMPLE CITY/HWY SPECIFIC FUF CURVES

Value 55/45 Split - City 55/45 Split - Hwy 43/57 Split - City 43/57 Split - Hwy
norm_dist 399 399 399 399

C1 1.486E+01 4.8E+00 1.69E+01 5.43E+00
C2 2.965E+00 1.3E+01 1.84E+00 1.49E+01
C3 -8.405E+01 -6.5E+01 -9.63E+01 -8.00E+01
C4 1.537E+02 1.2E+02 1.86E+02 1.50E+02
C5 -4.359E+01 -1.0E+02 -5.60E+01 -1.26E+02
C6 -9.694E+01 3.1E+01 -1.23E+02 3.95E+01
C7 1.447E+01 - 1.99E+01 -
C8 9.170E+01 - 1.21E+02 -

C9 -4.636E+01 - -6.30E+01 -

Max Error 0.00558 0.00387 0.00683 0.00487

7.3 Discussion Regarding the Use and Creation of Specific Utility Factors

There are numerous ways to generate the weighting for each data point, dkn, and therefore many possible methods and
SUF curves. Moreover, the applicability of the allocation between types of driving is only as good as the weighting
method used to parse the cycles. If continuous data for driving is available, features of each driving trace can be used to
determine the weighting applied to a particular data point. For example, to build a City Specific UF, the weighting for each
data point could be determined from features such as number of stops, top speed, average speed, and average moving
speed. Although the weighting criteria may change, the process in Equations 7 to 10 should remain the same with the
exception of the threshold in Equations 9 and 10. Given the many options for creating SUF curve types, care must be
taken to ensure that sufficient data exists to create a representative SUF curve and that the SUF used is appropriate for
the given analysis situation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 14 of 45

To illustrate the breadth of options regarding methods to allocate City and Highway driving, several alternative options are
presented here for discussion. The first option is similar to the previous cutoff speed method, but in this case two distinct
speeds are used to differentiate between City and Highway driving style. In addition to the use of two cutoff speeds, this
method assigns a City weighting between 0 and 1 according to average trip speed whereas the previous method fully
allocated a trip to either City or Highway driving. For trips with an average speed above 60 mph, the trip is assumed to
100 percent Highway driving and thus receives a value of 1 for the Highway weighting and a value of 0 for the City
weighting. Similarly, trips with an average speed under 25 mph are wholly assigned to City driving. Between these two
cutoff speeds, trips receive a weighting that is scaled linearly between 0 and 1. In order to retain a City/Highway driving
mix similar to the previous method, the City cutoff speed (25 mph) for this example was chosen to create a 55 percent
City to 45 percent Highway mix relative to total miles driven. The Highway cutoff speed (60 mph) was simply chosen as a
reasonable estimate. Figure 12 illustrates the weighting values as a function of average trip speed.

FIGURE 12 - CITY AND HIGHWAY WEIGHTS FOR ALTERNATIVE SPEED-BASED ALLOCATION METHOD

Another related method for allocating trips based on average speed is to simply create a cutoff speed for exclusively City
driving and exclusively Highway. Trips between these two cutoff speeds are assumed to be equally likely to be City of
Highway driving and thus are included in both the City and Highway datasets used for calculating the SUFs. This method
creates two sets of overlapping data to create the City and Highway SUFs while removing the trips that are unlikely to be
driven in the style of the SUF being calculated. Figure 13 illustrates the three distinct sections; the cutoff speeds shown
are used for example only and would need to be adjusted depending on the desired amount of overlap between City and
Highway driving. In this example, the actual mix of City and Highway relative to VMT is unknown due to the overlapping
region.

FIGURE 13 - DRIVING STYLE SECTIONS FOR OVERLAPPING DATASET ALLOCATION METHOD

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 15 of 45

The last alternative method proposed for discussion attempts to incorporate additional information into the determination
of driving style. This method seeks to categorize an entire day of driving data using the average daily speed and the daily
amount of trips. It is assumed that in addition to reduced speed, City driving will contain more trips compared to Highway
driving. This method allocates the entire day to City or Highway driving due to the nature of the NHTS data, but a similar
method could be done on a trip-by-trip basis using stops as opposed to trips. Figure 14 illustrates the allocation of City
and Highway trips using a speed/number-of-trips dividing line. The dividing line allows for higher speed driving to still be
categorized as City driving if there are a sufficient number of trips during the day. The dividing line was set so that the
driving mix was again 55 percent City to 45 percent Highway.

FIGURE 14 - EXAMPLE ALLOCATION OF TRIPS USING AVERAGE SPEED AND NUMBER OF TRIPS

Additionally, not all datasets should be parsed using a prescribed percentage mix of City and Highway driving. For
example, if a particular dataset is known to be biased towards a particular driving style in terms of total vehicles sampled,
using a percentage of miles driven weighting criterion may not be the most representative methodology. Moreover, if a
method to allocate driving style is known to work well, this allocation technique should take precedence over the expected
percentage of VMT methodology discussed previously. In the case of the 2001 NHTS dataset, a national sampling, it is
assumed that the mix of driving should be reasonably similar to the existing City versus Highway trends. As with the
discussion in the previous paragraphs, more data would be needed to more conclusively allocate between City and
Highway driving for the included NHTS sample or any other dataset used to create a Specific Utility Factor.

8. NOTES

8.1 Marginal Indicia

A change bar (l) located in the left margin is for the convenience of the user in locating areas where technical revisions,
not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document
title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in
original publications, nor in documents that contain editorial changes only.

PREPARED BY THE SAE HYBRID TECHNICAL COMMITTEE

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 16 of 45

APPENDIX A - UTILITY FACTOR CURVE FIT ALGORITHM

The algorithm used to fit the parameters for the various utility factors is a modification of the usual regression methods.
When a curve is fit by using linear regression, the fit is unconstrained, and the resulting fit may have numeric properties
that do not reflect the known behavior of a noise-free data set. For the utility factor, we know that the curve is monotonic
and equal to zero at the origin. Furthermore, instead of minimizing the square of the absolute errors, we would like to
minimize the square of the relative errors. Taking these criteria into account, a constrained optimization problem is formed
and used to find the fit parameters for each curve. The function used in the fit was found by experimentation. Future
revisions of the underlying utility factors may be fit best by different functions.

Example Matlab™ code to find the parameter fits is provided below in Figure A1.

clear variables

fit_order = 6; % maximum order is 9
force_monotonicity = true; % adds constraints to force monotonic shape
use_weighted = true; % adds weighting so smaller UF values are fit tighter
force_UF_to_1 = false; % forces the utility factor to equal 1 at 400 miles

urban = 2;
hwy = 3;
total = 4;
ind_urban = 5;
ind_hwy = 6;
ind_total = 7;

fit_target = ind_hwy;

%%%

% if fit_target == hwy || fit_target==total
% force_UF_to_1 = false;
% end

load Full_UF_Data.mat

dd = Mi;
if fit_target == urban
 UF = UrbanUF;
elseif fit_target == hwy
 UF = HWYUF;
elseif fit_target == total
 %UF = UF; % UF is already the correct variable
elseif fit_target == ind_urban
 UF = IndUrbanUF;
elseif fit_target == ind_hwy
 UF = IndHWYUF;
elseif fit_target == ind_total
 UF = IndUF;
end
UF_ref = UF;
%UF = UF_Data(1:end,fit_target);
%dd = UF_Data(1:end,1);

UF = […]; % utility factor values at each distance
dd = […]; % distance to use for each utility factor value

% clamp data to first entry with a value of 1

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 17 of 45

% e.g. delete all redundant entries with a value of 1
idx = find(UF>=1);
if length(idx)>1
 UF = -log(1-UF(1:idx(1)-1));
 UF_ref =UF_ref((1:idx(1)-1));
 dd = (dd(1:idx(1)-1));
else
 UF = -log(1-UF);
 %UF_ref =UF_ref((1:idx(1)-1));
 %dd = (dd(1:idx(1)-1));
end

% build matrix for the optimization
A = [];
b = [];
Aeq = [];
beq =[];

norm_dist = max(dd);

c1 = dd/norm_dist;
c2 = (dd/norm_dist).^2;
c3 = (dd/norm_dist).^3;
c4 = (dd/norm_dist).^4;
c5 = (dd/norm_dist).^5;
c6 = (dd/norm_dist).^6;
c7 = (dd/norm_dist).^7;
c8 = (dd/norm_dist).^8;
c9 = (dd/norm_dist).^9;
c10 = (dd/norm_dist).^10;
c11 = (dd/norm_dist).^11;
c12 = (dd/norm_dist).^12;

dc1 = ones(size(c1));
dc2 = 2*(dd/norm_dist);
dc3 = 3*(dd/norm_dist).^2;
dc4 = 4*(dd/norm_dist).^3;
dc5 = 5*(dd/norm_dist).^4;
dc6 = 6*(dd/norm_dist).^5;
dc7 = 7*(dd/norm_dist).^6;
dc8 = 8*(dd/norm_dist).^7;
dc9 = 9*(dd/norm_dist).^8;
dc10 = 10*(dd/norm_dist).^9;
dc11 = 11*(dd/norm_dist).^10;
dc12 = 12*(dd/norm_dist).^11;

C = [c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12]; % fit terms
dC = [dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12]; % constraint terms
W = (1./(eps+UF_ref)); % weighting for fit

C= C(:,1:fit_order);
dC = dC(:,1:fit_order);

d = UF;

if force_UF_to_1
 Aeq = [C(end,:)]; % force UF=1 at 400 miles
 beq = [1;];
else
 Aeq = [C(end,:)]; % force UF=1 at 400 miles
 beq = [UF(end);];
end

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 18 of 45

if force_monotonicity
 % set up constraints to force slope to be positive for UF
 % this prevent non-monotonicity
 A = -dC;
 b = zeros(size(dC,1),1);
end

if use_weighted
 C0 = repmat(W,1,fit_order).*C;
 d0 = W.*d;
else
 C0 = C;
 d0 = d;
end

options=optimset('Diagnostics','on','Display','iter','TolCon',1e-15,'TolX',1e-12,'Tolf',1e-
12,'MaxIter',5000);
[p,resnorm,residual,exitflag,output,lambda] = lsqlin(C0,d0,A,b,Aeq,beq,[],[],[],options);

p2 = zeros(12,1);
p2(1:length(p))=p;
% p= p2;

fit_curve = C*p;
fit_curve = 1-exp(-C*p)

%%

figure(1)
subplot(2,1,1)
plot(dd,UF_ref,'.r');
hold on
plot(dd,fit_curve,'k');
title('UF data vs Constrained Fit');
legend('Raw Data','Fit Curve');
grid on
hold off

subplot(2,1,2)
semilogy(dd,fit_curve);
title('Slope of fit');
grid on
hold off

%%

figure(2)
subplot(2,1,1)
plot(dd,fit_curve-UF_ref,'.')
title('fit error');
hold off
grid on

subplot(2,1,2)
hist(fit_curve-UF_ref,100)
title('Histogram of fit error');
hold off
grid on

%%

figure(3)
subplot(2,1,1)
plot(dd,(fit_curve-UF_ref)./(UF_ref+eps),'.')
title('relative fit error');

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 19 of 45

hold off
grid on

subplot(2,1,2)
hist((fit_curve-UF_ref)./(UF_ref+eps),100)
title('Histogram of relative fit error');
hold off
grid on

%fprintf('UF = \n%25.17f*(D/400) + \n%25.17f*(D/400)^2 + \n%25.17f*(D/400)^3 + \n%25.17f*(D/400)^4
+ \n%25.17f*(D/400)^5',p2(1),p2(2),p2(3),p2(4),p2(5));
%fprintf('\n%25.17f*(D/400)^6 + \n%25.17f*(D/400)^7 + \n%25.17f*(D/400)^8 + \n%25.17f*(D/400)^9
+',p2(6),p2(7),p2(8),p2(9));
%fprintf('\n%25.17f*(D/400)^10 + \n%25.17f*(D/400)^11 + \n%25.17f*(D/400)^12 +
\n%25.17f*(D/400)^13\n',p2(10),p2(11),p2(12));

fprintf('UF = 1-exp(-(');
fprintf('\n%25.17f*(D/norm_dist) + \n%25.17f*(D/norm_dist)^2 + \n%25.17f*(D/norm_dist)^3 +
\n%25.17f*(D/norm_dist)^4 + \n%25.17f*(D/norm_dist)^5',p2(1),p2(2),p2(3),p2(4),p2(5));
fprintf('\n%25.17f*(D/norm_dist)^6 + \n%25.17f*(D/norm_dist)^7 + \n%25.17f*(D/norm_dist)^8 +
\n%25.17f*(D/norm_dist)^9 +',p2(6),p2(7),p2(8),p2(9));
fprintf('\n%25.17f*(D/norm_dist)^10 + \n%25.17f*(D/norm_dist)^11 + \n%25.17f*(D/norm_dist)^12 +
\n%25.17f*(D/norm_dist)^13\n',p2(10),p2(11),p2(12));
fprintf('))\n');

fprintf('\nnorm_dist = %10.3f\n',norm_dist);

FIGURE A1 - EXAMPLE MATLAB™ CODE TO CALCULATE FIT PARAMETERS

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 20 of 45

APPENDIX B - FLEET AND MULTI-DAY INDIVIDUAL UTILITY FACTOR TABLES

Fleet Utility Factor (FUF)
Distance (mi) UF Distance (mi) UF Distance (mi) UF Distance (mi) UF

0 0.000 41 0.625 82 0.824 330 0.985
1 0.026 42 0.633 83 0.827 340 0.986
2 0.051 43 0.641 84 0.829 350 0.987
3 0.075 44 0.648 85 0.832 360 0.988
4 0.099 45 0.655 86 0.835 370 0.989
5 0.122 46 0.662 87 0.837 380 0.989
6 0.145 47 0.669 88 0.840 390 0.990
7 0.166 48 0.676 89 0.842 400+ 1.000
8 0.187 49 0.682 90 0.844
9 0.208 50 0.689 91 0.847

10 0.228 51 0.695 92 0.849
11 0.247 52 0.701 93 0.851
12 0.265 53 0.707 94 0.853
13 0.284 54 0.712 95 0.855
14 0.301 55 0.718 96 0.857
15 0.318 56 0.723 97 0.859
16 0.335 57 0.728 98 0.861
17 0.351 58 0.734 99 0.863
18 0.367 59 0.738 100 0.865
19 0.382 60 0.743 110 0.882
20 0.397 61 0.748 120 0.896
21 0.411 62 0.753 130 0.907
22 0.425 63 0.757 140 0.917
23 0.438 64 0.761 150 0.925
24 0.451 65 0.766 160 0.932
25 0.464 66 0.770 170 0.939
26 0.477 67 0.774 180 0.944
27 0.489 68 0.778 190 0.949
28 0.500 69 0.782 200 0.954
29 0.512 70 0.785 210 0.958
30 0.523 71 0.789 220 0.962
31 0.533 72 0.793 230 0.965
32 0.544 73 0.796 240 0.968
33 0.554 74 0.800 250 0.971
34 0.564 75 0.803 260 0.973
35 0.573 76 0.806 270 0.976
36 0.583 77 0.809 280 0.978
37 0.592 78 0.812 290 0.980
38 0.600 79 0.815 300 0.981
39 0.609 80 0.818 310 0.983
40 0.617 81 0.821 320 0.984

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 21 of 45

Multi Day Individual Utility Factor (MDIUF)
Distance (mi) UF Distance (mi) UF Distance (mi) UF Distance (mi) UF

0 0.000 41 0.684 82 0.859 330 0.985
1 0.032 42 0.692 83 0.861 340 0.986
2 0.063 43 0.699 84 0.864 350 0.988
3 0.093 44 0.706 85 0.866 360 0.989
4 0.121 45 0.712 86 0.868 370 0.990
5 0.149 46 0.719 87 0.870 380 0.990
6 0.175 47 0.725 88 0.872 390 0.991
7 0.200 48 0.731 89 0.874 400 0.992
8 0.225 49 0.737 90 0.875 >400 1.000
9 0.248 50 0.743 91 0.877

10 0.271 51 0.748 92 0.879
11 0.293 52 0.754 93 0.881
12 0.314 53 0.759 94 0.882
13 0.334 54 0.764 95 0.884
14 0.353 55 0.769 96 0.886
15 0.372 56 0.774 97 0.887
16 0.390 57 0.778 98 0.889
17 0.407 58 0.783 99 0.890
18 0.424 59 0.787 100 0.892
19 0.440 60 0.791 110 0.904
20 0.456 61 0.795 120 0.915
21 0.471 62 0.799 130 0.923
22 0.486 63 0.803 140 0.930
23 0.500 64 0.807 150 0.935
24 0.513 65 0.811 160 0.940
25 0.526 66 0.814 170 0.944
26 0.539 67 0.817 180 0.948
27 0.551 68 0.821 190 0.951
28 0.563 69 0.824 200 0.954
29 0.574 70 0.827 210 0.957
30 0.585 71 0.830 220 0.960
31 0.596 72 0.833 230 0.963
32 0.606 73 0.836 240 0.965
33 0.616 74 0.839 250 0.968
34 0.625 75 0.842 260 0.970
35 0.635 76 0.845 270 0.973
36 0.644 77 0.847 280 0.975
37 0.652 78 0.850 290 0.977
38 0.661 79 0.852 300 0.980
39 0.669 80 0.855 310 0.982
40 0.677 81 0.857 320 0.983

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 22 of 45

APPENDIX C - EXAMPLE CYCLE-SPECIFIC UTILITY CALCULATION CODE

'''
Usage Instructions:
 1) Install python & scipy.
 The website for python is www.python.org
 The website for scipy is www.scipy.org
 A portable version of python & scipy able to run this script is available at:
 www.portablepython.com
 An installer for python and scipy able to run this script can be found at:
 www.pythonxy.com

 2) Install this file and daypub.csv in the same directory.

Key assumptions:
 1) If the 'TDAYDATE' data is not supplied in the form YYYYMMDD, then all
 travel for a given value of 'TRAVDAY' is assumed to take place on the
 SAME calendar date (e.g., as opposed to different Mondays that month).
 2) The first trip of a given calendar date starts with a full battery, and
 no other external charging occurs that day.

'''

import sys
import os
import os.path
import datetime
import numpy as np
import pylab as plt
import csv
from numpy import arange as arange
import unittest

class Table(object):
 def __init__(self,filename,**kwargs):
 """
 To build the table from a CSV file pass the filename and optional parameters
 maxLines: maximum number of rows to keep from the file
 omitList: list of columns to omit from data set
 keepList: list of columns to keep
 """
 recsReader = csv.reader(open(filename))
 self._data = list()
 data = object.__getattribute__(self,'_data')
 for i,row in enumerate(recsReader):
 # stop after a maximum number of lines if specified
 if 'maxLines' in kwargs.keys():
 # stop after
 if i>kwargs['maxLines']:
 break
 # add header or data rows
 if i==0:
 self._header = row
 header = row
 for i,item in enumerate(header):
 header[i]=item.strip()
 else:
 # pad the row if it is shorter than the header

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 23 of 45

 if len(header)>len(row):
 for ii in range(0,len(header)-len(row)):
 row.append('')
 # eliminate data columns specified
 omitList = kwargs.get('omitList',[])
 for key in omitList:
 row[header.index(key)]=None
 # eliminate data columns not requested
 keepList = kwargs.get('keepList',[])
 if len(keepList)>0:
 for idx,key in enumerate(header):
 if not key in keepList:
 row[idx]=None
 # add row to stored data list
 data.append(row)

 def __getattribute__(self,name):
 if name=='row':
 pass
 elif name=='col':
 pass
 elif name=='data':
 return object.__getattribute__(self,'_data')
 elif name=='header':
 return object.__getattribute__(self,'_header')
 else:
 #print 'returning default object'
 return object.__getattribute__(self,name)

 def __getitem__(self,key):
 data = object.__getattribute__(self,'_data')
 header = object.__getattribute__(self,'_header')
 if type(key)==str:
 # return the column with this name
 idx = header.index(key)
 col = []
 for row in data:
 col.append(row[idx])
 return col
 elif type(key)==int:
 thisData = data[key]
 thisHeader = self._header
 #return dict(zip(thisHeader,thisData))
 return thisData
 else:
 #print 'returning default object'
 return object.__getattribute__(self,key)

 def simplify(self):
 """
 Eliminates all columns in the table which were not kept when read in
 """
 data = object.__getattribute__(self,'_data')
 header = object.__getattribute__(self,'_header')
 #print header
 deleteList = []
 for i,value in enumerate(data[0]):
 if value==None:
 deleteList.append(header[i])
 newHeader = []

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 24 of 45

 newData = []
 for row in data:
 newData.append([])
 for i,column in enumerate(header):
 if header[i] not in deleteList:
 newHeader.append(header[i])
 for row,newRow in zip(data,newData):
 newRow.append(row[i])
 self._data = newData
 self._header = newHeader

 def filter(self,filterList):
 data = object.__getattribute__(self,'_data')
 header = object.__getattribute__(self,'_header')
 newHeader = []
 newData = []
 for i,row in enumerate(data):
 testPassed=True
 for test in filterList:
 testFunction = test[1]
 testColumnName = test[0]
 testColumn = header.index(testColumnName)
 if not testFunction(row[testColumn]):
 testPassed=False
 break
 if testPassed:
 newData.append(row)
 self._data = newData

def loadDataFile(filename,maxRows=1e8):
 keepList =
['HOUSEID','VEHUSED','TRAVDAY','TDAYDATE','DRVR_FLG','SMPLSRCE','TRPMILES','TRVL_MIN','VE
HTYPE']
 t = Table(filename,maxLines=maxRows,keepList=keepList)
 t.simplify()
 return t

def preprocessTable(table, verbose):

 '''
 This routine converts the table data into the lists needed by functions
 determineSplitSpeed and buildDayTravelDistList.

 vehUniqIDList = list of unique vehicle IDs
 tripSpeedList = list of speeds for every trip
 tripDistList = list of distances for every trip
 tripDayList = list of how many days each vehicle was driven
 '''

 #######################################
 # Filter the data to remove trips not applicable to UFs
 # - trips are recorded by a driver
 # - the sample source is the NHTS national sample
 # - the trip has positive time and distance
 if verbose: print 'Number of rows before filtering = %f' % len(table.data)
 table.filter(
 [('VEHTYPE',lambda x:float(x)>=1 and float(x)<=4),
 ('SMPLSRCE',lambda x:float(x)==1),
 ('TRPMILES',lambda x:float(x)>0),
 ('TRVL_MIN',lambda x:float(x)>0),

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 25 of 45

 ('DRVR_FLG',lambda x:float(x)==1)]
)
 if verbose: print 'Number of rows after filtering = %f' % len(table.data)

 #######################################
 # Extract columns of data from the table as lists.
 # Convert text from the table into numbers where needed
 header = table.header
 data = table.data

 vehUniqIDList = [hid+vid for hid,vid in zip(table['HOUSEID'],table['VEHUSED'])]
 tripDistList = [float(x) for x in table['TRPMILES']]
 tripTimeList = [float(x) for x in table['TRVL_MIN']]
 tripSpeedList = [min(70,float(d)/(float(t)/60.0)) for d,t in
zip(tripDistList,tripTimeList)]
 tripDayList = [day for day in table['TRAVDAY']]
 tripDateList = [date for date in table['TDAYDATE']]

 preppedTable = {
 'vehUniqIDList':vehUniqIDList,
 'tripDistList':tripDistList,
 'tripSpeedList':tripSpeedList,
 'tripDayList':tripDayList,
 'tripDateList':tripDateList
 }

 return preppedTable

def determineSplitSpeed(VMT_Fract,tripSpeedList,tripDistList,
 displayPlot=False,savePlot=False, verbose=False):

 # calculate cummulative distance versus sorted speed
 tripList = zip(tripSpeedList,tripDistList)
 tripList.sort()
 totalDist = 0.0
 cumDist = []
 for trip in tripList:
 totalDist += trip[1]
 trip = list(trip)
 cumDist.append(totalDist)

 if displayPlot or savePlot:
 x = cumDist
 y = [trip[0] for trip in tripList]

 ##########################
 # plot trip speeds vs cumulative distance
 plt.figure(1)
 plt.clf()
 plt.plot(x,y)
 plt.grid(True)
 plt.title('Trip Speed vs Cum VMT')
 plt.xlabel('Cummulative Distance [miles]')
 plt.ylabel('Trip Speed [mph]')
 if savePlot: plt.savefig('TripSpeedVsVMT.png')

 ##########################
 # calculate speed below which VMT_Fract of travel occurs
 maxCumDist = cumDist[-1]

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 26 of 45

 transCumDist = VMT_Fract*maxCumDist
 lowSpeed = [speed_dist[0] for idx,speed_dist in enumerate(tripList) if
cumDist[idx]<=transCumDist]

 try:
 transSpeed = lowSpeed[-1]
 except IndexError:
 # assume no trips occur before the transCumDist so lowSpeed==[]
 # therefore, just grab the slowest trip's speed
 transSpeed = min(tripSpeedList)
 if verbose:
 print 'calculated transition speed = %f' % transSpeed
 return transSpeed

def buildDayTravelDistList(
 vehUniqIDList,tripDistList,tripSpeedList,tripDayList,tripDateList,
 transSpeed, verbose = False, debug = False):

 '''
 This routine converts lists of trips into lists of day travel.
 It assumes all travel on a given day (a unique TRAVDAY / TDAYDATE pair)
 starts with a fully battery and has no other external charging. It cannot
 distinguish between different TRAVDAY for a given TDAYDATE unless the
 TDAYDATE data is of the format YYYYMMDD.

 vehUniqIDList - a list that uniquely identifies the vehicle associated with each
trip
 tripDistList - a list of the distance traveled in each trip
 tripSpeedList - a list of the average speed of each trip
 tripDayList - a list of the day index (1-7) for each trip
 transSpeed - the speed above which a trip is assigned to hwy driving,
 below which a trip is assigned to city driving.
 verbose - a flag which indicates if status messages should be displayed
 debug - a flag which indicates if debugging messages should be displayed

 This function returns a dictionary with the daily driving information. The
 dictionary contains the following information:

 dayVehIDList - a list of vehID for each unique (day,vehID) combination
 dayTravelDistList - a list of sum(dist) for each unique (day,vehID) combination
 dayHwyTravelDistList - a list of sum(dist|v>splitSpeed) for each unique (day,vehID)
combination
 dayHwyWtList - a list of hwy weighting for each unique (day,vehID)
combination
 '''

 # initialize some variables
 vehUniqIDSet = set(vehUniqIDList)
 dayVehIDList = []
 dayTravelDistList = []
 dayHwyTravelDistList = []
 dayHwyWtList = []
 if verbose:
 count = 0
 ctIncrement = int(max(1,len(vehUniqIDSet)/10))

 # this builds a quick index to use to find all trips
 # associated with a unique vehicle
 thisIdxDict = {}
 for idx,veh in enumerate(vehUniqIDList):

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 27 of 45

 try:
 thisIdxDict[veh].append(idx)
 except KeyError:
 thisIdxDict[veh]=[idx]

 for veh in list(vehUniqIDSet):
 if verbose:
 # update about every 10% of completion
 if count.__divmod__(ctIncrement)[1]==0:
 print 'pct vehicles done = %f' % ((100.0*count)/len(vehUniqIDSet))
 count+=1
 idxList = thisIdxDict[veh]
 thisVehTripDistList = [tripDistList[idx] for idx in idxList]
 thisVehTripSpeedList = [tripSpeedList[idx] for idx in idxList]
 thisVehTripDayList = [tripDayList[idx] for idx in idxList]
 thisVehTripDateList = [tripDateList[idx] for idx in idxList]
 thisVehTripDayAndDateList = [tripDateList[idx]+tripDayList[idx] for idx in
idxList]

 # reduce each day to a single distance.
 # build new lists for these single day distances.
 # By concatenating day and date columns, we'll assume there is a unique
 # calendar day for each day/date combination, and sum trips over it.
 for tripDate in list(set(thisVehTripDayAndDateList)):
 idxList = [idx for idx,dummy in enumerate(thisVehTripDayAndDateList)
 if thisVehTripDayAndDateList[idx]==tripDate]
 dayVehIDList.append(veh)
 dayTravelDistList.append(sum([thisVehTripDistList[idx] for idx in idxList]))
 dayHwyTravelDistList.append(sum([thisVehTripDistList[idx] for idx in idxList
 if thisVehTripSpeedList[idx]>transSpeed]))
 dayHwyWtList.append(float(dayHwyTravelDistList[-1])/dayTravelDistList[-1])

 if verbose:
 print 'number samples in summary list = %i' % len(dayVehIDList)
 if debug:
 print 'dayVehIDList = ', dayVehIDList
 print 'dayTravelDistList = ', dayTravelDistList
 print 'dayHwyWtList = ', dayHwyWtList

 d = {
 'dayVehIDList':dayVehIDList,
 'dayTravelDistList':dayTravelDistList,
 'dayHwyWtList':dayHwyWtList,
 }

 return d

def generateUFs(Rcd,dayVehIDList,dayTravelDistList,dayHwyWtList,
 verbose=False, debug=False,savePlots=False,displayPlots=False):
 '''
 This routine converts lists of distances per day into Utility Factors.

 Rcd - a list of charge decreasing ranges over which to compute UF
values
 dayVehIDList - a list of vehID for each unique (day,vehID) combination
 dayTravelDistList - a list of sum(dist) for each unique (day,vehID) combination
 dayHwyWtList - a list of hwy weighting for each unique (day,vehID) combination
 verbose - a flag which indicates if status messages should be displayed
 debug - a flag which indicates if debugging messages should be displayed
 savePlots - a flag to indicate whether or not to save the UF plots to file

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 28 of 45

 displayPlots - a flag to indicate whether or not to display the UF plots

 This function returns a dictionary with the UF calculations. The
 dictionary contains the following information:

 Rcd - a list of charge decreasing ranges over which to compute UF values
 UF - a list of Fleet Utility Factors
 IUF - a list of Individual Utility Factors
 UF_city - a list of city-specific Fleet Utility Factors
 UF_hwy - a list of highway-specific Fleet Utility Factors
 IUF_city - a list of city-specific Individual Utility Factors
 IUF_hwy - a list of highway-specific Individual Utility Factors
 '''
 if verbose:
 print 'Generating UFs'
 count = 0
 ctIncrement = int(max(1,len(Rcd)/10))

 # initialize some variables
 vehList = list(set(dayVehIDList))
 vehNumDays = []
 vehSumD = []
 vehSumHwyWtD = []
 vehSumCityWtD = []
 vehHwyFraction = []
 vehCityFraction = []
 vehOnesVector = [1 for x in vehList]
 IUF = []
 cityIUF = []
 hwyIUF = []
 FUF = []
 cityFUF = []
 hwyFUF = []

 # this builds a quick index to use to find all days
 # associated with a unique vehicle
 idxDict={}
 for idx,veh in enumerate(dayVehIDList):
 try:
 idxDict[veh].append(idx)
 except KeyError:
 idxDict[veh]=[idx]

 # for each vehicle, compute sum(wt*d) over all days
 for veh in vehList:
 idxList = idxDict[veh]
 vehNumDays.append(len(idxList))
 vehSumD.append(sum([dayTravelDistList[idx] for idx in idxList]))
 vehSumHwyWtD.append(sum([float(dayHwyWtList[idx])*dayTravelDistList[idx] for idx
in idxList]))
 vehSumCityWtD.append(sum([float((1.0-dayHwyWtList[idx]))*dayTravelDistList[idx]
for idx in idxList]))
 vehHwyFraction.append(float(vehSumHwyWtD[-1])/float(vehSumD[-1]))
 vehCityFraction.append(float(vehSumCityWtD[-1])/float(vehSumD[-1]))
 if debug:
 print 'vehNumDays = ', vehNumDays
 print 'vehSumD = ', vehSumD
 print 'vehSumHwyWtD = ', vehSumHwyWtD
 print 'vehSumCityWtD = ', vehSumCityWtD

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 29 of 45

 for r in Rcd:

 if verbose:
 # update about every 10% of completion
 if count.__divmod__(ctIncrement)[1]==0:
 print 'calculating UF for Rcd = %5.2f. (%3.1f pct complete) @ %s' %
(r,(100.0*count)/len(Rcd),str(datetime.datetime.now()))
 count+=1

 vehSumWtDcd = []
 vehSumHwyWtDcd = []
 vehSumCityWtDcd = []

 # for each vehicle, compute sum(wt*dcd) over all days for a given Rcd
 for veh in vehList:
 idxList = idxDict[veh]
 vehSumWtDcd.append(sum([min(r,dayTravelDistList[idx]) for idx in
idxList]))
 vehSumHwyWtDcd.append(sum([min(r,dayTravelDistList[idx])*(dayHwyWtList[idx])
for idx in idxList]))
 vehSumCityWtDcd.append(sum([min(r,dayTravelDistList[idx])*(1.0-
dayHwyWtList[idx]) for idx in idxList]))

 # if debug:
 # print 'vehSumWtDcd = ', vehSumWtDcd
 # print 'vehSumHwyWtDcd = ', vehSumHwyWtDcd
 # print 'vehSumCityWtDcd = ', vehSumCityWtDcd

 # finish calculations for cycle-specific UF (new equation)
 IUF.append(calcIUF(vehSumD, vehSumWtDcd, vehOnesVector))
 hwyIUF.append(calcIUF(vehSumHwyWtD, vehSumHwyWtDcd, vehHwyFraction))
 cityIUF.append(calcIUF(vehSumCityWtD, vehSumCityWtDcd, vehCityFraction))
 # # finish calculations for cycle-specific UF (original equation)
 # IUF.append(calcIUF(vehSumD, vehSumWtDcd))
 # hwyIUF.append(calcIUF(vehSumHwyWtD, vehSumHwyWtDcd))
 # cityIUF.append(calcIUF(vehSumCityWtD, vehSumCityWtDcd))

 # finish calculations for fleet UF
 FUF.append(calcFUF(vehSumD, vehSumWtDcd, vehNumDays))
 hwyFUF.append(calcFUF(vehSumHwyWtD, vehSumHwyWtDcd, vehNumDays))
 cityFUF.append(calcFUF(vehSumCityWtD, vehSumCityWtDcd, vehNumDays))

 UFDict = {'Rcd':Rcd, 'UF':FUF,'IUF':IUF,
 'UF_city':cityFUF, 'UF_hwy':hwyFUF,
 'IUF_city':cityIUF, 'IUF_hwy':hwyIUF}

 # generate plots, if requested
 if savePlots or displayPlots:
 plt.figure(2)
 plt.clf()
 plt.plot(Rcd,zip(IUF,cityIUF,hwyIUF),lw=2)
 plt.legend(['IUF','IUF city','IUF hwy'],loc='lower right')
 plt.grid(True)
 if savePlots: plt.savefig('IUF.png')

 plt.figure(3)
 plt.clf()
 plt.plot(Rcd,zip(FUF,cityFUF,hwyFUF),lw=2)
 plt.legend(['UF','UF city','UF hwy'],loc='lower right')

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 30 of 45

 plt.grid(True)
 if savePlots: plt.savefig('FUF.png')

 return UFDict

def calcIUFOrig(vehSumWtD,vehSumWtDcd):
 '''
 This function calculates the Individual Utility Factor, IUF, for a list of
 vehicles. The IUF determines the average fraction of miles
 traveled electrically by a sample of vehicles.

 vehSumWtD - a list of sum(wt*d) over all days (1 element per vehicle)
 vehSumWtDcd - a list of sum(wt*dcd) over all days (1 element per vehicle)
 '''
 mySum = 0.0
 numVeh = 0.0
 for wD,wDcd in zip(vehSumWtD,vehSumWtDcd):
 try:
 delSum = float(wDcd)/float(wD)
 numVeh += 1
 except ZeroDivisionError:
 # if wD=0, then this vehicle is not included in the summation
 delSum = 0.0
 mySum += delSum
 return mySum/numVeh

def calcIUF(vehSumWtD,vehSumWtDcd,vehCycleFraction):
 '''
 This function calculates the Individual Utility Factor, IUF, for a list of
 vehicles. The IUF determines the average fraction of miles
 traveled electrically by a sample of vehicles.

 vehSumWtD - a list of sum(wt*d) over all days (1 element per vehicle)
 vehSumWtDcd - a list of sum(wt*dcd) over all days (1 element per vehicle)
 vehCycleFraction - a list of sum(wt*d)/sum(d) over all days (1 element per vehicle)
 '''
 myNumSum = 0.0
 myDenSum = 0.0
 for wD,wDcd,cf in zip(vehSumWtD,vehSumWtDcd,vehCycleFraction):
 try:
 numSum = float(cf)*float(wDcd)/float(wD)
 denSum = float(cf)
 except ZeroDivisionError:
 # if wD=0, then this vehicle is not included in the summation
 numSum = 0.0
 denSum = 0.0
 myNumSum += numSum
 myDenSum += denSum
 return myNumSum/myDenSum

def calcFUF(vehSumWtD,vehSumWtDcd,vehNumDays):
 '''
 This function calculates the Fleet Utility Factor, FUF, for a list of
 vehicles. The FUF determines the fraction of miles
 traveled electrically by a sample of vehicles.

 vehSumWtD - a list of sum(wt*d) over all days (1 element per vehicle)
 vehSumWtDcd - a list of sum(wt*dcd) over all days (1 element per vehicle)
 vehNumDays - a list of the number of days each vehicle is driven
 '''

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 31 of 45

 myNumSum = 0.0
 myDenSum = 0.0
 for wD,wDcd,N in zip(vehSumWtD,vehSumWtDcd,vehNumDays):
 try:
 numSum = float(wDcd)/float(N)
 denSum = float(wD)/float(N)
 except ZeroDivisionError:
 # if N=0, then this vehicle is not included in the summation
 numSum = 0.0
 denSum = 0.0
 myNumSum += numSum
 myDenSum += denSum
 return myNumSum/myDenSum

def reportEqResult(testID,phaseID,this,expected,passMsg=None,failMsg=None,epsilon=0):
 if abs(this-expected)<=epsilon:
 #print (('Test %s: Phase %s: Pass: %s') % (testID,phaseID,passMsg))
 #print ' Expected result = %f.' % expected
 return 0
 else:
 print (('Test %s: Phase %s: Fail: %s') % (testID,phaseID,failMsg))

 print ' Result should be %f, %f was computed' %
(expected,this)
 return 1

def doValidationTests():

 print '----------- start of validation tests --------------------'
 print ''
 print 'Performing validation tests:'

 notice = '''

 The tests that follow are not complete or exhaustive. They are designed
 to catch significant errors introduced by incorrect datasets or changes
 in the scripts.

 '''
 print notice

 ###
 # test:
 # If daypub.csv is in current working directory, load the file and test
 # for number of lines, number of households, number of vehicles.
 # If these numbers are different then it indicates that the
 # the data set is different than the 2001 NHTS data this code was tested
 # on.
 print 'Test 01: If using 2001 NHTS data, these tests check data characteristics.'
 print ' Failures on these tests indicates either a problem'
 print ' with script changes, corrupted data sets, or'
 print ' the use of data other than the 2001 NHTS'
 print ' See http://nhts.ornl.gov/'
 print ''

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 32 of 45

 failCount = 0

 # phase 01 - Test for existence of file
 if os.path.isfile('daypub.csv'):

 # phase 02 - Test number of rows read from the file
 print 'Test 01: Phase 01: Pass: daypub.csv in working directory'
 table = loadDataFile(dataFileName)
 numDataRows = len(table.data)
 if numDataRows==642292:
 print 'Test 01: Phase 02: Pass: correct number of data rows'
 else:
 print 'Test 01: Phase 02: Fail: incorrect number of data rows'
 print ' : - check for truncated file'
 print ' : - table class in scrfipt may have changed'
 failCount += 1

 # phase 03 - Test number of columns from the file
 if len(table.header)==8:
 print 'Test 01: Phase 03: Pass: correct number of data columns retained from
file'
 else:
 print 'Test 01: Phase 03: Fail: incorrect number of data columns'
 print ' : - check for edited file'
 print ' : - table class in script may have changed'
 failCount += 1

 # phase 04 - Test presence of minimally necessary columns
 neededColumns = ['HOUSEID','VEHUSED','TRAVDAY','DRVR_FLG',
 'SMPLSRCE','TRPMILES','TRVL_MIN','VEHTYPE']
 missingColumns = []
 for header in neededColumns:
 if not header in table.header:
 missingColumns.append(header)
 if len(missingColumns)==0:
 print 'Test 01: Phase 04: Pass: required columns present'
 else:
 s = ''
 for count,header in enumerate(missingColumns):
 if count==0:
 s = header
 else:
 s += header
 print 'Test 01: Phase 04: Fail: following columns are missing: %s' % s
 print ' : - check for edited file'
 print ' : - table class in script may have changed'
 failCount += 1

 # phase 05 - Test number of rows eliminated by filtering
 initialRows = len(table.data)
 table.filter(
 [('VEHTYPE',lambda x:float(x)>=1 and float(x)<=4),
 ('SMPLSRCE',lambda x:float(x)==1),
 ('TRPMILES',lambda x:float(x)>0),
 ('TRVL_MIN',lambda x:float(x)>0),
 ('DRVR_FLG',lambda x:float(x)==1)]
)
 finalRows = len(table.data)
 if initialRows-finalRows==642292-141538:

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 33 of 45

 print 'Test 01: Phase 05: Pass: Filtered number of rows is correct'
 else:
 if finalRows>141538:
 print 'Test 01: Phase 05: Fail: too many data rows passed filtering: %i'
% finalRows
 else:
 print 'Test 01: Phase 05: Fail: too few data rows passed filtering: %i' %
finalRows
 print ' : - check for corrupted data'
 print ' : - table class in script may have changed'
 failCount += 1

 # phase 06 - Check name of file to validate
 if dataFileName == 'daypub.csv':
 print 'Test 01: Phase 06: Pass: dataFileName is ''daypub.csv'''
 else:
 print 'Test 01: Phase 06: Fail: dataFileName is not ''daypub.csv'''
 failCount += 1
 else:
 print ('Test 01: Undefined: 2001 NHTS data file not present in ' +
 'current working directory or has unexpected name.')
 # recover memory used by the table
 # del table

 ###
 # test 02:
 # Fleet Utility Factors for a single vehicle with a single day data is created.
 print 'Test 02: Validating Fleet Utility Factor calculations'
 test = '02'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for dist in drivingRanges:
 phase = '%02i' % count
 passMsg = 'Properly calculated Fleet UF for single vehicle driving %i miles
with %i miles of Rcd' % (dist,Rcd)
 failMsg = 'Improperly calculated Fleet UF for single vehicle driving %i miles
with %i miles of Rcd' % (dist,Rcd)

 fueledDist = max(0,dist-Rcd)
 thisUF = calcFUF([dist],[fueledDist],[1])
 expectedUF = 1-max(0,dist-Rcd)/float(dist)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 03:
 # Fleet Utility Factors for a multiple vehicles with same daily distance.
 print 'Test 03: Validating Fleet Utility Factor calculations'
 test = '03'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for dist in drivingRanges:
 phase = '%02i' % count

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 34 of 45

 passMsg = 'Properly calculated Fleet UF for multiple vehicles driving %i
miles with %i miles of Rcd' % (dist,Rcd)
 failMsg = 'Improperly calculated Fleet UF for multiple vehicles driving %i
miles with %i miles of Rcd' % (dist,Rcd)

 fueledDist = max(0,dist-Rcd)
 fueledDistList = [fueledDist for i in range(0,10)]
 wtList = [1 for x in fueledDistList]
 distList = [dist for i in range(0,10)]
 thisUF = calcFUF(distList,fueledDistList,wtList)
 expectedUF = 1-max(0,dist-Rcd)/float(dist)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 04:
 # Fleet Utility Factors for a multiple vehicles with different daily distances
 print 'Test 04: Validating Fleet Utility Factor calculations'
 test = '04'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for i in range(1,len(drivingRanges)):
 phase = '%02i' % count

 fueledDistList = [max(0,drivingRanges[j]-Rcd) for j in range(0,i)]
 distList = [drivingRanges[j] for j in range(0,i)]
 wtList = [1 for x in fueledDistList]
 thisUF = calcFUF(distList,fueledDistList,wtList)

 expectedUF = 1-sum(fueledDistList)/float(sum(distList))

 distStr = '['+''.join(['%f,' % d for d in distList])+']'
 passMsg = 'Properly calculated Fleet UF for multiple vehicles driving %s
miles with %i miles of Rcd' % (distStr,Rcd)
 failMsg = 'Improperly calculated Fleet UF for multiple vehicles driving %s
miles with %i miles of Rcd' % (distStr,Rcd)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 05:
 # Individual Utility Factors for a single vehicle with a single day data is
created.
 print 'Test 05: Validating Individual Utility Factor calculations'
 test = '05'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for dist in drivingRanges:
 phase = '%02i' % count
 passMsg = 'Properly calculated Individual UF for single vehicle driving %i
miles with %i miles of Rcd' % (dist,Rcd)
 failMsg = 'Improperly calculated Individual UF for single vehicle driving %i

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 35 of 45

miles with %i miles of Rcd' % (dist,Rcd)

 fueledDist = max(0,dist-Rcd)
 thisUF = calcIUF([dist],[fueledDist],[1])
 expectedUF = 1-max(0,dist-Rcd)/float(dist)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 06:
 # Individual Utility Factors for a multiple vehicles with same daily distance.
 print 'Test 06: Validating Fleet Utility Factor calculations'
 test = '06'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for dist in drivingRanges:
 phase = '%02i' % count
 passMsg = 'Properly calculated Fleet UF for multiple vehicles driving %i
miles with %i miles of Rcd' % (dist,Rcd)
 failMsg = 'Improperly calculated Fleet UF for multiple vehicles driving %i
miles with %i miles of Rcd' % (dist,Rcd)

 fueledDist = max(0,dist-Rcd)
 fueledDistList = [fueledDist for i in range(0,10)]
 distList = [dist for i in range(0,10)]
 wtList = [1 for x in fueledDistList]
 thisUF = calcIUF(distList,fueledDistList,wtList)
 expectedUF = 1-max(0,dist-Rcd)/float(dist)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 07:
 # Individual Utility Factors for a multiple vehicles with different daily distances
 print 'Test 07: Validating Fleet Utility Factor calculations'
 test = '07'
 Rcds = [0,10,20,30,40,50,100,200,400]
 # note: the UF calculation is not expected to be robust to 0 distance
 drivingRanges = [1,10,20,30,40,50,100,200,400]
 count = 1
 for Rcd in Rcds:
 for i in range(1,len(drivingRanges)):
 phase = '%02i' % count

 fueledDistList = [max(0,drivingRanges[j]-Rcd) for j in range(0,i)]
 distList = [drivingRanges[j] for j in range(0,i)]
 wtList = [1 for x in fueledDistList]
 thisUF = calcIUF(distList,fueledDistList,wtList)

 expectedUF = (1.0/len(fueledDistList))*(sum([1-f/float(d) for f,d in
zip(fueledDistList,distList)]))

 distStr = '['+''.join(['%f,' % d for d in distList])+']'
 passMsg = 'Properly calculated Fleet UF for multiple vehicles driving %s
miles with %i miles of Rcd' % (distStr,Rcd)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

SAE J2841 Revised SEP2010 Page 36 of 45

 failMsg = 'Improperly calculated Fleet UF for multiple vehicles driving %s
miles with %i miles of Rcd' % (distStr,Rcd)
 failCount += reportEqResult(test,phase,thisUF,expectedUF,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 08:
 # Validate the speed split function
 print 'Test 08: Validating logic for selecting the city/hwy split speed'
 test = '08'
 tripDists = [1 for idx in range(0,100)]
 tripSpeeds = [s for s in range(1,101)]
 VMT_Fracts = arange(0,1,0.1)
 count = 1
 for fract in VMT_Fracts:
 phase = '%02i' % count
 thisSplit= determineSplitSpeed(fract,tripSpeeds,tripDists)
 if fract==0:
 # handle case where the are no trips below VMT fraction
 expectedSplit=1
 else:
 expectedSplit =fract*100
 passMsg = 'Properly calculated split speed for 100 equal trips with speeds
between 1 and 100 for %f city VMT fraction' % fract
 failMsg = 'Improperly calculated split speed for 100 equal trips with speeds
between 1 and 100 for %f city VMT fraction' % fract
 failCount += reportEqResult(test,phase,thisSplit,expectedSplit,
 passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###

 ###
 # test 09:
 # Validate the preprocessTable function
 print 'Test 09: Validating table preprocessing function'
 test = '09'

 data = loadDataFile('DummyData.csv')
 vehID = [('100000001', ' 1'), ('100000001', ' 1'), ('100000001', ' 2')]
 dist = [10.0, 10.0, 15.0]
 time = [10.0, 20.0, 20.0]
 v = [float(d)/(float(t)/60) for d,t in zip(dist,time)]
 t = preprocessTable(data,True)

 for idx in arange(0,len(vehID)):
 phase = '%02i' % count
 passMsg = 'Properly calculated vehUniqIDList in preprocessTable function'
 failMsg = 'Improperly calculated vehUniqIDList in preprocessTable function'
 #failCount += reportEqResult(test,phase,t['vehUniqIDList'][idx],vehID[idx],
 # passMsg = passMsg, failMsg = failMsg, epsilon=1e-6)
 count += 1

 ###
 # test 10:
 # Validate the buildDayTravelDistList function
 print 'Test 10: Validating buildDayTravelDistList function'
 test = '10'

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 j2
84

1_
20

10
09

https://saenorm.com/api/?name=4b5cc198c3d858f323766a3ffdf599a9

