@ A = e Engineering society ~ SURFACE car e ISSUED
For Ad Mobilit - AUG1999

WM (. Sea nir and space, ~ VEHICLE

INTERNATIONAL STANDARD uod 99508

400 Commonwealth Drive, Warrendale, PA 15096-0001

Submitted for recognition as an American National Standard

High Temperature Materials for Exhaust Manifolds

1. Scope—A qubcommittee within SAE ISTC Division 35 has written this report to provide autamotive engineers
and designgrs a basic understanding of the design considerations and high temperature mgterial availability
for exhaust manifold use. It is hoped that it will constitute a concise reference of thelimportant characteristics
of selected ¢ast and wrought ferrous materials available for this application, as well'as methgdds employed for
manufacturing. The different types of manifolds used in current engine designs ‘are.discussed, along with their
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FIGURE 1—FABRICATED MANIFOLD

Operating demands on exhaust manifolds, as with many other elevated temperature engine components,
have increased significantly over the past decade. There are numerous reasons why this has occurred,
including the usually-cited reasons of tighter emissions requirements, improved fuel efficiencies, and design
toward higher specific engine power (kW/kg), with a cumulative end-effect yielding higher exhaust gas
temperatures. Techniques used to meet emissions requirements, such as the addition of air injection systems
and the use of controlled variations in air-fuel ratios, have changed overall hydrocarbon levels, and, under
certain conditions, have increased the emissivity of the exhaust gas, further raising the manifold inner wall
temperature. This has led to much higher elevated temperature strength, creep, and fatigue demands on
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exhaust manifold alloys. Radioactive heat shields that are now used to protect underhood electronics from
high temperatures further exacerbate the issue by reflecting otherwise lost heat back on to the manifold.

Such thermal demands lead to reduced alloy strength simply from the higher temperatures, but perhaps more
importantly higher internal stresses can also develop from the higher thermal gradients via thermal expansion
mismatch considerations in the cylinder head - manifold interface. The cumulative effect then becomes higher
temperatures in combination with higher cyclic stresses. Thermal fatigue, a condition in which time-dependent
stress variations occur directly as a result of thermal expansion mismatch and mechanical constraint, becomes

an importan

t issue. Distortion, gas blow-by, and cracking of metal components result.

To avoid such

problems, designers have had to examine stronger alloys and employ alternate mechanical designs.
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TABLE 1—COMPOSITIONAL AND MICROSTRUCTURAL CHARACTERISTICS
OF DUCTILE CAST IRON

Si-Mo Ductile Si-Mo Ductile Si-Mo Ductile

Ferritic Ductile Grade AW Grade B® Grade cM
Carbon 3.80% 3.45% 3.45% 3.45%
Silicon 2.70-3.00% 4.00% 4.00% 4.00%
Sulfur <0.015% <0.02% <0.02% <0.02%
Magnesium 0.020% min 0.020% min 0.020% min 0.020% min
Molybdenum N/A 0.80-1.0% 0.50-0.70% 0.40-0.60%
Copper <0.10% <0.10% <0.10% <0.10%
Manganese 0.20-0.40% 0.20-0.40% 0.20-0.40% 0,29-0.40%
Phosphorus <0.04% <0.04% <0.04% <p.04%
Chromium 0.10% max 0.10% max 0.10% max 0.1p% max
Nickel <0.10% <0.10% <0.10% <p.10%
Ferrite Balance Balance Balance Bplance
Pearlite@®) 10-15% 10-15% 10-15% 1p-15%
Carbides 0-1% 2-3% 1-2% D-1%
Graphite Nodularity 95% + 95% + 95% 95% +

1. Differende in grades is primarily in the Molybdenum content.
2. Amounts|vary depending on section size and presence of heat treating (process‘dependent), or as required by|customer.
3. Area pergent of matrix excluding graphite area; total matrix constituents = 200%, excluding graphite.

TABLE 2—ELEVATED TEMPERATURE MECHANICAL PROPERTIES OF DUCTILE CAST IRON

Si-Mo Ductile Si-Mo Ductile Si-Mo|Ductile
Grade A Grade B Grdde C
Ferritic Ductile (0.8-1,0% Mo) (0.6-0.8% Mo) (0.4-0]6% Mo)
Elongation 16-20% 10-14% 12-16% 14418%
Tensile Strerjgth MPa MPa MPa MPa
22°C (72 °F 565 601 592 588
316 °C (600 {F) 490 535 524 q18
427 °C (800 {F) 386 414 407 404
538 °C (1004 °F) 248 293 282 476
649 °C (1204 °F) 90 123 115 111
704 °C (1304 °F) 61 83 78 5
Yield Strength MPa MPa MPa MPa
22°C(72°F 331-365 468 462 459
316 °C (600 {F) 409 404 401
427 °C (800 °F) 379 370 366
538 °C (1000 °F) 263 253 249
649 °C (1200 °F) 92 83 79
704 °C (1300 °F) 71 66 63
Elongation
22 °C (72 °F) 16-20% 8-12% 10-13% 11-14%
Compressive 234 356 354 353
Strength (MPa)
Modulus Elasticity 170 GPa 145-170 GPa 145-170 GPa 145-170 GPa
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TABLE 3—PHYSICAL PROPERTIES OF DUCTILE CAST IRON

Si-Mo Ductile Si-Mo Ductile Si-Mo Ductile
Ferritic Ductile Grade A Grade B Grade C

Thermal Conductivity
(W/K x cm)
20 °C 0.33 N/A N/A N/A
100 °C 0.40 0.25 0.25 0.25
400 °C 0.33 0.27 0.27 0.27
1000 °C 0.24 0.25 0.25 0.25
Coefficient of Thermal x10~%°C
Expansior
Temp (°C

20-100 11.2

20-200 12.2

20-300 12.8

20-400 13.1

20-500 135

20-600 13.7

20-760 14.8

20-871 15.3
Density (gt 20 °C) 6.9 g/cc 6.9 g/cc 6.9 g/cc 6.9 g/fc
DBTT® dharpy At 22 °C N/A N/A N/A
Impact Prpperties notched 13.5-19.0 j
Notched: notched, ductile
—10 °C to|-65 °C as fracture: 16.3-21.7 j
tensile ingreases

un-notched, ductile
fracture: 94.9-135.6 j

Un-notchgd:
—60 °C to|-10 °C as un-notched, brittle
tensile indreases fracture: 2.7-4.Q j
Creep Strgngth MPa @ N/A N/A N/A|
Temp °C 0:0001%/h rate
427 96.5
538 27.7
649 3.09
Hardness|(HB) 143-217 192 192 192
Fatigue Strength
Endurance Limit
Un-notched 193 MPa N/A N/A N/A
V-notched 117 MPa N/A N/A N/A
Poisson’s ratio 0.28 0.28 0.28 0.28

1. Ductile to Brittle Transition Temperature
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3.2

Stainless Steel—Stainless Steels are selected for elevated temperature applications because of their
excellent strength and resistance to oxidation and corrosion. Both cast and wrought versions are available.
Additions of Chromium (Cr) to iron in amounts greater than approximately 12% will result in an alloy that will
naturally form on its surface a tenacious chrome oxide passive film (chromia, Cr,03). This film tightly adheres
to the base alloy (in contrast to “red rust” on carbon steel which easily cracks and spalls) and protects the
underlying metal from further oxidation at high temperature, or corrosion from other factors such as sulfur-
bearing gases or chloride containing aqueous solutions.

Iron with the addition of 11% to 30% Cr comprises a host of ferritic stainless steels. These alloys are primarily
characterized as having a BCC structure, are ferromagnetic, and are less expensive than their austenitic

counterparts. H|gh temperature OX|dat|0n resrstance tends to be very good to excellent partly because the
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The temperature ranges in which austenitic alloys become susceptible to sensitization are different than the

ferritic counterparts.

use of low

carbon chemistries (e.g., 304L) or by stabilization (e.g., 321 or 347).

In the as-welded form, corrosion resistance in austenitics can be achieved through the
Applications in which

austenitic stainless steels are put into service at sensitization temperatures require additional consideration.

Physical, chemical, and mechanical properties of some of the more commonly-used wrought stainless steels
are shown in Tables 4 to 6. Additional elevated temperature properties are listed in Table 7.
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TABLE 4—PHYSICAL PROPERTIES AT ROOM TEMPERATURE

Product Density Young’'s Mod. Therm. Cond. CTE® Cost
Designation glcc GPa W/m/K cm/cm/°C $/lb
409 8 206 25 14 1
439 8 196 24 13 1
444 7 13 1.75@
441 8 206 24 12 1
468 8 200 25 14 1
304 8 193 16 20 2
309 8 200 16 20 3
321 8 193 16 20 2
601 8 207 11 17 8
1. Coeffitient of thermal expansion.

2. Indicafes estimated value.
TABLE 5—CHEMISTRY OF COMMONLY-USED STAINLESS STEELS
Gomposition, Composition, Composition Composition
Weight Weight Weight Weight
Product Percent Percent Percent Percent
Designation C Ni Cr Fe Others Type
409 0.08 max 0.5 max 11 88.4 Ti=6 x C min to 0.75 max Ferritic
439 0.07 0.5 18 Balance Ti=0.20 + 4(C+N) min to 1.0 ma Ferritic
444 (18Cr 2Mo) 0.02 0.4 18 Balance 2Mo, 0.02N Ferritic
441 0.02 0.3 18 Balance 0.7Nb, 0.3Ti Ferritic
468 0.009 0.22 1825 Balance 0.25Cb, 0.1Ti Ferritic
304 0.03 10 19 Balance 2Mn, 1.0Si, P, S Austenitic
309 0.06 13 23 Balance 1.75Mn, 0.5Si, 0.02P, 0.002 S Austenitic
321 0.08 max 10 18 72 Ti = 5xC min to 0.7 max Austenitic
601 0.05 60.5 23 14.4 1.4Al Ni Base

TABLE 6A=ELEVATED TEMPERATURE MECHANICAL PROPERTIES OF
STAINLESS STEELS—YIELD STRENGTH

Gragle 409 439 444 441 468
Temp.[(CC) YS (MPa) YS (MPa) YS (MPa) YS (MPa) YS (MPa)

21 255 290 358 345 290
260 172 255 262
538 117 193 207 175 152
649 83 145 117
760 28 a7
816 24 41 34 40 62
871 17 28 34 29 34
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TABLE 6B—ELEVATED TEMPERATURE MECHANICAL PROPERTIES OF
STAINLESS STEELS—TENSILE STRENGTH

Grade 409 439 444 441 468
Temp. (°C) TS (MPa) TS (MPa) TS (MPa) TS (MPa) TS (MPa)

21 407 455 476 510 476
538 241 262 338 372 276
649 159 124 283 303 207
704 76 69 241 145 159
760 a1 a1 145 62 83
81 78 75 53 it 7
87 21 21 69 34 i}

TABLE 6C—TENSILE STRENGTH DATA: (300 AND 600 SERIES STAINLESS STHEL)

Grdde 304L 309 321 INGOT IN6R5
Temp (°C) TS (MPa) TS (MPa) TS (MPa) TS.(MPa) TS (MPa)
21 676 620 586 0 93
204 528 459 86pR
47 517 457 82p

538 434 483 444

649 324 393 385 538 76b
704 248

732 286

740 193 290

816 145 207 179

871 114 138 27
942 76 76 138
1093 48 48

TABLE 6D—YIELD'STRENGTH DATA: (300 AND 600 SERIES STAINLESS STEKL)

Grgde 304 309 321 601 62b
Temp (°C) XS (MPa) YS (MPa) YS (MPa) YS (MPa) YS (MPa)
21 241 290 216 46P
204 159 241 162 296
a7 131 207 134 28B
538 165 131
649 107 152 131 172 283
732 131 193
760
816 90 117
871 128 131 276
982 62 138
1093 28
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3.3

3.4

TABLE 7—ADDITIONAL MECHANICAL PROPERTIES

Hardness Charpy Impact Stress Rupture Stress Rupture Stress Rupture
Product Toughness(l) MPa MPa MPa
Description HRB Joules 100 h 816 °C 1000 h 816 °C 10 000 h 816 °C
409 68 44 10.3 6.2
439 73 6.2
444 95 max
441 80
468 78 13.7
304 88 max 203 20.6 10.3
309 95 max 41.3 241
321 80 144 31.0 20.6
601 81 139 44.8 27.5
1. Deperldent on materials processing history. Sources: Allegheny Ludlum and Armco product Literature.
Weldabilityt+—The chemical makeup, microstructure, mechanical, and physical properties of ductile irons can
vary greatly] A correspondingly large number of welding electrode compositions are availpble for welding
ductile irong, such as pure nickel, iron-nickel alloys, and stainless steel. Electrode selegtion is just one
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Machinability—As cast iron alloys become more highly alloyed (usually with matrix strengthening elements
such as Mo, Nb, and Si) to achieve their desired microstructure and properties, unique machining challenges
arise. Machine tool selection becomes critical as the increased alloying promotes carbides and decreases tool

life. This creates quality and cost problems for tooling selection and machining parameters.

In addition,

machining equipment must be more robust in order to handle the higher clamping force and torque required to
machine these alloys. Austenitic alloys, both Ni-Resist cast iron and cast stainless steels, are known to be

very difficult

to machine. Figure 2 summarizes relative machinability of some manifold alloys.
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Ferritic C B A Cast SS D5S Cast SS
Ductile SiMo SiMo SiMo (Ferritic) (Austenitic)
0 10

————

Increased Difficulty of Machining

FIGURE 2—RELATIVE MACHINABILITY IN VARIOUS MATERIALS
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ion for Manifold Design—Gray cast iron was the material of ¢choice in exhaust
In the 1970s, the first applications of air injection systems (AIR) were
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However, th

e exothermic nature of these oxidation reactions increased the temperature of

manifold design
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he exhaust gas.

Gray iron was unable to meet the design criteria for service life.inthis environment, in terms of both strength at

temperature
temperature

irons, and austenitic ductile iron.
alloys formgrly used to produce exhaust manifolds.
Ferritic D4512 type, but with a silicon content of 4:t1626%. The silicon addition increases the f

transition te
Increased s
beyond 5%,

and scaling resistance. Designs began incorporating alloys with higher] maximum use
5, including compacted graphite and ferritic ductile irons, high silicon, and Si-Mo ferritic ductile
High silicon ductile.ifon and austenitic ductile iron are two of the casting
High silicon ductile irons are essentially alloys of the
rite-to-austenite
mperature, extending the service.temperature at which a manifold can be ysed to 900 °C.
icon imparts good high temperature scaling resistance and serves as a ferrite gtrengthener, but
Si significantly degrades impact strength and ductility between room temperatlire and 450 °C.

The resulting casting brittleness makes higher silicon ductile irons undersirable for high volume production.

Austenitic d
austenitic m|
used for ex
temperature
irons require
expensive th

The microst

Lictile irons, also knewn as Ni-Resist ductile irons, are a family of ductile irops displaying an

atrix at room temperature by alloying with large amounts of nickel. The grade
paust manifolds, ‘B-5S, contains 36% nickel and 2% chromium. D-5S can be
5 to 925 °C, and has excellent scaling resistance and thermal stability. However,
special foundry practices and tooling, due to their austenitic matrix, and are s
an conventional ductile irons because of their high nickel content.

uctures of gray irons used in the past for exhaust manifolds were typically all p§g

most commonly
used at service
Ni-Resist ductile
gnificantly more

arlitic, and thus,

hlgh Strengt L Thlo VWAoo PUOOIb:U bcuauoc upcuzt;llu tcmpC|atulco VAAYA A VVC” bC:UVV that v thh Causes the
cementite phase to either coarsen to a spheroidal structure or decompose to ferrite + graphite. The
microstructure of current D4512-type ductile iron is essentially ferritic, because this is the stable phase at
application temperatures. High silicon-molybdenum ductile iron is basically D4512 type with added silicon and
molybdenum for improved high temperature properties. Its microstructure is also essentially ferritic.

The exhaust manifold is the only major engine component that is not actively cooled. Therefore, alloys used
for this application must withstand high heat loads and should absorb as little heat as possible from the
exhaust gas during start up, to avoid delays in catalytic converter warm up and function. Manifold alloys
should be dimensionally stable at high temperature. They should also attenuate noise as efficiently as
possible, yet be light to limit vehicle weight. For these reasons, thermophysical properties are of equal
importance as mechanical properties when considering alloys for manifold use.
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More recently, wrought and cast stainless steels have been used. Figure 3 illustrates generally accepted
maximum temperatures of use for these various alloys.

® Gray Iron (1)

® Compacted Graphite Iron (2)

® Ductile Iron (D4512) (3)

) H{ Silicon ductile Iron (4)

L4 H{ Silicon -Molybdenum
Ductile Iron (5)

L4 Austenitic Ductile Iron (D5S) (6)

[ ]
oy
o

bricated Stainless Steel (7)

® Cist Stainless Steel (8)

FIGURE[3—TEMPERATURE LIMITS OF THE VARIOUS EXHAUST MANIFOLD ALLOY$ IN USE

Stainless stpel)fabrications and castings are used when exhaust gas temperatures excg¢ed 870 °C, an
increasingly common occurrence. Fabricated manifolds, both single wall and dual wall air-gap designs,
typically use Ferritic or Austenitic grades. The increased emissions and performance requirements of future
engines call for high temperature cast stainless steel manifolds. Properties of cast and wrought stainless
steels are shown in Tables 4 to 7. Cast Stainless manifolds are made from Ferritic, Duplex, or Austenitic
grades. The relative selection preference for selecting these materials, based on properties required in the
application is shown in Table 8.

-10-
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TABLE 8—RELATIVE SELECTION PREFERENCE
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Weldability Preferred
Formability Preferred
Hot Salt Corrosion Preferred
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stainless steels are currently._undergoing development for thin-wall exhaust m

Figure 1, exhaust manifold alloy demand changes as the exhaust gasitemperlature increases.

because of the

urrent materials
steel or ferritic

Anifolds. These

cast austenitic
C. The nominal
f Nb and Ti as

hlloys is ongoing

alloys have|a low coefficient of thertmal expansion compared with Si-Mo ductile irons o
stainless allpys. They are weldahle,.and exhibit good oxidation resistance to about 940 °C
composition| of this cast alloy is:#2.0% Cr, 1.8% Si, and 0.03% C, with small amounts ¢
stabilizers. Results of oxidation:tests conducted in synthetic exhaust gas for this 12% Chromiyim cast alloy are
compared tq wrought 409 and 439 stainless steel in Table 9. Further development of these
and some de¢tails of suclhmaterials are presented in Table 10.
TABLE9—WEIGHT GAIN (g/m?) AFTER 96 h OF OXIDATION AT VARIOUS
TEMPERATURES IN SYNTHETIC EXHAUST GAS
T mpnrahlrn °C T\):pn 400 Typa 430 1204 Cr 1 804 S

650 3.9 1.9 13

700 6.1 2.4 15

750 7.8 33 18

800 115 4.3 2.8

850 18.3 6.1 4.6

900 149.8 20.6 9.0
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TABLE 10—PROPERTIES OF DEVELOPMENTAL CAST STAINLESS STEEL - 12% Cr

Temperature Yield Strength Tensile Strength Elastic Modulus Poisson’s Specific Heat Elongation

°C MPa MPa 10% MPa Ratio Wikg °K %

21 233 20.6 0.28 451 5

93 200 19.4

100 493

148 0.29

200 528

204 172 18.9 5

260 0.29

300 560

315 168 18.3

371 0.30

400 602

427 132 17.5

482 0.30

500 685

538 110 241 16.4 5

593 0.31

600 801

649 86 157 15.4 6.5

700 990

704 0.32

760 30 42 11.4

800

816 0.33

871 16 21 6.9
Conclusiont—The field of manifold development has been driven primarily by an increased heat load on the
component prought about by stricter kegulations on emissions. Not only have temperatures increased, but
through thermal expansion and meghanical constraints, operational stresses have also increaged, and often in
a time-depgndent manner. Demands on materials have become significant. Potential faflure modes are
numerous: dreep or rupture fronrinsufficient static strength at temperature, thermal fatigue, and alloy loss from

static or cyc

The goal sg
reference of]
active work
incomplete.

ic oxidation arethree of the major ones.

t forth by _the subcommittee writing this document was to provide an introdug
exhaust manifold design, manufacture, and alloy selection. Publication comes
in the field, and it would not be surprising if within a few short years it be
It7is certainly not intended (at this point) to be an all-encompassing reference,

tory and central
At a time of very
fome somewhat
although a very

comprehensive bibliography is provided to guide the reader to further and more detailed work. Certainly as the
document is revised in the coming years, newer and perhaps more detailed information will be added.

PREPARED BY THE SAE IRON AND STEEL TECHNICAL DIVISION 35—ELEVATED TEMPERATURE

PROPERTIES OF FERROUS METALS
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