
Information technology — Genomic
information representation —
Part 2:
Coding of genomic information
Technologies de l'information — Représentation des informations
génomiques —
Partie 2: Codage des informations génomiques

© ISO/IEC 2020

INTERNATIONAL
STANDARD

ISO/IEC
23092-2

Reference number
ISO/IEC 23092-2:2020(E)

Second edition
2020-10

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)
﻿

ii� © ISO/IEC 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)
﻿

Foreword...vii
Introduction...viii
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 1
4	 Abbreviated terms... 6
5	 Conventions.. 6

5.1	 General.. 6
5.2	 Arithmetic operators.. 7
5.3	 Logical operators... 7
5.4	 Relational operators.. 7
5.5	 Bit-wise operators.. 8
5.6	 Assignment operators.. 8
5.7	 Range notation... 8
5.8	 Mathematical functions.. 9
5.9	 Order of operation precedence.. 9
5.10	 Variables, syntax elements and tables.. 10
5.11	 Text description of logical operators... 11
5.12	 Processes.. 12

6	 Syntax and semantics..12
6.1	 Method of specifying syntax in tabular form..12
6.2	 Bit ordering.. 13
6.3	 Specification of syntax functions and data types.. 13
6.4	 Semantics... 15

7	 Data structures...15
7.1	 General... 15
7.2	 Data unit... 15
7.3	 Raw reference.. 16

7.3.1	 General... 16
7.3.2	 Syntax and semantics..16

7.4	 Parameter set .. 17
7.4.1	 Syntax and semantics..17
7.4.2	 Encoding parameters...17

7.5	 Access unit.. 23
7.5.1	 Syntax and semantics..24
7.5.2	 Access unit types...27

8	 Descriptors...28
9	 Sequencing reads...31

9.1	 General... 31
9.2	 Supported symbols.. 31
9.3	 Paired-end reads... 33
9.4	 Reverse-complement reads... 33
9.5	 Data classes.. 34
9.6	 Aligned data... 34
9.7	 Unaligned data.. 35

10	 Decoding process...36
10.1	 General... 36
10.2	 dataset_type = 0 or 1.. 36

10.2.1	 General... 36
10.2.2	 References padding...37

© ISO/IEC 2020 – All rights reserved� iii

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)
﻿

10.2.3	 Type 1 AU (Class P)..37
10.2.4	 Type 2 AU (Class N)...38
10.2.5	 Type 3 AU (Class M)..39
10.2.6	 Type 4 AU (Class I)...39
10.2.7	 Type 5 AU (Class HM)..41
10.2.8	 Type 6 AU (Class U)...41

10.3	 dataset_type = 2... 42
10.3.1	 General... 42
10.3.2	 Type 1 AU... 42
10.3.3	 Type 2 AU... 43
10.3.4	 Type 3 AU... 43
10.3.5	 Type 4 AU... 44
10.3.6	 Type 6 AU... 44

10.4	 Genomic descriptors.. 44
10.4.1	 General... 44
10.4.2	 pos..45
10.4.3	 rcomp... 45
10.4.4	 flags...46
10.4.5	 mmpos.. 47
10.4.6	 mmtype.. 49
10.4.7	 clips...52
10.4.8	 ureads.. 55
10.4.9	 rlen...55
10.4.10	 pair...57
10.4.11	 mscore... 64
10.4.12	 mmap... 65
10.4.13	 msar..67
10.4.14	 rtype... 68
10.4.15	 rgroup.. 70
10.4.16	 qv...70
10.4.17	 rname... 74
10.4.18	 rftp..74
10.4.19	 rftt...75
10.4.20	 tokentype descriptors...76

10.5	 sequence... 85
10.5.1	 General... 85
10.5.2	 Aligned reads (Classes P, N, M, I, HM)..85
10.5.3	 Unmapped reads (Class HM, U).. 86

10.6	 e-cigar... 86
10.6.1	 Syntax.. 86
10.6.2	 Decoding process for the first alignment...88
10.6.3	 Decoding process for other alignments...95
10.6.4	 Reference transformation.. 95

11	 Representation of reference sequences...97
11.1	 External reference.. 97
11.2	 Embedded reference.. 97
11.3	 Computed reference... 97

11.3.1	 General... 97
11.3.2	 Supported Algorithms...98
11.3.3	 Reference transformation.. 98
11.3.4	 PushIn... 99
11.3.5	 Local assembly..100
11.3.6	 Global assembly...102

12	 Block payload parsing process.. 102
12.1	 General..102
12.2	 Inverse binarizations..103

12.2.1	 General..103

iv� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)
﻿

12.2.2	 Binary (BI)..104
12.2.3	 Truncated unary (TU)..104
12.2.4	 Exponential golomb (EG) ...104
12.2.5	 If the output of step 2 is 1, symVal= -1*symValTruncated exponential

golomb (TEG)...105
12.2.6	 Signed truncated exponential golomb (STEG) ...105
12.2.7	 Split unit-wise truncated unary (SUTU) ...106
12.2.8	 Signed split unit-wise truncated unary (SSUTU) ..106
12.2.9	 Double truncated unary (DTU)..107
12.2.10	 Signed double truncated unary (SDTU) ..107

12.3	 Decoder configuration...107
12.3.1	 Sequences and quality values..107
12.3.2	 Support values..109
12.3.3	 CABAC binarizations..109
12.3.4	 Transformation parameters..112
12.3.5	 Msar descriptor and read identifiers..113
12.3.6	 State variables...114

12.4	 Initialization process for context variables...117
12.5	 Arithmetic decoding engine...118

12.5.1	 Initialization..118
12.5.2	 Arithmetic decoding process...118

12.6	 Decoding process for sequence descriptors...125
12.6.1	 General..125
12.6.2	 Block payload decoding process...126

13	 Output format.. 141
13.1	 General..141
13.2	 MPEG-G record...141

13.2.1	 General..141
13.2.2	 number_of_template_segments..143
13.2.3	 number_of_record_segments...144
13.2.4	 number_of_alignments..144
13.2.5	 class_ID..144
13.2.6	 read_group_len...144
13.2.7	 reserved..144
13.2.8	 read_1_first..144
13.2.9	 seq_ID...144
13.2.10	 as_depth..144
13.2.11	 read_len...144
13.2.12	 qv_depth...145
13.2.13	 read_name_len..145
13.2.14	 read_name..145
13.2.15	 read_group...145
13.2.16	 sequence..145
13.2.17	 quality_values..145
13.2.18	 mapping_pos..145
13.2.19	 ecigar_len...145
13.2.20	 ecigar_string..145
13.2.21	 reverse_comp...145
13.2.22	 mapping_score..145
13.2.23	 split_alignment...146
13.2.24	 delta...146
13.2.25	 split_pos..146
13.2.26	 split_seq_ID..146
13.2.27	 flags..146
13.2.28	 more_alignments..146
13.2.29	 next_pos..146
13.2.30	 next_seq_ID..146

13.3	 Initialization process..146

© ISO/IEC 2020 – All rights reserved� v

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)
﻿

Annex A (informative) Tokenization of reads identifiers... 150
Annex B (informative) Mapping quality.. 152
Annex C (informative) Inverse binarization examples.. 153

vi� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this specification and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This specification was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this specification may be the
subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC
list of patent declarations received (see http://​patents​.iec​.ch).

Any trade name used in this specification is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www​.iso​.org/​iso/​foreword​.html.

This specification was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second edition cancels and replaces the first edition (ISO/IEC 23092-1:2019), which has been
technically revised.

The main changes compared to the previous edition are as follows:

—	 The sequence decoding process for mismatches in classes I and HM has been clarified.

—	 In subclause 10.4 and its subclauses variable numberOfAlignedRecordSegments has been renamed to
numberOfMappedRecordSegments.

—	 In subclause 10.4.2 the decoding process of pos and rtype descriptors with computed reference has
been clarified.

—	 In subclause 11.3.4 the decoding process of pushin has been revised.

—	 The decoding of the reverseComp values has been revised.

—	 The determination of the offset of mismatches within spliced segments has been revised.

—	 The decoding process for signatures has been revised.

—	 The signalling of computed references has been clarified.

—	 In Clause 12 some decoding processes and some transformations have been clarified.

A list of all parts in the ISO/IEC 23092 series can be found on the ISO website.

Any feedback or questions on this specification should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www​.iso​.org/​members​.html.

﻿

© ISO/IEC 2020 – All rights reserved� vii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

http://www.iso.org/directives
http://www.iso.org/patents
http://patents.iec.ch
http://www.iso.org/iso/foreword.html
http://www.iso.org/members.html
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Introduction

The advent of high-throughput sequencing (HTS) technologies has the potential to boost the adoption
of genomic information in everyday practice, ranging from biological research to personalized genomic
medicine in clinics. As a consequence, the volume of generated data has increased dramatically during
the last few years, and an even more pronounced growth is expected in the near future.

At the moment genomic information is mostly exchanged through a variety of data formats, such as
FASTA/FASTQ for unaligned sequencing reads and SAM/BAM/CRAM for aligned reads. With respect to
such formats, the ISO/IEC 23092 series provides a new solution for the representation and compression
of genome sequencing information by:

—	 Specifying an abstract representation of the sequencing data rather than a specific format with its
direct implementation.

—	 Being designed at a time point when technologies and use cases are more mature. This permits
addressing one limitation of the textual SAM format, for which the incremental ad-hoc addition of
features followed along the years, resulting in an overall redundant and suboptimal format which
was unnecessarily complicated.

—	 Separating free-field user-defined information with no clear semantics from the genomic data
representation. This allows a fully interoperable and automatic exchange of information between
different data producers.

—	 Allowing multiplexing of relevant metadata information with the data since data and metadata are
partitioned at different conceptual levels.

—	 Following a strict and supervised development process which has proven successful in the last
30 years in the domain of digital media for the transport format, the file format, the compressed
representation and the application program interfaces.

The ISO/IEC 23092 series provides the enabling technology that will allow the community to create an
ecosystem of novel, interoperable, solutions in the field of genomic information processing. In particular
it offers:

—	 Consistent, general and properly designed format definitions and data structures to store sequencing
and alignment information. A robust framework which can be used as a foundation to implement
different compression algorithms.

—	 Speed and flexibility in the selective access to coded data, by means of newly designed data clustering
and optimized storage methodologies.

—	 Low latency in data transmission and consequent fast availability at remote locations, based on
transmission protocols inspired by real-time application domains.

—	 Built-in privacy and protection of sensitive information, thanks to a flexible framework which
allows customizable secured access at all layers of the data hierarchy.

—	 Reliability of the technology and interoperability among tools and systems, owing to the provision
of a procedure to assess conformance to this document on an exhaustive dataset.

—	 Support to the implementation of a complete ecosystem of compliant devices and applications,
through the availability of a normative reference implementation covering the totality of the
ISO/IEC 23092 series.

The fundamental structure of the ISO/IEC 23092 series data representation is the genomic record. The
genomic record is a data structure consisting of either a single sequencing read, or a paired sequencing
read, and its associated sequencing and alignment information; it may contain detailed mapping and
alignment data, a single or paired read identifier (read name) and quality values.

﻿

viii� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Without breaking traditional approaches, the genomic record introduced in the ISO/IEC 23092 series
provides a more compact, simpler and manageable data structure grouping all the information related
to a single DNA template, from simple sequencing data to sophisticated alignment information.

The genomic record, although it is an appropriate logic data structure for interaction and manipulation of
coded information, is not a suitable atomic data structure for compression. To achieve high compression
ratios, it is necessary to group genomic records into clusters and to transform the information of the
same type into sets of descriptors structured into homogeneous blocks. Furthermore, when dealing
with selective data access, the genomic record unit is too small to allow effective and fast information
retrieval.

For these reasons, this document introduces the concept of access unit, which is the fundamental
structure for coding and access to information in the compressed domain.

The access unit is the smallest data structure that can be decoded by a decoder compliant with
ISO/IEC 23092-2. An access unit is composed of one block for each descriptor used to represent the
information of its genomic records; therefore, a block payload is the coded representation of all the data
of the same type (i.e. a descriptor) in a cluster.

In addition to clusters of genomic records compressed into access units, reads are further classified in
six data classes: five classes are defined according to the result of their alignment against one or more
reference sequences; the sixth class contains either reads that could not be mapped or raw sequencing
data. The classification of sequencing reads into classes enables the development of powerful selective
data access. In fact access units inherit a specific data characterization (e.g. perfect matches in class
P, substitutions in class M, indels in class I, half-mapped reads in class HM) from the genomic records
composing them, and thus constitute a data structure capable of providing powerful filtering capability
for the efficient support of many different use cases.

Access units are the fundamental, finest grain data structure in terms of content protection and
in terms of metadata association. In other words each access unit can be protected individually and
independently. Figure 1 shows how access units, blocks and genomic records relate to each other in the
ISO/IEC 23092 series data structure.

Figure 1 — Access units, blocks and genomic records

﻿

© ISO/IEC 2020 – All rights reserved� ix

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Figure 2 — High-level data structure: datasets and dataset group

A dataset is a coded data structure containing headers and one or more access units. Typical datasets
could, for example, contain the complete sequencing of an individual, or a portion of it. Other datasets
could contain for example a reference genome or a subset of its chromosomes. Datasets are grouped in
dataset groups, as shown in Figure 2.

According to the ISO/IEC 23092 series, the compressed sequencing data can be multiplexed into a
bitstream suitable for packetization for real-time transport over typical network protocols. In storage
use cases, coded data can be encapsulated into a file format with the possibility to organize blocks
per descriptor stream or per access unit, to further optimize the selective access performance to the
type of data access required by the different application scenarios. The ISO/IEC 23092 series further
provides a reference process to convert a transport stream into a file format and vice versa.

The ISO/IEC 23092 series defines the syntax and semantics of the compressed genome sequencing data
representation and the deterministic decoding process that reconstructs the contents of datasets. The
decoding process is fully specified such that all decoders that conform to this document will produce
identical decoded output. A simplified diagram of the decoding process is shown in Figure 3.

﻿

x� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Figure 3 — The decoding process

The International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may
involve the use of a patent.

ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO and IEC that he/she is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statement of the holder of this patent right is registered with ISO and IEC. Information may
be obtained from the patent database available at www​.iso​.org/​patents.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights other than those in the patent database. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

﻿

© ISO/IEC 2020 – All rights reserved� xi

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

http://www.iso.org/patents
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

Information technology — Genomic information
representation —

Part 2:
Coding of genomic information

1	 Scope

This document provides specifications for the representation of the following types of genomic
information:

—	 unaligned sequencing reads including read identifiers and quality values;

—	 aligned sequencing reads including read identifiers and quality values;

—	 reference sequences.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

ISO/IEC 23092-1:2020, Information technology — Genomic information representation — Part 1:
Transport and storage of genomic information

3	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 23092-1 and the
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

3.1
alignment
information describing the similarity between a sequence [typically a sequencing read (3.28)] and a
reference sequence (for instance, a reference genome)

Note 1 to entry: An alignment is described in terms of a position within the reference, the strand of the reference,
and a set of edit operations (matches, mismatches, insertions and deletions, clipping of the sequence ends and
splicing information) needed to turn the first sequence into the second.

INTERNATIONAL STANDARD� ISO/IEC 23092-2:2020(E)

© ISO/IEC 2020 – All rights reserved� 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://www.iso.org/obp
http://www.electropedia.org/
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

3.2
CIGAR string
CIGAR
textual way of representing an alignment (3.1)

Note 1 to entry: Several definitions have been used by different programs; the one referred to here is the one used
in the SAM format. It encodes a set of edit operations (matches, mismatches, insertions and deletions, clipping of
the sequence ends and splicing information) needed to turn the sequencing read into the reference.

3.3
dataset
compression unit containing one or more of: reference sequences; sequencing reads (3.28); and alignment
(3.1) information

Note 1 to entry: Datasets shall be as specified in ISO/IEC 23092-1.

3.4
deletion
contiguous removal of one or more bases from a genomic sequence

3.5
E-CIGAR
extended CIGAR syntax specified as a superset of the CIGAR syntax

Note 1 to entry: Among other things, E-CIGAR enables the unambiguous representation of substitutions, spliced
reads and splice strandedness.

3.6
edit operation
modification of a sequence of nucleotides (3.20) by means of a substitution, deletion (3.4), insertion
(3.18) or clip

3.7
FASTA
GIR that includes a name and a nucleotide (3.20) sequence for each sequencing read (3.28)

Note 1 to entry: Additional information is usually encoded in the read identifier by bioinformatics tools (such as
database information, and base calling information).

3.8
FASTQ
GIR that includes FASTA (3.7) and quality values (3.22)

3.9
first end
end 1
read 1
first segment of a paired-end template (3.33)

Note 1 to entry: Illumina platforms usually store first and second ends in two separate files and in the same order
— i.e. the n-th read of the first FASTQ file and the n-th read of the second FASTQ file belong to the same template.

3.10
genomic descriptor
descriptor
element of the syntax used to represent a feature of a genomic sequencing read (3.28) or associated
information such as alignment (3.1) information or quality values (3.22)

﻿

2� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

3.11
genomic information representation
way to describe a sequence and some information associated with it

Note 1 to entry: Which information is represented varies depending on the GIR.

3.12
genomic record
record
data structure representing a tuple (3.34) optionally associated with alignment (3.1) information, read
identifier (3.24) and quality values (3.22)

3.13
genomic record index
position of a genomic record in the sequence of genomic records (3.12) encoded in an access unit

3.14
genomic record position
0-based position of the leftmost mapped base on the reference genome of the first alignment (3.1)
contained in a genomic record (3.12)

Note 1 to entry: A base present in the aligned read and not present in the reference sequence (insertion) and
bases preserved by the alignment process but not mapped on the reference sequence (soft clips) do not have
mapping positions.

3.15
genomic reference
reference
collection of reference sequences

Note 1 to entry: Typical examples are a reference genome or a reference transcriptome.

3.16
hard clip
base or set of bases originally present at either side of a read, and removed from it following
alignment (3.1)

Note 1 to entry: The bases are no longer present in the sequence of the read.

3.17
indel
contiguous stretch of nucleotides (3.20) that, when aligning two sequences, are inserted into one
sequence, or alternatively deleted from the other, in order to make the two sequences the same

Note 1 to entry: From “insertion or deletion”.

3.18
insertion
contiguous addition of one or more bases into a genomic sequence

3.19
leftmost read end
leftmost read
sequencing read (3.28) generated by a paired-end sequencing run and mapped at a position on the
reference sequence which is smaller than the mapping position of the other read in the pair

﻿

© ISO/IEC 2020 – All rights reserved� 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

3.20
nucleotide
base
base pair
monomer of a nucleic acid polymer such as DNA or RNA

Note 1 to entry: Nucleotides are denoted as letters (‘A’ for adenine; ‘C’ for cytosine; ‘G’ for guanine; ‘T’ for thymine
which only occurs in DNA; and ‘U’ for uracil which only occurs in RNA). The chemical formula for a specific
DNA or RNA molecule is given by the sequence of its nucleotides, which can be represented as a string over the
alphabet (‘A’, ’C’, ’G’, ‘T’) in the case of DNA, and a string over the alphabet (‘A’, ‘C’, ‘G’, ‘U’) in the case of RNA. Bases
with unknown molecular composition are denoted with ‘N’.

3.21
paired-end read
paired-end template
tuple (3.34) made of two segments

Note 1 to entry: Typically the segments correspond to the beginning and the end of the same nucleic acid molecule.

3.22
quality value
quality score
number assigned to each nucleotide (3.20) base call in automated sequencing processes

Note 1 to entry: Quality values express the base-call accuracy, i.e. the probability (or a related measure) for a
nucleotide in the sequence to have been incorrectly determined.

3.23
read group
set of reads having some property in common

3.24
read identifier
read header
read name
text string associated with each sequencing read (3.28) stored in GIRs such as FASTA (3.7), FASTQ (3.8)
and SAM (3.26)

Note 1 to entry: The read identifier is usually unique within its dataset, and may contain additional information
as encoded by bioinformatics tools (such as database information, and base calling information).

3.25
rightmost read end
rightmost read
sequencing read (3.28) generated by a paired-end sequencing run and mapped at a position on the
reference sequence which is greater than the mapping position of the other read in the pair

3.26
SAM
GIR that is human readable and includes FASTQ plus alignment (3.1) and analysis information

Note 1 to entry: From “Sequence Alignment/Map format”. SAM originates from the 1000 Genome Sequencing
Project. It is represented in plain ASCII, extensible by users and includes sequence, quality, alignment and
analysis information.

﻿

4� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

3.27
second end
read 2
second segment of a paired-end template (3.33)

Note 1 to entry: Sequencing platforms usually store first and second ends in two separate files and in the same
order — i.e. the n-th read of the first FASTQ file and the n-th read of the second FASTQ file belong to the same
template.

3.28
sequencing read
read
readout, by a specific technology more or less prone to errors, of a continuous part of a segment of
nucleotides (3.20) extracted from an organic sample

3.29
single-end read
tuple (3.34) made of one segment

3.30
soft clip
soft clipped bases
base or set of bases at either side of the read that have been ignored during the alignment (3.1) process

Note 1 to entry: The bases are still present in the sequence of the read.

3.31
spliced read
aligned read which, as a consequence of biological splicing, covers non-continuous portions of the
reference genome being the result of biological splicing

Note 1 to entry: This means the read must come from RNA-sequencing, and contain at least one junction between
two consecutive exons.

3.32
split alignment
aligned paired-end read (3.21) whose ends are encoded in two different genomic records (3.12)

3.33
template
genomic sequence that is produced by a sequencing machine as a single unit

Note 1 to entry: A template can be made of one or more segments (being called single-end sequencing read when
it only has one segment, and paired-end sequencing read when it has two segments — typically they capture
both the beginning and the end of a nucleic acid molecule).

3.34
tuple
collection of one or more segments

Note 1 to entry: Each segment can be: unmapped; mapped once; or mapped more than once.

3.35
decoded genomic descriptor
result of multiplexing the decoded symbols (3.37) of one or more descriptor subsequences (3.36)

3.36
descriptor subsequence
ordered collection of decoded symbols (3.37)

﻿

© ISO/IEC 2020 – All rights reserved� 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

3.37
decoded symbol
value needed to reconstruct a descriptor subsequence (3.36)

Note 1 to entry: If no inverse subsequence transformation is applied, the transformed symbol shall be equal to
the decoded symbol.

3.38
transformed subsequence
ordered collection of transformed symbols (3.39)

Note 1 to entry: The transformed symbols of one or more transformed subsequences can be multiplexed to yield
decoded symbols.

3.39
transformed symbol
concatenation of one or more decoded subsymbols (3.40)

3.40
decoded subsymbol
output of an inverse subsymbol transformation applied on a transformed subsymbol (3.41)

Note 1 to entry: See subclause 12.6.2.7. If no inverse subsymbol transformation is applied, the decoded subsymbol
shall be equal to the transformed subsymbol.

3.41
transformed subsymbol
decoded cabac subsymbol
atomic value yielded by the cabac decoding process

4	 Abbreviated terms

AU access unit

CRPS computed reference parameters set

GIR genomic information representation

LUT look up table

QVPS quality values parameters set

5	 Conventions

5.1	 General

This clause contains the definition of operators, notations, functions, textual conventions and processes
used throughout this document.

The mathematical operators used in this document are similar to those used in the C programming
language. However, the results of integer division and arithmetic shift operations are specified more
precisely, and additional operations are specified, such as exponentiation and real-valued division.
Numbering and counting conventions generally begin from 0, e.g., "the first" is equivalent to the 0-th,
"the second" is equivalent to the 1-th, etc.

﻿

6� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

5.2	 Arithmetic operators

+ addition

− subtraction (as a two-argument operator) or negation (as a unary prefix operator)

* multiplication, including matrix multiplication

xy
exponentiation
Specifies x to the power of y. In other contexts, such notation is used for superscripting not
intended for interpretation as exponentiation.

/ integer division with truncation of the result toward zero
For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.

÷ division in mathematical equations where no truncation or rounding is intended

x
y

division in mathematical equations where no truncation or rounding is intended

f i
i x

y
()

=
∑ summation of f(i) with i taking all integer values from x up to and including y

x % y modulus
Remainder of x divided by y, defined only for integers x and y with x ≥ 0 and y > 0.

5.3	 Logical operators

x && y Boolean logical AND of x and y

x || y Boolean logical OR of x and y

! Boolean logical NOT

x ? y : z if x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

5.4	 Relational operators

> greater than

≥ greater than or equal to

< less than

≤ less than or equal to

== equal to

!= not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value
"na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The
value "na" is considered not to be equal to any other value.

﻿

© ISO/IEC 2020 – All rights reserved� 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

5.5	 Bit-wise operators

& AND
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

| OR
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

^ exclusive or
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

x >> y right shift of a two's complement integer representation of x by y binary digits This function
is defined only for non-negative integer values of y. Bits shifted into the MSBs as a result of
the right shift have a value equal to the MSB of x prior to the shift operation.

x << y left shift of a two's complement integer representation of x by y binary digits
This function is defined only for non-negative integer values of y. Bits shifted into the LSBs
as a result of the left shift have a value equal to 0.

! not operator returning 1 if applied to 0 and 0 if applied to 1

5.6	 Assignment operators

= assignment operator

++ increment
i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

− − decrement
i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value of the
variable prior to the decrement operation.

+= increment by amount specified
 i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).

−= decrement by amount specified
i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).

5.7	 Range notation

x = y..z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer
numbers and z being greater than y

array[x, y] sub-array containing the elements of array comprised between position x and y included
If x is greater than y, the resulting sub-array is empty.

﻿

8� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

5.8	 Mathematical functions

Ceil(x) smallest integer greater than or equal to x (1)

Floor(x) largest integer less than or equal to x (2)

Log2(x) base-2 logarithm of x (3)

Min(x, y) =
x x y

y x y

;

;

<=

>




(4)

Max(x, y) =
x x y

y x y

;

;

>=

<




(5)

5.9	 Order of operation precedence

When the order of precedence in an expression is not indicated explicitly by use of parentheses, the
following rules apply:

—	 Operations of a higher precedence are evaluated before any operation of a lower precedence.

—	 Operations of the same precedence are evaluated sequentially from left to right.

Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table
indicates a higher precedence.

NOTE	 For those operators that are also used in the C programming language, the order of precedence used
in this document is the same as used in the C programming language.

Table 1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)
"x++", "x− −"
"!x", "−x" (as a unary prefix operator)
xy

"x * y", "x / y", "x ÷ y", " x
y

", "x % y"

"x + y", "x − y" (as a two-argument operator), " f i
i x

y
()

=
∑ "

"x << y", "x >> y"
"x < y", "x ≤ y", "x > y", "x ≥ y"
"x = = y", "x != y"
"x & y"
"x | y"
"x && y"
"x | | y"
"x ? y : z"
"x..y"
"x = y", "x += y", "x −= y"

﻿

© ISO/IEC 2020 – All rights reserved� 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

5.10	 Variables, syntax elements and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by
its name (all lower case letters with underscore characters), and one data type for its method of coded
representation. The decoding process behaves according to the value of the syntax element and to the
values of previously decoded syntax elements. When a value of a syntax element is used in the syntax
tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements
values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper
case letter and without any underscore characters (camel case notation). Variables starting with an
upper case letter are derived for the decoding of the current syntax structure and all depending syntax
structures. Variables starting with an upper case letter may be used in the decoding process for later
syntax structures without mentioning the originating syntax structure of the variable. Variables
starting with a lower case letter are only used within the clause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably
with their numerical values. Sometimes "mnemonic" names are used without any associated numerical
values. The association of values and names is specified in the text. The names are constructed from
one or more groups of letters separated by an underscore character. Each group starts with an upper
case letter and may contain more upper case letters.

NOTE	 The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax
functions. These functions are specified in Clause 6 and assume the existence of a bitstream pointer
with an indication of the position of the next bit to be read by the decoding process from the bitstream.
Syntax functions are described by their names, which are constructed as syntax element names and
end with left and right round parentheses including zero or more variable names (for definition) or
values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.2)
are described by their names, which start with an upper case letter, contain a mixture of lower and
upper case letters without any underscore character, and end with left and right parentheses including
zero or more variable names (for definition) or values (for usage) separated by commas (if more than
one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix.
Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the
indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row
(vertical) index and the second subscript is used as a column (horizontal) index. The indexing order
is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a
matrix s at horizontal position x and vertical position y may be denoted either as s[x][y] or as syx. A
single column of a matrix may be referred to as a list and denoted by omission of the row index. Thus,
the column of a matrix s at horizontal position x may be referred to as the list s[x].

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...}
}, where each inner pair of brackets specifies the values of the elements within a row in increasing
column order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6
} { 4 9 } } specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1] is set equal to 4, and
s[1][1] is set equal to 9.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example,
'01000001' represents an eight-bit string having only its second and its last bits (counted from the most
to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of
binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an
eight-bit string having only its second and its last bits (counted from the most to the least significant
bit) equal to 1.

﻿

10� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by
any value different from zero.

5.11	 Text description of logical operators

In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0)
 statement 0
else if(condition 1)
 statement 1
...
else /* informative remark on remaining condition */
 statement n

may be described in the following manner:

... as follows / ... the following applies:

—	 If condition 0, statement 0

—	 Otherwise, if condition 1, statement 1

—	 ...

—	 Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "...
the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ...
Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements
can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0a && condition 0b)
 statement 0
else if(condition 1a || condition 1b)
 statement 1
...
else
 statement n

... as follows / ... the following applies:

—	 If all of the following conditions are true, statement 0:

—	 condition 0a

—	 condition 0b

—	 Otherwise, if one or more of the following conditions are true, statement 1:

—	 condition 1a

—	 condition 1b

—	 ...

—	 Otherwise, statement n

﻿

© ISO/IEC 2020 – All rights reserved� 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0)
 statement 0
if(condition 1)
 statement 1

may be described in the following manner:

—	 When condition 0, statement 0

—	 When condition 1, statement 1

5.12	 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification
and invoking. All syntax elements and variables that pertain to the current syntax structure and
depending syntax structures are available in the process specification and invoking. A process
specification may also have a lower-case variable explicitly specified as input. Each process specification
has explicitly specified an output. The output is a variable that can either be an upper-case variable or
a lower-case variable.

When invoking a process, the assignment of variables is specified as follows:

—	 If the variables at the invoking and the process specification do not have the same name, the variables
are explicitly assigned to lower-case input or output variables of the process specification.

—	 Otherwise (the variables at the invoking and the process specification have the same name),
assignment is implied.

In the specification of a process, a specific coding block may be referred to by the variable name having
a value equal to the address of the specific coding block.

6	 Syntax and semantics

6.1	 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on
the syntax may be specified, either directly or indirectly, in other clauses.

Table 2 lists examples of the syntax specification format. When syntax_element appears, it specifies
that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next
position beyond the syntax element in the bitstream parsing process.

Table 2 — Examples of the syntax specification format

Syntax Type
/* A statement can be a syntax element with an associated data type or can be an expression used
to specify conditions for the existence, type and quantity of syntax elements, as in the following two
examples */

syntax_element ue(v)
conditioning statement

/*A group of statements enclosed in curly brackets is a compound statement and is treated func-
tionally as a single statement. */

﻿

12� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type
{
 Statement
 Statement
 ...
}
/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation
of a statement (or compound statement) repeatedly until the condition is no longer true */

while(condition)
 statement

/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of whether a
condition is true, and if true, specifies repeated evaluation of the statement until the condition is no
longer true */

do
 statement
while(condition)

/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is
true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative
statement. The "else" part of the structure and the associated alternative statement is omitted if no
alternative statement evaluation is needed */

if(condition)
 primary statement
else
 alternative statement

/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and
if the condition is true, specifies repeated evaluation of a primary statement followed by a subse-
quent statement until the condition is no longer true. */

for(initial statement; condition; subsequent statement)
 primary statement

6.2	 Bit ordering

For bit-oriented delivery, the bit order of syntax fields in the syntax tables is specified to start with the
MSB and proceed to the LSB.

6.3	 Specification of syntax functions and data types

The functions presented here are used in the syntactical description. These functions are expressed
in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the
decoding process from the bitstream.

byte_aligned() is specified as follows:

—	 If the current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is the
first bit in a byte, the return value of byte_aligned() is equal to TRUE.

—	 Otherwise, the return value of byte_aligned() is equal to FALSE.

﻿

Table 2 (continued)

© ISO/IEC 2020 – All rights reserved� 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit
positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance
the bitstream pointer.

decode_bit() decodes the next bit from the bitstream using either the arithmetic decoding engine
(subclause 13.2.4) or read_bits(1), as determined by the decoding configuration.

Size(array_name[]) returns the number of elements contained in the array named array_name.

The following data types specify the parsing process of each syntax element:

—	 ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this data
type is specified in subclause 12.5.2.2.

—	 ae(t): context-adaptive arithmetic entropy-coded termination syntax. The parsing process for this
data type is specified in subclause 12.5.2.5.

—	 f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing
process for this data type is specified by the return value of the function read_bits(n).

—	 i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a
manner dependent on the value of other syntax elements. The parsing process for this data type
is specified by the return value of the function read_bits(n) interpreted as a two's complement
integer representation with most significant bit written first.

—	 se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing
process for this data type is specified in subclause 12.2.4.2.

—	 st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8
(UTF-8) characters as specified in ISO/IEC 10646. The parsing process is specified as follows:
st(v) reads and returns a series of bytes from the bitstream, beginning at the current position and
continuing up to but not including the next byte that is equal to 0x00, and advances the bitstream
pointer by (stringLength + 1) * 8 bit positions, where stringLength is equal to the number of bytes
returned.

—	 u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a
manner dependent on the value of other syntax elements. The parsing process for this data type is
specified by the return value of the function read_bits(n) interpreted as a binary representation of
an unsigned integer with most significant bit written first.

—	 ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The
parsing process for this data type is specified in subclause 12.2.4.

—	 u7(v): variable sized unsigned integer computed by iteratively reading 8 bits, where the least
significant 7 bits are interpreted as a binary representation of an unsigned integer v, with the most
significant bit written first, and the 8th bit signaling if the iteration should stop. The parsing process
for this data type is specified below:

v = 0

do {

 c = read_bits(8);

 v = (v << 7) | (c & 0x7f);

} while (c & 0x80)

—	 c(n): sequence of n ASCII characters as specified in ISO/IEC 10646.

﻿

14� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

6.4	 Semantics

Semantics associated with the syntax structures and with the syntax elements within each structure
are specified in a clause following the clause containing the syntax structures. When the semantics of
a syntax element are specified using a table or a set of tables, any values that are not specified in the
table(s) shall not be present in the bitstream unless otherwise specified in this document.

7	 Data structures

7.1	 General

Subclause 7.2 specifies the structure of a data unit. A data unit is a data structure used as container for
a raw reference structure, a parameter set structure or an access unit structure.

Subclause 7.3.2 specifies the structure of a raw reference.

Subclause 7.4 specifies the structure of a parameter set. A parameter set consists of a parent parameter
set identifier, a parameter set identifier and encoding parameters as specified in subclause 7.4.1.

Subclause 7.5 specifies the structure of an access unit. An access unit consists of an access unit header,
followed by one or more blocks. Table 19 in subclause 7.5.1.2 specifies the syntax for an access unit header.

Each block consists of a block header, as specified in subclause 7.5.1.3.2, followed by a block payload as
specified in subclause 7.5.1.3.3.

7.2	 Data unit

Table 3 — Data unit syntax

Syntax Type
data_unit() {

 data_unit_type u(8)
 if (data_unit_type == 0) {
 data_unit_size u(64)
 raw_reference() raw reference
 }
 else if (data_unit_type == 1) {
 reserved u(10)
 data_unit_size u(22)
 parameter_set() parameter set
 }
 else if(data_unit_type == 2){
 reserved u(3)
 data_unit_size u(29)

 access_unit() access unit
 }
 else /*(data_unit_type > 2)*/{
 /*skip data unit*/
 }
}

﻿

© ISO/IEC 2020 – All rights reserved� 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

data_unit_type specifies the type of data unit. Table 4 lists the values of data_unit_type and the
associated data unit types.

Table 4 — Values of data_unit_type and associated data unit types

data_unit_type Data unit type Clause
0 raw reference 7.3
1 parameter set 7.4
2 access unit 7.5

data_unit_size is the total size in bytes of the data unit including the bytes used for data_unit_type
and data_unit_size.

raw_reference() is a raw_reference structure as specified in subclause 7.3.

parameter_set() is a parameter_set structure as specified in subclause 7.4.

access_unit() is an access_unit structure as specified in subclause 7.5.

A conformant bitstream containing at least one data unit of type access unit shall contain at least one
data unit of type parameter set.

7.3	 Raw reference

7.3.1	 General

This subclause specifies the data structure used to represent a raw reference. This structure shall be
used to:

—	 deliver reference sequences to the decoder,

—	 return decoded reference sequences or part thereof from the decoder.

If a raw reference is required to decode access units, this raw reference shall be made available to the
decoder prior to any other data unit.

7.3.2	 Syntax and semantics

Table 5 — Raw reference syntax

Syntax Type
raw_reference() {
 seq_count u(16)
 for (i=0; i<seq_count; i++){
 sequence_ID u(16)
 seq_start[sequence_ID] u(40)
 seq_end[sequence_ID] u(40)
 ref_sequence[sequence_ID] c(seq_end – seq_start + 1)
 }
}

seq_count is the number of reference sequences in the raw reference.

sequence_ID is reference sequence identifier. Each sequence_ID is unique and shall correspond to one
sequence_name specified in ISO/IEC 23092-1:2020, 6.5.2.3.3.

﻿

16� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

seq_start[sequence_ID] is the coordinate, on the reference sequence identified by sequence_ID, of the
first base present in the ref_sequence[] array.

seq_end[sequence_ID] is the coordinate, on the reference sequence identified by sequence_ID, of the
last base present in the ref_sequence[] array.

ref_sequence[sequence_ID][i] is the ith base in the reference sequence identified by sequence_ID.

7.4	 Parameter set

7.4.1	 Syntax and semantics

This subclause specifies the parameter set syntax and semantics.

Table 6 — Parameter set syntax

Syntax Type
parameter_set() {
 parameter_set_ID u(8)
 parent_parameter_set_ID u(8)
 encoding_parameters()
}

parameter_set_ID is the unique identifier of the parameter set.

parent_parameter_set_ID is the unique identifier of an existing parameter set. Referencing an existing
parameter set from another parameter set enables the generation of a hierarchy of parameter sets
where the values of the encoding parameters of each element override the corresponding values of the
parent node. If equal to parameter_set_ID, the parameter set is at the top level in the hierarchy.

encoding_parameters() are the encoding parameters as specified in subclause 7.4.2 of this document.

7.4.2	 Encoding parameters

7.4.2.1	 General

The encoding parameters are configuration parameters used during the decoding process.

Table 7 — Encoding parameters syntax

Syntax Type
encoding_parameters() {

 dataset_type u(4)
 alphabet_ID u(8)
 read_length u(24)
 number_of_template_segments_minus1 u(2)
 reserved u(6)
 max_au_data_unit_size u(29)
 pos_40_bits_flag u(1)
 qv_depth u(3)
 as_depth u(3)
 num_classes u(4)

﻿

© ISO/IEC 2020 – All rights reserved� 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type

 for(j=0; j < num_classes; j++)
This for loop specifies the
order of data classes for the
entire syntax structure.

 class_ID[j] u(4)
 for(i=0; i < NUM_DESCRIPTORS; i++){

 class_specific_dec_cfg_flag[i] u(1)
 if(class_specific_dec_cfg_flag[i] == 0) {

 descriptor_configuration(i)
Descriptor configuration, as
specified in subclause 7.4.2.2,
applied to all classes.

 } else {
 for(j=0; j< num_classes ; j++) {

 descriptor_configuration(i)

Descriptor configuration, as
specified in 7.4.2.2, applied
to the class identified by
class_ID[j].

 }

 }

 num_groups u(16)
 for(j=0; j < num_groups; j++)

 rgroup_ID[j] st(v)
 multiple_alignments_flag u(1)
 spliced_reads_flag u(1)
 reserved u(30)
 signature_flag u(1)
 if(signature_flag != 0){

 signature_constant_length_flag u(1)
 if(signature_constant_length_flag != 0){

 signature_length u(8)
 }

 }

 for (c = 0; c < num_classes; c++) {

 qv_coding_mode u(4)
 if(qv_coding_mode == 1){

 qvps_flag u(1)
 if(qvps_flag)

 parameter_set_qvps(class_ID[c]) See subclause 7.4.2.3.
 else

 qvps_preset_ID u(4)
 }

 qv_reverse_flag u(1)
 }

 crps_flag u(1)

﻿

Table 7 (continued)

18� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type
 if(crps_flag)

 parameter_set_crps() See subclause 7.4.2.4.
 while(!byte_aligned())

 nesting_zero_bit f(1)
}

dataset_type specifies the type of data encoded in the dataset. The possible values are: 0 = non-aligned
content; 1 = aligned content; 2 = reference.

alphabet_ID identifies the alphabet of symbols used for data encoded in access units referring to these
encoding parameters. shows the alphabets associated to each value of alphabet_ID.

read_length specifies the length in bases of sequencing reads. The value 0 indicates the presence
of variable read lengths. Variable read lengths are signalled genomic record as specified in
subclause 10.4.9).

number_of_template_segments_minus_1 specifies the number of segments in each sequenced
template. For single read sequencing it is set to 0, for paired-end sequencing it is set to 1. The variable
numberOfTemplateSegments is set to number_of_template_segments_minus_1 + 1.

max_au_data_unit_size is the maximum value permitted to the field data_unit_size in the data unit,
when data_unit_type is equal to 2, as specified in subclause 7.2. A value of 0 indicates an unspecified
maximum data unit size.

pos_40_bits_flag is set to 1 when the mapping positions are expressed as 40 bits integers. Otherwise
all mapping positions are expressed as 32 bits integers. In the scope of this document the value of the
variable posSize is set to 32 when pos_40_bits_flag is equal to 0 and set to 40 otherwise.

qv_depth specifies the number of quality values associated to each nucleotide. A value of 0 means that
no quality values are encoded. The maximum value shall be 2.

as_depth specifies the number of alignment scores associated to each alignment. A value of 0 means
that no alignment scores are encoded. The maximum value shall be 2.

num_classes specifies the number of data classes encoded in all access units referring to the current
Parameters Set.

class_ID is one of the data class identifiers specified in subclause 9.5. For any value of ci greater than 0
it shall always be class_ID[ci] > class_ID[ci - 1].

NUM_DESCRIPTORS is a constant counting the number of genomic descriptors specified in this
document and it is set to 18.

class_specific_dec_cfg_flag signals the presence of class-specific decoder configuration for a given
desc_ID. If set to 0, only one decoder configuration is signalled for all classes. Otherwise, separate class
specific decoder configurations are signalled.

descriptor_configuration(i) signals the descriptor’s decoder configuration as specified in
subclause 7.4.2.2.

num_groups specifies the number of read groups present in all access units referring to the current
Parameters Set. If num_groups is set to 0, the rgroup descriptor shall not be present in the AUs
referring to this parameter set.

rgroup_ID is the null-terminated string identifier of a read group. The maximum allowed length is 64
characters not including the terminating character.

﻿

Table 7 (continued)

© ISO/IEC 2020 – All rights reserved� 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

multiple_alignments_flag is a flag signaling the presence of multiple alignments in the access unit.
When set to 0 no multiple alignments are present.

spliced_reads_flag signals the presence of spliced reads in the access unit. When set to 0 no spliced
reads are present.

reserved is set to 0 and reserved for future use.

signature_flag signals the presence of signatures in the access unit. When set to 0 no signatures are
present.

signature_constant_length_flag signals if all signatures in an access unit have the same constant length.

signature_length specifies the length in bases of signatures when the signature_constant_length_
flag is set to 1.

qv_coding_mode shall be set to 1, all other values are reserved.

qvps_flag signals the presence of a parameter_set_qvps(class_ID[c]) element.

qvps_preset_ID signals the ID of the quality values parameter set preset as specified in
subclause 10.4.16.

parameter_set_qvps(class_ID[c]) is the quality values parameter set as specified in subclause 10.4.16.
If not present, the parent quality values parameter set identified by parent_parameter_set_ID shall
be used.

qv_reverse_flag signals if the decoded qv string shall be reversed in the decoding process specified in
subclause 10.4.16.2.

crps_flag signals the presence of a parameter_set_crps() element.

parameter_set_crps() is the computed reference parameter set as specified in subclause 11.3. If not
present, the computed reference parameters set of the parent parameter set identified by parent_
parameter_set_ID shall be used.

nesting_zero_bit is one bit set to 0.

7.4.2.2	 Descriptor configuration syntax and semantics

Table 8 — Descriptor configuration syntax

Syntax Type
descriptor_configuration(desc_ID) {

 dec_cfg_preset u(8)
 if(dec_cfg_preset == 0){

 encoding_mode_ID u(8)
 if(desc_ID != 11 && desc_ID != 15)

 decoder_configuration(encoding_mode_ID) As specified in 12.3.
 else if(desc_ID == 11 || desc_ID == 15){

 decoder_configuration_tokentype(encoding_mode_ID) As specified in 12.3.5.
 }

 }

 else{

 /* reserved for future use */

 }

}

dec_cfg_preset shall be set to 0 to signal the presence of a decoder configuration.

﻿

20� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

encoding_mode_ID when set to 0 it signals the use of CABAC compression. Other values are reserved.

decoder_configuration(encoding_mode_ID) signals the decoder configuration parameters as specified
in subclause 12.3.

decoder_configuration_tokentype(encoding_mode_ID) signals the decoder configuration parameters
as specified in subclause 12.3.5.

7.4.2.3	 Quality values parameter set syntax and semantics

7.4.2.3.1	 General

Table 9 — Syntax of the quality values parameter set

Syntax Type
parameter_set_qvps(class_id) {

 qv_num_codebooks_total u(4)
 for (b = 0; b < qv_num_codebooks_total; b++) {

 qv_num_codebook_entries[b] u(8)

 for (e = 0; e < qv_num_codebook_entries[b]; e++) {

 qv_recon[b][e] u(8)
 }

 }

}

qv_num_codebooks_total is the number of quality value codebooks. When qvps_flag is equal to 1, the
minimum allowed value is 2 for class_id == Class_I or class_id == Class_HM. Otherwise , the minimum
allowed value for all other classes is 1. For class_id == Class_U, this value shall be set to 1.

qv_num_codebook_entries[b] is the number of qv_recon elements in the quality value codebook
identified by b. The minimum allowed value is 2 and the maximum allowed value is 94.

qv_recon[b][e] is the quality value reconstructed from a quality value index identified by e, using the
quality value codebook identified by b.

qvNumCodebooksAligned is the state variable indicating the number of quality value codebooks used
for aligned reads computed as specified in Table 10.

Table 10 — Computation of qvNumCodebooksAligned

if(class_id == Class_I || class_id == Class_HM) {

 /* For classes I and HM, the last codebook is reserved for unaligned data */

 qvNumCodebooksAligned = qv_num_codebooks_total – 1

} else if(class_id != Class_U) { /* Classes P, N, M*/

 qvNumCodebooksAligned = qv_num_codebooks_total

} else { /* Class U */

 qvNumCodebooksAligned = 0

}

7.4.2.3.2	 Quality values parameter set presets

This specification provides three quality values parameters presets, identified by qvps_preset_ID.

﻿

© ISO/IEC 2020 – All rights reserved� 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

7.4.2.3.2.1	 Support of all printable ASCII characters

This set of parameters (see Table 11) supports the representation of all printable ASCII characters. It is
identified by qvps_preset_ID equal to 0.

Table 11 — Parameters for the support of all printable ASCII characters

Parameter name Value
qv_num_codebooks_total 1
qv_num_codebook_entries 94

The reconstructed quality values qv_recon[0][i] are derived from quality value indexes i, with i being
an integer number in the range 0..93, with the following expression:

qv_recon[0][i] = i + 33

7.4.2.3.2.2	 Quantized quality values, offset 33, range 0-41

This set of parameters (see Table 12) supports the representation of quantized quality values in the
range 0..41 with an offset equal to 33. It is identified by qvps_preset_ID equal to 1.

Table 12 — Parameters for quantized quality values, offset 33, range 0-41

Parameter name Value
qv_num_codebooks_total 1
qv_num_codebook_entries 8

Table 13 shows how the reconstructed quality values qv_recon[0][] are derived from the quality value
indexes.

Table 13 — Values of qv_recon for each value of entry when qvps_ID is equal to 1

i qv_recon
0 33
1 41
2 46
3 51
4 56
5 61
6 66
7 74

7.4.2.3.2.3	 Quantized quality values, offset 64, range 0-40

This set of parameters supports the representation of quantized quality values in the range 0..40 with
an offset equal to 64. It is identified by qvps_preset_ID equal to 2.

Table 14 — Parameters for quantized quality values, offset 64, range 0-40

Parameter name Value
qv_num_codebooks_total 1
qv_num_codebook_entries 8

Table 14 shows how the reconstructed quality values qv_recon[0][] are derived from the quality value
indexes.

﻿

22� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 15 — Values of qv_recon for each value of i when qvps_preset_ID is equal to 2

i qv_recon[0][i]
0 64
1 72
2 77
3 82
4 87
5 92
6 97
7 104

7.4.2.4	 Computed Reference parameter set

This subclause specifies the data structure used to carry parameters related to the reference
computation algorithms specified in subclause 11.3.

Table 16 — Syntax of the computed reference parameter set

Syntax Type
parameter_set_crps() {
 cr_alg_ID u(8)
 if(cr_alg_ID == 2 || cr_alg_ID == 3){
 cr_pad_size u(8)
 cr_buf_max_size u(24)
 }
}

cr_alg_ID signals the reference computation algorithm as specified in subclause 11.3.4. The possible
values for cr_alg_ID are listed in Table 17. The value 0 is reserved.

Table 17 — Values of cr_alg_ID and corresponding reference computation algorithms

cr_alg_ID algorithm
0 reserved
1 RefTransform
2 PushIn
3 Local Assembly
4 Global Assembly
5 ... 255 reserved

cr_pad_size is the number of bases used for padding in the process specified in subclause 11.3.4.

cr_buf_max_size is the maximum size in bytes of the buffer used in the decoding process as specified
in subclause 11.3.

7.5	 Access unit

An access unit (AU) is a logical data structure containing a coded representation of genomic information.
It is the smallest data structure that can be decoded.

﻿

© ISO/IEC 2020 – All rights reserved� 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

7.5.1	 Syntax and semantics

7.5.1.1	 General

This subclause specifies the access unit syntax (see Table 18) and semantics.

Table 18 — Access unit syntax

Syntax Type
access_unit() {

 access_unit_header() access unit header
 for (i=0; i<num_blocks; i++) {
 block[i]() block
 }
access_unit() {

access_unit_header() is specified in subclause 7.5.1.2.

num_blocks specifies the number of blocks encoded in the access unit and it is encoded in the access_
unit_header as specified in subclause 7.5.1.2.

block[i]() is a block as specified in subclause 7.5.1.3.

7.5.1.2	 Access unit header

This subclause specifies the access unit header syntax and semantics.

Table 19 — Access unit header syntax

Syntax Type
access_unit_header() {
 access_unit_ID u(32)
 num_blocks u(8)
 parameter_set_ID u(8)
 AU_type u(4)
 reads_count u(32)
 if(AU_type == N_TYPE_AU || AU_type == M_TYPE_AU){
 mm_threshold u(16)
 mm_count u(32)
 }
 if(dataset_type == 2){
 ref_sequence_ID u(16)
 ref_start_position u(posSize)
 ref_end_position u(posSize)
 }
 if (AU_Type != U_TYPE_AU)
 {
 sequence_ID u(16)
 AU_start_position u(posSize)
 AU_end_position u(posSize)

﻿

24� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type
 if (multiple_alignments_flag) { Specified in subclause 7.4.2.
 extended_AU_start_position u(posSize)
 extended_AU_end_position u(posSize)
 }
 }
 else {
 if (signature_flag != 0) { Specified in subclause 7.4.2.
 num_signatures u(16)
 for (i=0; i< num_signatures; i++) {
 if(signature_constant_length_flag == 0){

 signature_length[i] u(8)
 }

 signature[i] u(signatureSize)
 }
 }
 }
 while(!byte_aligned())
 nesting_zero_bit f(1)
}

access_unit_ID is an unambiguous identifier for each AU_type, zero-based. If AU_type is not equal
to U_TYPE_AU, it is encoded with respect to each reference sequence (identified by a specific value of
sequence_ID), i.e., it is reset for the first access unit aligned on a specific reference sequence.

num_blocks specifies the number of Blocks in the access unit.

parameter_set_ID is a unique identifier of the parameter set to be used to decode the access unit to
which this access unit header belongs. Decoding of an access unit is unspecified if at least one parameter
in the hierarchy of parameter sets referred to by the field parameter_set_ID of the access unit and
by the fields parent_parameter_set_ID of the parameter sets in the same hierarchy, as specified in
subclause 7.4.1, set is not available.

AU_type identifies the type of access unit and the class of data carried therein as specified in
subclause 7.5.2.

reads_count signals the number of genomic sequencing reads encoded in the access unit.

mm_threshold specifies the maximum number of substitutions a read (of class N or M) shall contain to
be counted by mm_count. If set to 0 the feature of counting substitutions in encoded reads is disabled.

mm_count specifies the number of reads encoded in the access unit containing a number of substitutions
which is equal to or lower than the threshold specified by mm_threshold. mm_count shall be set to 0
if the threshold is set to 0.

ref_sequence_ID specifies the identifier of the reference sequence encoded in this access unit.

ref_start_position specifies the position on the reference sequence of the first base encoded in this
access unit.

ref_end_position specifies the position on the reference sequence of the last nucleotide encoded in this
access unit.

﻿

Table 19 (continued)

© ISO/IEC 2020 – All rights reserved� 25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

sequence_ID is the identifier of the reference sequence to be used to decode this access unit as specified
in clause 10. It corresponds to a sequence_ID element in Table 5.

AU_start_position is the position of the leftmost mapped base among the first alignments of all
genomic records encoded in the access unit irrespective of the strand.

AU_end_position is the position of the rightmost mapped base among the first alignments of all
genomic records encoded in the access unit irrespective of the strand.

extended_ AU_start_position specifies the position of the leftmost mapped base among all alignments
of all genomic records contained in the access unit, irrespective of the strand.

extended_AU_end_position	specifies the position of the rightmost mapped base among all alignments
of all genomic records contained in the access unit, irrespective of the strand.

num_signatures specifies the number of signatures used to index unmapped reads as specified in
ISO/IEC 23092-1.

signature_length specifies the signature length in terms of bases of a variable length signature.

signature is the unsigned integer representing the signature of the cluster this access unit belongs to,
as specified in ISO/IEC 23092-1. The length in bits of this field, named signatureSize shall be calculated
using the signature_length specified in Table 19 as follow:

signatureSize = signature_length * bits_per_symbol

with bits_per_symbol corresponding to BitsPerSymbol(Salphabet_ID) as specified in Table 34 with
alphabet_ID as specified in subclause 7.4.2, and with signature_length corresponding either to
signature_length as specified in subclause 7.4.2 when signature_constant_length_flag (as specified in
subclause 7.4.2) is equal to 1 or to the signature-specific signature_length[i] specified in Table 19 when
signature_constant_length_flag (specified in subclause 7.4.2) is equal to 0.The j-th base in a signature is
represented by the u(bits_per_symbol) value computed as follows:

signature_base[i][j] = Salphabet_ID[(signature[i] >> ((signature_length – j – 1) * bits_per_symbol))

 & ((1 << bits_per_symbol) - 1)]

with Salphabet_ID as specified in Table 34 with alphabet_ID as specified in subclause 7.4.2

posSize is specified in subclause 7.4.2.

7.5.1.3	 Block

7.5.1.3.1	 General

This subclause specifies the block syntax (see Table 20) and semantics.

Table 20 — Block syntax

Syntax Type
block() {
 block_header() block header
 block_payload() block payload
}

block_header is a block header structure as specified in subclause 7.5.1.3.2.

block_payload is a block payload structure as specified in subclause 7.5.1.3.3.

﻿

26� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

7.5.1.3.2	 Block header

This subclause describes the block header syntax (see Table 21) and semantics.

Table 21 — Block header syntax

Syntax Type
block_header() {
 reserved u(1)
 descriptor_ID u(7)
 reserved u(3)
 block_payload_size u(29)
}

reserved bits used to preserve byte alignment.

descriptor_ID signals the descriptor type as specified in Table 24. Its value shall be unique among all
blocks in the access unit.

block_payload_size specifies the size in bytes of the block payload.

7.5.1.3.3	 Block payload

This subclause specifies the syntax (see Table 22) and semantics of the block payload structure
containing entropy-coded descriptors.

Table 22 — Block payload syntax

Syntax Type
block_payload(descriptor_ID) {

 if(descriptor_ID == 11 || descriptor_ID == 15){

 encoded_tokentype() As specified in 10.4.20.2.
 }

 else {

 encoded_descriptor_sequences(descriptor_ID) As specified in 12.6.2.2.
 }

 while(!byte_aligned())

 nesting_zero_bit f(1)
}

encoded_tokentype() is a data structure specified in subclause 10.4.20.2 carrying encoded tokenized
strings.

encoded_descriptor_sequences(descriptor_ID) is a data structure specified in subclause 12.6.2.2
carrying the encoded genomic descriptors for sequences and quality values specified in Clause 8.

nesting_zero_bit is one bit set to 0.

7.5.2	 Access unit types

AUs can be of different types according to the nature of the coded data. An access unit contains encoded
genomic records belonging to a single data class as shown in Table 23.

﻿

© ISO/IEC 2020 – All rights reserved� 27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 23 — Class of encoded data per access unit type

Access unit type Data class
AU type name Value

P_TYPE_AU 1 Class P
N_TYPE_AU 2 Class N
M_TYPE_AU 3 Class M
I_TYPE_AU 4 Class I
HM_TYPE_AU 5 Class HM
U_TYPE_AU 6 Class U

The blocks of descriptors encoded in one access unit as specified in subclause 7.5.1.3 are those
corresponding to sequencing reads belonging to one class of data as specified in subclause 9.5.
Descriptors carried by each access unit type are listed in Table 24.

AUs of any class can be possibly associated with blocks of descriptors representing the read names
and/or quality values of the encoded sequencing reads.

8	 Descriptors

When dataset_type specified in subclause 7.2 is equal to 0 or 1, the only mandatory descriptors are
those required to represent the sequences of nucleotides, whereas read names and quality values are
optional.

Descriptors are the output of the decoding process specified in 10.4.

Descriptors required for the representation of sequencing reads, quality values, read names and
transformed reference sequences are shown in Table 24. Descriptors are specified in subclause 10.4
and its subclauses.

Table 24 — Genomic descriptors

descriptor_ID Genomic descriptor
name

Number of descriptor
subsequences

Decoding process

sequencing reads
0 pos 2 10.4.2
1 rcomp 1 10.4.3
2 flags 3 10.4.4
3 mmpos 2 10.4.5
4 mmtype 3 10.4.6
5 clips 4 10.4.7
6 ureads 1 10.4.8
7 rlen 1 10.4.9
8 pair 8 10.4.10
9 mscore 1 10.4.11

10 mmap 5 10.4.12
11 msar 2 10.4.13
12 rtype 1 10.4.14
13 rgroup 1 10.4.15

﻿

28� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

descriptor_ID Genomic descriptor
name

Number of descriptor
subsequences

Decoding process

quality values
14 qv Variable, as specified in

subclause 10.4.16.
10.4.16

read names
15 rname 2 10.4.17

reference sequences
16 rftp 1 10.4.18
17 rftt 1 10.4.19

Table 25 — Subsequences for descriptor_ID = 0 (pos descriptor)

subsequence_ID Semantics Type
0 Mapping position of the first alignment. Signed integer.
1 Mapping position of additional alignments. Signed integer.

Table 26 — Subsequences for descriptor_ID = 2 (flags descriptor)

subsequence_ID Semantics Type
0 Read is PCR or optical duplicate. Unsigned integer with value either 0 or 1.
1 Read fails platform/vendor quality checks. Unsigned integer with value either 0 or 1.
2 Read mapped in proper pair Unsigned integer with value either 0 or 1.

Table 27 — Subsequences for descriptor_ID = 3 (mmpos descriptor)

subsequence_ID Semantics Type
0 Terminator flag Unsigned integer with value either 0 or 1.
1 Position value Unsigned integer.

Table 28 — Subsequences for descriptor_ID = 4 (mmtype descriptor)

subsequence_ID Semantics Type
0 Symbol type flag Unsigned integer with values either 0, 1 or 2.
1 Substitution type Unsigned integer.
2 Insertions type Unsigned integer.

Table 29 — Subsequences for descriptor_ID = 5 (clips descriptor)

subsequence_ID Semantics Type
0 Record identifier Unsigned integer.
1 Type/Position flag Unsigned integer as specified in subclause 10.4.7.
2 Nucleotides indexes with terminators Unsigned integer as specified in Table 54.
3 Hard clips length Unsigned integer.

﻿

Table 24 (continued)

© ISO/IEC 2020 – All rights reserved� 29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 30 — Subsequences for descriptor_ID = 8 (pair descriptor)

subsequence_ID Semantics Type
0 Sequence identifying: Unsigned integer.

—	 the subsequence carrying the next symbol required for the
decoding process when values range from 0 to 4. Each value i in
the range 0..4 corresponds to subsequence_ID = i + 1

—	 R1_unpaired decoding case as specified in 10.4.10 when the
value is equal to 5.

—	 R2_unpaired decoding case as specified in 10.4.10 when the
value is equal to 6.

1 same_rec decoding case as specified in 10.4.9. Sequence of values
containing the segment ordering and the distance between the map-
ping position of read 1 and the mapping position of read 2 on the ref-
erence sequence. Encoded as '(delta << 1) | read1_first', where delta
is comprised between 0 and 32767 and read1_first is a 1-bit flag.

Unsigned integer.

2 R1_split decoding case as specified in 10.4.10.
Sequence of values representing:
For classes P, N, M , I
the position of read 1 on the reference sequence. The maximum
value is 2posSize – 1 where posSize is specified in subclause 7.4.2.
For class U
the genomic record index of the genomic record containing read 1 in
the current AU.

Unsigned integer.

3 R2_split decoding case as specified in 10.4.10.
For classes P, N, M, I the position of read 2 on the reference
sequence. The maximum value is 2posSize – 1 where posSize is
specified in subclause 7.4.2.
For class U the genomic record index of the genomic record
containing read 2 in the current AU.

Unsigned integer.

4 R1_diff_ref_seq decoding case as specified in 10.4.10.
Sequence of values representing:
for classes P, N, M , I the identifier of the reference sequence
to which read 1 is mapped. The maximum value is 216-1.
for class U the identifier of the AU containing the read 1.

Unsigned integer.

5 R2_diff_ref_seq decoding case as specified in 10.4.10.
for classes P, N, M , I the identifier of the reference sequence
to which read 2 is mapped. The maximum value is 216-1.
for class U the identifier of the AU containing the read 2.

Unsigned integer.

6 R1_diff_ref_seq decoding case as specified in 10.4.10. Sequence
of values representing the position of read 1 on the reference
sequence. The maximum value is is 2posSize – 1 where posSize
is specified in subclause 7.4.2.

Unsigned integer.

7 R2_diff_ref_seq decoding case as specified in 10.4.10. Sequence
of values representing the position of read 2 on the reference
sequence. The maximum value is is 2posSize – 1 where posSize
is specified in subclause 7.4.2.

Unsigned integer.

﻿

30� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 31 — Subsequences for descriptor_ID = 10 (mmap descriptor)

subsequence_ID Semantics Type
0 Number of alignments of the leftmost and rightmost reads. Unsigned integer
1 Index of right alignments. Unsigned integer
2 Flag signalling the presence of more alignments in other genomic

records.
Boolean flag

3 Values representing the identifier of the reference sequence
a secondary alignment of the leftmost read is mapped to. The
maximum value is 216-1.

Unsigned integer

4 Values representing a secondary alignment mapping position
of the leftmost read on the reference sequence. The maximum
value is is 2posSize – 1 where posSize is specified in subclause 7.4.2.

Unsigned integer

Table 32 — Subsequences for descriptor_ID = 11 and 15 (msar and rname descriptors)

subsequence_ID Semantics Type
0 Output of decode_descriptor_subsequence() for

CABAC_METHOD_0 as specified in subclause 10.4.20.4.5.
Unsigned integer

1 Output of decode_descriptor_subsequence()for
CABAC_METHOD_1 as specified in subclause 10.4.20.4.6.

Unsigned integer

Table 33 — Subsequences for descriptor_ID = 14 (qv descriptor)

subsequence_ID Semantics Type
0 Quality value present flag. Boolean flag.
1 Quality value codebook identifier. Unsigned integer.
2 .. (2 +
 qv_num_codebooks_total − 1)

Quality value index used to look up a
reconstructed quality value in the quality
value codebook identified by
b = (subsequence_ID - 2).

Unsigned integer.

9	 Sequencing reads

9.1	 General

This clause specifies the semantics of genomic descriptors used to represent nucleotides segments
and associated alignment information. Each template produced by a sequencing machine or alignment
generated by an aligner is encoded in a genomic record by means of a subset of the genomic descriptors
described in this clause. The genomic descriptors are extracted from a compliant bitstream according
to the processes described in subclause 12.6 and the genomic templates with the associated alignment
information can be reconstructed from the decoded genomic descriptors according to the decoding
processes described in subclause 10.4.

9.2	 Supported symbols

The supported alphabets are specified in Table 34.

﻿

© ISO/IEC 2020 – All rights reserved� 31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 34 — Identifiers of alphabets supported for sequencing reads representation

alphabet_ID Salphabet_ID Size(Salphabet_ID) BitsPerSymbol(Salphabet_ID)
0 S0 = [A, C, G, T, N] 5 3
1 S1 = [A, C, G, T, R, Y, S, W, K, M, B, D, H, V, N, -] 16 5
2 .. 255 reserved

Each alphabet is identified by an alphabet_ID as shown Table 34.

The notation Salphabet_ID[index] specifies a conversion from a numerical index to an ASCII character
corresponding to a symbol of the alphabet identified by alphabet_ID, as specified in Table 35:

Table 35 — Conversions from numerical indexes to ASCII characters corresponding to
alphabet symbols

Salphabet_ID[index] S0[index] S1[index]
Salphabet_ID[0] S0[0] = “A” S1[0] = “A”
Salphabet_ID[1] S0[1] = “C” S1[1] = “C”
Salphabet_ID[2] S0[2] = “G” S1[2] = “G”
Salphabet_ID[3] S0[3] = “T” S1[3] = “T”
Salphabet_ID[4] S0[4] = “N” S1[4] = “R”
Salphabet_ID[5] N/A S1[5] = “Y”
Salphabet_ID[6] N/A S1[6] = “S”
Salphabet_ID[7] N/A S1[7] = “W”
Salphabet_ID[8] N/A S1[8] = “K”
Salphabet_ID[9] N/A S1[9] = “M”
Salphabet_ID[10] N/A S1[10] = “B”
Salphabet_ID[11] N/A S1[11] = “D”
Salphabet_ID[12] N/A S1[12] = “H”
Salphabet_ID[13] N/A S1[13] = “V”
Salphabet_ID[14] N/A S1[14] = “N”
Salphabet_ID[15] N/A S1[15] = “-”

The notation Codealphabet_ID[symbol] specifies the inversion conversion of Salphabet_ID[index], such that
Codealphabet_ID[Salphabet_ID[index]] is always equal to index for any valid value of index as specified in
Table 35.

Each alphabet symbol Sym is associated with a complementary symbol Complement(Sym) as specified
in Table 36.

Table 36 — Complementary alphabet symbols

S0[index] S0[Complement(index)] S1[index] S1[Complement(index)]
S0[0] = “A” S0[3] = “T” S1[0] = “A” S1[3] = “T”
S0[1] = “C” S0[2] = “G” S1[1] = “C” S1[2] = “G”
S0[2] = “G” S0[1] = “C” S1[2] = “G” S1[1] = “C”
S0[3] = “T” S0[0] = “A” S1[3] = “T” S1[0] = “A”
S0[4] = “N” S0[4] = “N” S1[4] = “R” S1[5] = “Y”
N/A S1[5] = “Y” S1[4] = “R”
N/A S1[6] = “S” S1[6] = “S”

﻿

32� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

S0[index] S0[Complement(index)] S1[index] S1[Complement(index)]
N/A S1[7] = “W” S1[7] = “W”
N/A S1[8] = “K” S1[9] = “M”
N/A S1[9] = “M” S1[8] = “K”
N/A S1[10] = “B” S1[13] = “V”
N/A S1[11] = “D” S1[12] = “H”
N/A S1[12] = “H” S1[11] = “D”
N/A S1[13] = “V” S1[10] = “B”
N/A S1[14] = “N” S1[14] = “N”
N/A S1[15] = “-” S1[15] = “-”

9.3	 Paired-end reads

In case reads are generated in pairs by sequencing devices, each pair can be encoded as a single logical
data structure named genomic record where the mapping position of one of the reads is represented
using the pair descriptor as specified in subclause 10.4.10. The information linking one read to its mate
is referred to as “pairing information” in this document.

The two reads are not sequenced from the same strand, but can be aligned to the same strand. The
sequencing device determines which read in the pair is marked as read 1, whereas the other one will be
read 2. An example is shown in Figure 4.

Figure 4 — Read 1 sequenced from the forward strand and read 2 from the reverse strand

Positions of mismatches with respect to the used reference sequence shall be encoded as offset from
the leftmost mapped base of the leftmost read. The rightmost read is considered to be contiguous to
the leftmost. The calculation of the actual position of mismatches on the rightmost read is described in
subclause 10.4.10.

The pair can also be split into two reads that are encoded separately. In this case, the pair shall be
reconstructed using both the pairing descriptors and the template name shared by the two reads.

9.4	 Reverse-complement reads

The reverse-complement of a read is computed by inverting the order the read bases and replacing each
base B with its complementary base Complement(B) as specified in subclause 9.2. If Read[] is the array of
bases in a read, the array of bases in the corresponding reverse-complement ReverseComplementRead[]
is specified as follows:

ReverseComplementRead[n] = Complement(Read[Size(Read[]) - n - 1]), for n in 0 .. Size(Read[]) - 1.

﻿

Table 36 (continued)

© ISO/IEC 2020 – All rights reserved� 33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

9.5	 Data classes

Six data classes are specified to classify genomic records according to the result of the mapping of the
encoded sequencing reads against one or more reference sequences.

If a template contains more than one read, if both reads are mapped, the genomic record belongs to the
class of the read with the highest class_ID. In case of multiple aligments the genomic record belongs to
the class of the first alignment in the record.

The data classes and their descriptions are specified in Table 37.

Table 37 — Sequence data classes

class_ID Class Identifier Genomic record content
1 Class_P Only reads perfectly matching to the reference sequence.
2 Class_N Reads perfectly matching to the reference sequence or containing

mismatches which are unknown bases only.
3 Class_M Reads perfectly matching to the reference sequence or containing

substitutions or unknown bases, but no insertions, no deletions,
no splices and no clipped bases.

4 Class_I Reads perfectly matching to the reference sequence or containing
substitutions, unknown bases, insertions, deletions, splices or
clipped bases.

5 Class_HM Paired-end reads with only one mapped read.
6 Class_U Unmapped reads only.

When the syntax specified in this document needs to use the maximum number of specified data
classes, this is specified by the constant NUM_CLASSES = 6.

9.6	 Aligned data

In the context of this document, aligned genomic data are genomic segments which require the use of
an external or embedded reference genome (as specified in subclause 10.6.2.3) to be decoded.

This subclause specifies the types of descriptors contained in the blocks payload specified in
subclause 7.5.1.3.3. Each block contains binary coded descriptors of a single type identified by the
descriptor_ID present in the block header as specified in subclause 7.5.1.3.2.

Once decoded, each descriptor shall be used to initialize one or more output record fields as specified in
Clause 13. Table 38 lists the descriptors used for aligned reads with a brief description and reference to
the corresponding clause.

Table 38 — Descriptors used to represent aligned sequencing reads

descriptor_ID descriptor Semantics subclause
0 pos Read mapping position. 10.4.2
1 rcomp Strand information for reads in a template. 10.4.3
2 flags Additional alignment information usually produced by

aligners.
10.4.4

3 mmpos Position of mismatches in reads. 10.4.5
4 mmtype Type of mismatches. 10.4.6
5 clips Information on clipped bases (i.e. Soft clips or hard clips). 10.4.7
6 ureads Unmapped reads encoded verbatim. 10.4.8
7 rlen Read lengths. 10.4.9

﻿

34� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

descriptor_ID descriptor Semantics subclause
8 pair Represents:

1.a The unsigned distance from one segment to the next.
OR
1.b The absolute position on a reference sequence of a
segment in a template.
AND
2 Information signaling if the leftmost mapped read in
the genomic record is read 1.

10.4.10

9 mscore Provides a score per alignment . 10.4.11
10 mmap Used to represent multiple alignments. 10.4.12
11 msar Supports spliced alignments and alternative secondary

alignments which do not preserve the same contiguity of
mapping of the primary alignment.

10.4.13

13 rgroup Identifier of the read group each genomic record belongs to. 10.4.15

9.7	 Unaligned data

Unaligned reads belong to class U only. They are encoded as unmapped reads in aligned datasets.
Some of the descriptors specified for reads aligned to an external or internal reference as specified
in subclause 9.6 are used to encode unaligned reads (see Table 39). This is motivated by the fact that
unaligned reads are encoded using reference sequences built from the data to be encoded. The reference
used for mapping is computed according to the procedures described in subclause 11.3.

Table 39 — Descriptors used to represent raw sequencing reads

descriptor_ID Descriptor Semantics Subclause
0 pos Read mapping position. 10.4.2
1 rcomp Strand information for reads in a template. 10.4.3
2 flags Additional alignment

information usually produced by aligners.
10.4.4

3 mmpos Mismatch position. 10.4.5
4 mmtype Type of edit operations: 10.4.6

—	 substitutions;

—	 deletions;

—	 insertions.
5 clips String of nucleotides with

variable length (e.g. soft clips).
10.4.7

6 ureads Unmapped reads encoded verbatim. 10.4.8
7 rlen Unsigned integer representing the number of bases in

the read minus one.
10.4.9

﻿

Table 38 (continued)

© ISO/IEC 2020 – All rights reserved� 35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

descriptor_ID Descriptor Semantics Subclause
8 pair Represents:

1.a	 The unsigned distance from one segment to the next.
OR
1.b	 The absolute position on a computed reference
sequence of a segment in a template.
AND
2	 Information signaling if the first read in the genom-
ic record is read 1.

10.4.10

12 rtype This identifies the subset of descriptors needed to
decode the read.

10.4.11

13 rgroup Identifier of the read group each genomic record
belongs to.

10.4.15

10	 Decoding process

10.1	 General

This clause describes the decoding process to reconstruct the genomic information encoded in a
bitstream compliant with this document.

The input to this process is one data unit. The output of this process can be:

1)	 a raw reference as specified in subclause 7.3.

2)	 a list of ISO/IEC 23092 series records as specified in Clause 13.

The decoding process is specified such that all decoders that conform to this document will produce
numerically identical decoded output as either ISO/IEC 23092 seriesrecords or raw references.
Any decoding process that produces identical decoded output ISO/IEC 23092 series records or raw
references to those produced by the process described herein conforms to the decoding process
requirements of this document.

10.2	 dataset_type = 0 or 1

10.2.1	 General

The input to the processes described in the following clauses is decoded genomic descriptors generated
as output of the parsing process specified in subclause 11.3.6. The genomic descriptors are contained in
the decoded_symbols data structure specified in this subclause.

In the context of the decoding process each decoded symbol is identified by

decoded_symbols[descriptor_ID][descriptor_subsequence_ID][jdescriptor_ID, descriptor_subsequence_ID]

where jdescriptor_ID, descriptor_subsequence_ID is the index to read the decoded symbols as specified in
subclause 12.3. The valid values of descriptor_ID are specified in Table 24. The values of descriptor_
subsequence_ID are between 0 and the number of descriptor subsequences minus 1 as specified in
Table 24.

At the beginning of the decoding process of one AU all indexes jdescriptor_ID, descriptor_subsequence_ID are
initialized to 0.

﻿

Table 39 (continued)

36� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

The output of this process is a sequence of output records as specified in clause 13. If cr_alg_ID is
equal to 3 and the rftp and rftt descriptors are present, an additional output of this process is a raw_
referenceoutput structure as specified in subclause 7.3.2.

The decoding process of each access unit refers to encoding parameters carried by the parameter set
identified by the parameter_set_ID specified in subclause 7.5.1.2.

If dataset_type is equal to 0 then only AU of type 6 (CLASS_U) shall be present in the dataset.

10.2.2	 References padding

In case of AUs of type P, N, M, I and HM, if the raw reference structure containing the reference sequence
to be used during the decoding process specifies a seq_start that is greater than AU_start_pos or a seq_
end that is less than AU_end_pos, the decoder shall pad the missing portions of reference sequence with
“N”. This is shown in Figure 5.

Figure 5 — Padding process for a reference sequence

10.2.3	 Type 1 AU (Class P)

Type 1 access units encode aligned sequencing reads which perfectly match to the used reference
sequence.

The decoding process of one record within a binary decoded access unit of type 1, which shall be
repeated for all the records within the same access unit, is as follows:

1.	 Set a classId variable equal to the value of AU_type as specified in subclause 7.5.1.2.

2.	 Decode the variables numberOfRecordSegments, numberOfAlignedRecordSegments,
numberOfMappedRecordSegments and unpairedRead as specified in subclause 10.4.10.

3.	 Compute the arrays softClips[][], softClipSizes[][] and hardClips[][] as specified in subclause 10.4.7.

4.	 Compute the arrays readLength[], numberOfSplicedSeg[], splicedSegLength[][] and
splicedSegMappedLength[][] as specified in subclause 10.4.9.

5.	 Decode the output variables specified in subclause 10.4.12 containing the alignment and mapping
information.

6.	 Decode the pos descriptor as specified in subclause 10.4.2.

﻿

© ISO/IEC 2020 – All rights reserved� 37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

7.	 Decode the output variables specified in subclause 10.4.10 containing pairing and/or splicing
information.

8.	 Decode the rcomp descriptor as specified in subclause 10.4.3.

9.	 If num_groups specified in subclause 7.4.2 is greater than 0 decode the rgroup descriptor as
specified in subclause 10.4.15.

10.	 Decode the readName variable as specified in subclause 10.4.17.

11.	 If as_depth specified in subclause 7.4.2 is greater than 0 decode the mscore descriptor as specified
in subclause 10.4.11.

12.	 If multiple_alignments_flag specified in subclause 7.4.2 is 1 decode the msar descriptor as
specified in subclause 10.4.13.

13.	 If present, decode the following optional descriptors:

a.	 decode the flags descriptor as specified in subclause 10.4.4.

b.	 decode the qv descriptor as specified in subclause 10.4.16.

14.	 If this process is being applied to access units of type 1 (Class P) (i.e., if this process is not being
applied to access units of other types as specified in subclauses 10.2.4, 10.2.5 and 10.2.6), or if
crps_flag specified in Table 7 is equal to 1 and cr_alg_ID specified in Table 16 is equal to 2, 3, or 4
and the value of rtype descriptor specified in Table 66 is equal to 1, decode the read sequences as
specified in subclause 10.5.2.

10.2.4	 Type 2 AU (Class N)

Access units of type 2 (Class N) are decoded by following the process described for AUs of type 1
(Class P) in subclause 10.2.3, then applying the information on unknown bases (symbol N) carried
by the mmpos descriptor as specified in subclause 10.4.5, and finally decoding the read sequences as
specified in subclause 10.5.2.

Additional inputs to this process are

—	 the array splicedSequence[][] specified in subclause 10.5

—	 the mismatchOffsets[][] and numMismatches[] arrays specified in subclause 10.4.5

The decoded splicedSequence[][] array shall be computed by replacing each base at a position
represented by a decoded mmpos value in the splicedSequence[][] array obtained as specified in
subclause 10.5.2 with the symbol ‘N’.

The substitutions are applied as specified in Table 40.

Table 40 — Sequence decoding process for class N

Decoding step Description
processSplSegN(segment, splSeg) {

 for(j = 0; j < numMismatches[segment]; j++) {

 splicedSequence[segment][splSeg]

 [mismatchOffsets[segment][j]] = ‘N’

 }

}

﻿

38� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.2.5	 Type 3 AU (Class M)

Access units of type 3 (Class M) are decoded by following the process described for AUs of type 1
(Class P) in subclause 10.2.3, then applying the information on substitutions obtained by following the
decoding process of mmpos and mmtype descriptors as specified in subclauses 10.4.5 and 10.4.6, and
finally decoding the read sequences as specified in subclause 10.5.2.

Additional inputs to this process are

—	 the mismatchOffsets[][], numMismatches[] arrays specified in subclause 10.4.5;

—	 the mismatches[][] arrays specified in subclauses 10.4.6.

The substitutions are applied as specified in Table 41.

Table 41 — Sequence decoding process for class M

Decoding step Description
processSplSegM(segment, splSeg) {

 for(j = 0; j < numMismatches[segment]; j++) {

 splicedSequence[segment][splSeg]

 [mismatchOffsets[segment][j]] = mismatches[segment][j]

 }

}

10.2.6	 Type 4 AU (Class I)

Access units of type 4 (Class I) are decoded by following the process described for AUs of type 1 (Class
P) in subclause 10.2.3, then applying the edit operations represented by the decoded mmpos, mmtype
and clips descriptors as specified in subclauses 10.4.5, 10.4.6 and 10.4.7, and finally decoding the read
sequences as specified in subclause 10.5.2.

Additional inputs to this process are:

—	 the mismatchOffsets[][], numMismatches[] arrays specified in subclause 10.4.5;

—	 the mismatches[][] and mismatchTypes[][] arrays specified in subclause 10.4.6;

—	 the softClips[][][], softClipsSizes[][] and hardClips[][] arrays specified in subclause 10.4.7;

—	 the variable seqId set equal to sequence_ID as specified in subclause 7.5.1.2;

—	 the arrays ref_sequence[][] and seq_start[] specified as in subclause 7.3;

—	 the mappingPos[0][] array specified in subclause 10.2.3;

The substitutions, insertions and deletions are applied as specified in Table 42.

Table 42 — Sequence decoding process for mismatches in classes I and HM

Decoding step Description
processSplSegI(segment, splSeg) {

 rlen = splicedSegLength[segment][splSeg]

 if(splSeg == 0) {

 rlen -= softClipSizes[segment][0]

 }

 if(splSeg == numberOfSplicedSeg[segment] – 1) {

 rlen -= softClipSizes[segment][1]

 }

﻿

© ISO/IEC 2020 – All rights reserved� 39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 indelsCount = 0

 mmStartIdx = splicedSegMismatchIdx[segment][splSeg]

 for(j = 0; j < splicedSegMismatchNumber[segment][splSeg]; j++) {

 if(mismatchTypes[segment][mmStartIdx + j] == 0) { Substitution.
 splicedSequence[segment][splSeg]
 [splicedSegMismatchOffsets[segment][splSeg][j]] =
 mismatches[segment][mmStartIdx + j]

 } else if(mismatchTypes[segment][mmStartIdx + j] == 1) { Insertion.
 for(k = rlen – 1;
 k > splicedSegMismatchOffsets[segment][splSeg][j] ; k--) {

All symbols after
the insertion are
shifted right by
one position. The
last element is
therefore lost.

 splicedSequence[segment][splSeg][k] =
 splicedSequence[segment][splSeg][k – 1]

 }

 splicedSequence[segment][splSeg]
 [splicedSegMismatchOffsets[segment][splSeg][j]] =
 mismatches[segment][mmStartIdx + j]

 indelsCount -= 1

 } else if(mismatchTypes[segment][mmStartIdx + j] == 2) { Deletion.
 for(k = splicedSegMismatchOffsets[segment][splSeg][j] + 1;
 k < rlen; k++) {

All symbols after
the deletion are
shifted left by one
position.

 splicedSequence[segment][splSeg][k - 1] =
 splicedSequence[segment][splSeg][k]

 }

 splicedSequence[segment][splSeg][rlen – 1] =
 ref_sequence[seqId]
 [splicedSegMappingPos[segment][splSeq]

 – seq_start[seqId] + rlen
 + indelsCount]

A new symbol
shall be copied
from the refer-
ence at the end of
segment.

 indelsCount += 1

 } else {

 /* reserved */

 }

 }

 processClips(segment, splSeg) Specified in
Table 43.

}

Information on clipped bases is applied as follows:

Soft clips

The contents of softClips[][] array computed as specified in subclause 10.4.7 are applied as specified in
Table 43.

﻿

Table 42 (continued)

40� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 43 — Sequence decoding process for soft clips in classes I and HM

Decoding step Description
processClips(segment, splSeg) {

 if(splSeg == 0) {

 splicedSequence[segment][splSeg] =

 strcat(softClips[segment][0],

 splicedSequence[segment][splSeg])

strcat returns the concat-
enation of the two arrays
of ASCII characters passed
as input.

 }

 if(splSeg == numberOfSplicedSeg[segment] – 1) {

 splicedSequence[segment][splSeg] =

 strcat(splicedSequence[segment][splSeg],

 softClips[segment][1])

strcat returns the concat-
enation of the two arrays
of ASCII characters passed
as input.

}

Hard clips

The hardClips[][] array is used to compute the ecigarString[] and ecigarLength[] arrays specified in
subclause 10.6.2.

10.2.7	 Type 5 AU (Class HM)

Class HM applies only to paired-end reads. Access units of type 5 are decoded as follows:

1.	 The mapped read is decoded by following the process specified for class I in subclause 10.2.6 and it
is stored as the first record segment in the output record specified in Clause 13.

2.	 The unmapped read is decoded according to the process specified in subclause 10.5.3.

10.2.8	 Type 6 AU (Class U)

10.2.8.1	 General

Access units of type 6 (Class U) are decoded as follows:

1.	 Set a classId variable equal to the value of AU_type as specified in subclause 7.5.1.2.

2.	 Decode the variables numberOfRecordSegments, numberOfAlignedRecordSegments and
numberOfMappedRecordSegments as specified in subclause 10.4.10.

3.	 Compute the array readLength[], numberOfSplicedSeg[], splicedSegLength[][] and
splicedSegMappingPos[][] as specified in subclause 10.4.9.

4.	 Decode the output variables specified in subclause 10.4.12 containing the alignment and mapping
information.

5.	 Decode the output variables specified in subclause 10.4.10 containing pairing and/or splicing
information.

6.	 Decode the readName variable as specified in subclause 10.4.17.

7.	 If present, decode the following optional descriptors:

a.	 decode the flags descriptor as specified in subclause 10.4.4;

b.	 decode the qv descriptor as specified in subclause 10.4.16.

8.	 If num_groups specified in subclause 7.4.2 is greater than 0, decode the rgroup descriptor as
specified in subclause 10.4.15.

﻿

© ISO/IEC 2020 – All rights reserved� 41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

9.	 Decode the read sequences as specified in subclause 10.5.3.

10.2.8.2	 cr_alg_ID = 2

The “PushIn” computed reference algorithm specified in subclause 11.3.4 is used. In this case the
genomic sequencing reads are decoded as for other classes of data by using the rtype descriptor as
specified in subclause 10.4.14. The rtype descriptor is used to select the class of the next genomic record
to be decoded.

10.2.8.3	 cr_alg_ID = 4

The “Global Assembly” computed reference algorithm specified in subclause 11.3.6 is used. In this case
the genomic sequencing reads are decoded as for other classes of data by using the rtype descriptor
as specified in subclause 10.4.14. The rtype descriptor is used to select the class of the next genomic
record to be decoded.

10.3	 dataset_type = 2

10.3.1	 General

The input to this process is either

—	 one AU of type 1, 2, 3 or 4 and a raw_reference data structure already initialized by a previous
decoding process;

or

—	 an AU of type 6.

The output of this process is a raw_referenceoutput structure as specified in subclause 7.3.2. The array
ref_sequenceoutput[] identifies the ref_sequence field of raw_referenceoutput.

Subclause 7.4.2 specifies that all AUs referring to a parameter set having dataset_type set to 2 contain
an encoded reference genome or portions thereof. According to the value of AU_type specified in
subclause 7.5.1.2 the decoding process is as specified in subclauses 10.3.2, 10.3.3, 10.3.4, 10.3.5 and
10.3.6 for classes P, N, M, I and U.

The elements of the raw_referenceoutput syntax specified in subclause 7.3.2 shall be set as follows:

seq_count is set to the number of different values of ref_sequence_ID, specified in subclause 7.5.1.2,
found in the headers of the AUs with dataset_type equal to 2 referring to the same parameter set.

For each value of ref_sequence_ID the following applies:

—	 sequence_ID in the raw_reference syntax is set to ref_sequence_ID.

—	 seq_start shall be set to the value of ref_start_position specified in subclause 7.5.1.2.

—	 seq_end shall be set to the value of ref_end_position specified in subclause 7.5.1.2.

The decoding process of each access unit refers to encoding parameters carried by the parameter set
identified by the parameter_set_ID specified in subclause 7.5.1.2.

The ref_sequence element specified in subclause 7.3.2 is initialised with the output ref_sequenceoutput
of the decoding processes specified in subclauses 10.3.2 to 10.3.6.

10.3.2	 Type 1 AU

Type 1 access units used to encode a reference sequence carry portions of the reference sequence which
perfectly match to the reference sequence identified by sequence_ID, specified in subclause 7.5.1.2,
used for compression.

﻿

42� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

The decoding process of a binary decoded access unit of type 1 is as follows:

1.	 Set an array of ASCII characters outBuf[] equal to the empty array.

2.	 Decode the value readLength[0] as specified in subclause 10.4.9.

3.	 Decode one pos descriptor as specified in subclause 10.4.2 and set pn equal to mappingPos[0][0] as
specified in subclause 10.4.2.

4.	 A sequence of nucleotides outSequence is computed as follows:

a.	 The position pRef0 in the reference sequence identified by sequence_ID as specified in
subclause 7.3 is computed as follows:

	 pRef0 = pn - seq_start[sequence_ID]

where seq_start[sequence_ID] is specified in subclause 7.3;

b.	 outSequence = ref_sequence[sequence_ID][pRef0, pRef0+ readLength[0])

where ref_sequence[sequence_ID][] is specified as in subclause 7.3.

5.	 The decoded sequence outSequence is concatenated with all previously decoded sequences in this
AU and stored in a buffer outBuf computed as

 outBuf = strcat(outBuf, outSequence)

where strcat returns the concatenation of the two arrays of ASCII characters passed as input.

6.	 If more genomic records are present, then go back to step 1 else go to step 7.

7.	 The buffer outBuf containing the concatenation of all output sequences is stored in the ref_
sequenceoutput array of the raw_referenceoutput structure produced as output of this decoding
process:

 ref_sequenceoutput[ref_sequence_ID] =

outBuf[0, seq_endoutput[ref_sequence_ID] - seq_startoutput[ref_sequence_ID]],,

where

seq_startoutput and seq_endoutput correspond respectively to the seq_start and seq_end fields of the
raw_referenceoutput structure, and where the following condition shall always be met:

 Size(outBuf) > seq_endoutput[ref_sequence_ID] - seq_startoutput[ref_sequence_ID].

10.3.3	 Type 2 AU

In case of AU of type 2 the sequence obtained at step 3 of subclause 10.3.2 is modified by applying the
substitutions of symbol “N” according to the process described in subclause 10.2.4.

The decoding process continues then with step 5 of subclause 10.3.2.

10.3.4	 Type 3 AU

In case of AU of type 3 the sequence obtained at step 3 of subclause 10.3.2 is modified by applying the
substitutions according to the process described in subclause 10.2.5.

The decoding process continues then with step 5 of subclause 10.3.2.

﻿

© ISO/IEC 2020 – All rights reserved� 43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.3.5	 Type 4 AU

In case of AU of type 4 the sequence obtained at step 3 of subclause 10.3.2 is modified by applying
substitutions, insertions, deletions and soft clips according to the process described in subclause 10.2.6.

The decoding process continues then with step 5 of subclause 10.3.2.

10.3.6	 Type 6 AU

In an AU of type 6 encoding a reference sequence, only ureads descriptors are always present, optionally
associated to rlen descriptors providing the length of each encoded segment.

The decoding process is as follows:

1.	 Set an array of ASCII characters outBuf[] equal to the empty array.

2.	 Decode the value readLength[0] as specified in subclause 10.4.9.

3.	 Decode readLength[0] bases with decodeUreads(readLength[0]) as specified in subclause 10.4.8
and set outSequence to decodedUreads.

4.	 The decoded sequence outSequence is concatenated with all previously decoded outSequence in
this AU and stored in a buffer outBuf computed as

 outBuf = strcat(outBuf, outSequence)

where strcat returns the concatenation of the two arrays of ASCII characters passed as input.

5.	 If more genomic records are present, then go back to step 2 else go to step 6.

6.	 The buffer outBuf containing the concatenation of all output sequences is stored in the ref_
sequenceoutput array of the raw_referenceoutput structure produced as output of this decoding
process, according to the process specified at point 7 of subclause 10.3.2.

10.4	 Genomic descriptors

10.4.1	 General

The inputs to this process are descriptor subsequences generated at output of the parsing process
specified in subclause 12.6. Each descriptor subsequence consists of a collection of symbols stored in
the decoded_symbols data structure specified in subclause 12.6.2.2.

For a given descriptor_ID, subsequenceN identifies the array decoded_symbols[descriptor_ID][N].

The input to the decoding process of a descriptor sequence identified by descriptor_ID are K descriptor
subsequences subsequence0 .. subsequenceK-1, with K equal to the number of descriptor subsequences
as specified in Table 24.

The values of subsequenceN are read by means of indexes jM,N where M = descriptor_ID and N =
descriptor_subsequence_ID.

Additional inputs are state variables computed during the decoding process described in this clause or
other subclauses.

Some state variables listed among the outputs of the decoding processes described in this subclause
shall be computed even if the corresponding descriptor is not present in the access unit. The listed
inputs of each subclause are not always required; the decoding process described in each subclause
specifies which inputs are required and which outputs are generated.

﻿

44� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.4.2	 pos

The input to this process (see Table 44) is the array decoded_symbols[descriptor_ID][0] array
specified in subclause 12.6.2.2 when descriptor_ID is equal to 0 and the current value of j0,0, the
variable previousMappingPos0 produced by the previous iteration of this same process, and the array
numberOfSegmentMappings[] calculated as specified in subclause 10.4.12.

The output of this process is an array mappingPos[][0] and the variable previousMappingPos0.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N
(i.e. subsequenceN = decoded_symbols[0][N]).

Table 44 — Decoding process of the pos descriptor

Decoding step Description
if(j0,0 > 0) {

 mappingPos[0][0] =

 previousMappingPos0 + subsequence0[j0,0]

}

else{

 if(AU_type == 6) { Unmapped content using computed
reference

 mappingPos[0][0] = subsequence0[j0,0]

 } else {

 mappingPos[0][0] =

 AU_start_position + subsequence0[j0,0]

AU_start_position is specified in
subclause 7.5.1.2.

 }

}

previousMappingPos0 = mappingPos[0][0]

for(i = 1; i < numberOfSegmentMappings[0]; i++) { numberOfSegmentMappings[0] is
specified in subclause 10.4.12.

 mappingPos[i][0] =

 mappingPos[i-1][0]+subsequence1[j0,1]

 j0,1++

}

j0,0++

10.4.3	 rcomp

The inputs to this process are:

—	 the array decoded_symbols[descriptor_ID][0] specified in subclause 12.6.2.2 when descriptor_ID
is equal to 1 and the current value of j1,0;

—	 the array numberOfSegmentMappings[] calculated as specified in subclause 10.4.12;

—	 the variable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

—	 the array splitMate as specified in subclause 10.4.10;

—	 the array numberOfSplicedSeg[] specified in subclause 10.4.9.

The output of this process is the array reverseComp[][][].

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[1][N]).

﻿

© ISO/IEC 2020 – All rights reserved� 45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Each decoded rcomp descriptor conveys information about the strandedness of each segment of an
alignment.

When no splices are present in the genomic record, each bit of a decoded rcomp descriptor is a flag
indicating if the read is on the forward (bit set to 0) or reverse (bit set to 1) strand. Table 45 specifies
the computation of reverseComp[][][] values.

Table 45 — Determination of the reverseComp values

Decoding step
for(i = 0; i < numberOfMappedRecordSegments; i++){

 for(j = 0; j < numberOfSegmentMappings[i]; j++) {

 if(splitMate[j][i] == 0) {

 if(j == 0) {

 for(k = 0; k < numberOfSplicedSeg[i]; k++)

 reverseComp[k][j][i] = subsequence0[j1,0++]

 } else {

 reverseComp[0][j][i] = subsequence0[j1,0++]

 }

 }

 }

}

When splices are present each decoded rcomp descriptor consists in a flag conveying information
about the strandedness of each spliced segment of an alignment. It is set to 0 when the spliced segment
is on the forward strand and it is set to 1 when the spliced segment is on the reverse strand.

10.4.4	 flags

The input to this process is the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2
when descriptor_ID is equal to 2 and descriptor_subsequence_ID are equal to 0, 1 and 2 as specified in
Table 26 and the current values of j2,0, j2,1 and j2,2 as defined in subclause 10.4.

The output of this process is the variable decodedFlags.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[2][N]).

The flag syntax element carries additional alignment information usually produced by aligners as
specified in Table 26.

The flags value shall be calculated according to the process specified in Table 46.

Table 46 — Decoding process of the flags descriptor

Decoding step Description
decodedFlags = 0
decodedFlags |= subsequence0[j2,0] << 0
decodedFlags |= subsequence1[j2,1] << 1
decodedFlags |= subsequence2[j2,2] << 2
j2,0++, j2,1++, j2,2++

﻿

46� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.4.5	 mmpos

The inputs to this process are:

—	 two subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause 12.6.2.2 when descriptor_ID is equal to 3 and descriptor_subsequence_ID are equal to 0
and 1 as specified in Table 27;

—	 the current values of j3,0. and j3,1 as defined in subclause 10.4;

—	 the numberOfMappedRecordSegments variable specified in subclause 10.4.10;

—	 the classId variable specified in subclause 10.2.3;

—	 the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclause 10.4.9;

—	 the softClipSizes[][] array specified in subclause 10.4.7.

The output of this process are:

—	 the array mismatchOffsets[][]containing offsets of the mismatches in the sequencing read or
read pair;

—	 the array numMismatches[] containing the number of elements in the array mismatchOffsets[][];

—	 the array splicedSegMismatchOffsets[][][] containing the offsets of mismatches within each spliced
segment;

—	 the array splicedSegMismatchIdx[][] containing the positions, within the mismatchOffsets[][],
mismatchTypes[][] and mismatches[][] arrays computed as specified in subclause 10.4.6, of the
mismatches of each spliced segment;

—	 the array splicedSegMismatchNumber[][] containing the number of mismatches for each spliced
segment.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[3][N]).

The overall decoding process for the output variables specified in this subclause is specified in Table 47:

Table 47 — Determination of the offset of mismatches

Decoding step Description
decodeMmpos() As specified in Table 48.
if(classId == Class_I || classId == Class_HM) {

 mismatchOffsetCorrectionByType() As specified in Table 50.
}

decodeSplicedSegMismatchOffsets() As specified in Table 49.

The mismatch offsets for each aligned segment shall be computed as specified in Table 48.

﻿

© ISO/IEC 2020 – All rights reserved� 47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 48 — Determination of the offset of mismatches within genomic segments

Decoding step Description
decodeMmpos() {

 for(i = 0; i < numberOfMappedRecordSegments; i++) 	 {

 previousOffset = 0

 j = 0

 for(k = 0; k < numberOfSplicedSeg[i]; k ++) {

 splicedSegMismatchNumber[i][k] = 0

 splicedSegMismatchIdx[i][k] = j

 while(subsequence0[j3,0++] == 0){ Loop on subsequence0 until a
terminator 1 is found.

 mismatchOffsets[i][j] =
 subsequence1[j3,1] + previousOffset

 previousOffset = mismatchOffsets[i][j]

 previousOffset += 1 Adjacent mismatch positions are
strictly incremental to prevent
overlapping mismatches.
Exceptions to this requirement
are specified in Table 50.

 splicedSegMismatchNumber[i][k]++

 j3,1++, j++ Increment read and write pointers.
 }

 }

 numMismatches[i] = j

 }

}

The mapping from splice mismatch indexes to genomic segment mismatch indexes shall be computed
as specified in Table 49.

Table 49 — Determination of the offset of mismatches within spliced segments

Decoding step
decodeSplicedSegMismatchOffsets() {

 for(i = 0; i < numberOfAlignedRecordSegments; i++) {

 splicedSegStartOffset = 0

 splicedSegEndOffset = splicedSegStartOffset +
 splicedSegLength[i][0] – softClipSizes[i][0]

 l = 0

 for(k = 0; k < numberOfSplicedSeg[i]; k ++) {

 for(j = 0; j < splicedSegMismatchNumber[i][k]; j++) {

 splicedSegMismatchOffsets[i][k][j] =
 mismatchOffsets[i][l] – splicedSegStartOffset

 l++

 }

﻿

48� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step
 if(k < numberOfSplicedSeg[i] – 1) {

 splicedSegStartOffset = splicedSegEndOffset

 splicedSegEndOffset = splicedSegStartOffset +
 splicedSegLength[i][k + 1]

 }

 }

 }

}

10.4.6	 mmtype

The inputs to this process are:

—	 three subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause 12.6.2.2 when descriptor_ID is equal to 4 and descriptor_subsequence_ID are equal to 0,
1 and 2 as specified in Table 28. The decoding process specified in subclause 12.6.2.3 for decoded_
symbols[4][1] shall be performed after the decoding process specified in Table 51;

—	 the array with the number of mismatches numMismatches[], and the offset array mismatchOffsets[]
[] calculated for the current genomic record as specified in subclause 10.4.5;

—	 the arrays splicedSegMismatchNumber[][] and splicedSegMismatchOffsets[][][] as specified in
subclause 10.4.5 the current values of j4,0, j4,1 and j4,2 as defined in subclause 10.4;

—	 the array Salphabet_ID[] as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 9.2;

—	 the arrays mappingPos[][] and splicedSegMappingPos[][] as specified in subclauses 10.4.2 and
10.4.10;

—	 the classId variable specified in subclause 10.2.3;

—	 the numberOfMappedRecordSegments variable specified in subclause 10.4.10;

—	 the variable seqId set equal to sequence_ID as specified in subclause 7.5.1.2. If crps_flag specified
in Table 7 is equal to 1 and cr_alg_ID specified in Table 16 is equal to 2, 3 or 4, seqId is not used;

—	 the variable seqStart equal to 0 if crps_flag specified in Table 7 is equal to 1 and cr_alg_ID specified
in Table 16 is equal to 2, 3 or 4, else seqStart is set equal to seq_start[seqId] with seq_start[] as
specified in subclause 7.3;

—	 the array splicedSegMappedLength[][] computed as specified in subclause 10.4.9.

The outputs of this process are arrays containing values identifying the type of edit operations to
be performed on the sequencing read or read pair computed as specified in subclause 10.4.20 when
classId, specified in subclause 10.2.3, is equal to Class_M, Class_I or Class_HM:

—	 the modified mismatchOffsets[][] array;

—	 the array mismatchTypes[][] contains values for the type of mismatch. 0 signals substitutions, 1
signals insertions and 2 signals deletions;

—	 the array mismatches[][] contains the symbols to be used for substitutions and insertions;

—	 the array substMappingOffsets[][] containing the offsets of the mismatches within the reference
sequence the segment is mapped to;

—	 the modified splicedSegMappedLength[][] array.

﻿

Table 49 (continued)

© ISO/IEC 2020 – All rights reserved� 49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[4][N]).

If classId is equal either to Class_I or to Class_HM, the output mismatchOffsets[][] array specified in
subclause 10.4.5 shall be modified, before any possible use, according to the decoding process specified
in Table 50.

Table 50 — Updating mismatchOffsets[][] array based on mismatch types

Decoding step Description
mismatchOffsetCorrectionByType() {

 k = j4,0

 for(i = 0; i < numberOfMappedRecordSegments; i++) {

 numOfDeletions = 0

 for(j = 0; j < numMismatches[i]; j++) {

 mismatchOffsets[i][j] -= numOfDeletions Deletions can occur at the same
position of the next mismatch.
Therefore, the extra +1 offset to
prevent overlapping mismatches,
as specified in Table 90, does not
apply to deletions.

 if(subsequence0[k] == 2) { Deletion.
 numOfDeletions += 1

 }

 k++

 }

 }

}

The arrays substMappingOffsets[] and splicedSegMappedLength[][] shall be, respectively, calculated
and modified following the process described in Table 51.

Table 51 — Determination of the substMappingOffsets[] arrays.

Decoding step Description
k = j4,0

for(i = 0; i < numberOfMappedRecordSegments; i++) {

 l = 0

 substMappingOffsets[i] = {} Empty array.
 if(numberOfSplicedSeg[i] == 1) { Case of no splices.
 mappedMmpos = mappingPos[0][i] – seqStart

 previousOffset = 0

 for(j = 0; j < numMismatches[i]; j++) {

 mappedMmpos +=
 mismatchOffsets[i][j] – previousOffset

 previousOffset = mismatchOffsets[i][j]

﻿

50� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 if(subsequence0[k] == 0) { Substitution.
 substMappingOffsets[i][l] = mappedMmpos

 l++

 } else if(subsequence0[k] == 1) { Insertion.
 mappedMmpos -= 1 Insertions increase mmpos

descriptor value but, since they
do not represent an actual base
on the reference sequence, they
shall not increase the mapped
position, as specified in Table 90.

 } else if(subsequence0[k] == 2) { Deletion.
 mappedMmpos += 1 Deletions do not increase mmpos

descriptor value but, since they
represent an actual base on the
reference sequence, they shall
increase the mapped position, as
specified in Table 90.

 }

 k++

 }

 } else { Case of splices.
 previousOffset = 0

 previousSpliceEndOffset = 0

 for(s = 0; s < numberOfSplicedSeg[i]; s++) {

 mappedMmpos = splicedSegMappingPos[i][s] –
 seqStart

 previousOffset = 0

 for(j = 0; j < splicedSegMismatchNumber[i][s];
 j++) {

 mappedMmpos +=
 splicedSegMismatchOffsets[i][s][j] –
 previousOffset

 previousOffset =
 splicedSegMismatchOffsets[i][s][j]

 if(subsequence0[k] == 0) { Substitution.
 substMappingOffsets[i][l] = mappedMmpos

 l++

 } else if(subsequence0[k] == 1) { Insertion.
 mappedMmpos -= 1 Insertions increase mmpos

descriptor value but, since they
do not represent an actual base
on the reference sequence, they
shall not increase the mapped
position, as specified in Table 90.

 splicedSegMappedLength[i][s] -= 1

 } else if(subsequence0[k] == 2) { Deletion.
 mappedMmpos += 1 Deletions do not increase mmpos

descriptor value but, since they
represent an actual base on the
reference sequence, they shall
increase the mapped position, as
specified in Table 90.

﻿

Table 51 (continued)

© ISO/IEC 2020 – All rights reserved� 51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 splicedSegMappedLength[i][s] += 1

 }

 k++

 }

 }

 }

}

The remaining output of mmtype descriptor decoding process shall be calculated following the process
described in Table 52, after having decoded subsequence1 according to the decoding process specified
in Table 124 using, if required by the said decoding process specified in Table 124 and by following the
decoding process specified in subclause 12.6.2.3, the array substMappingOffsets[] decoded as specified
in Table 51.

Table 52 — Determination of the mismatchTypes[] and mismatches[] arrays

Decoding step Description
for(s = 0; s < numberOfMappedRecordSegments; s++) {

 j = 0

 while(j < numMismatches[s]) {

 if(Size(subsequence0[]) > 0) {

 mismatchTypes[s][j] = subsequence0[j4,0]

 } else {

 mismatchTypes[s][j] = 0 Default to substitution if
subsequence0 is empty.

 }

 if(mismatchTypes[s][j] == 0) Substitution.
 mismatches[s][j] = Salphabet_ID[subsequence1[j4,1]]

 j4,1++

 } else if(mismatchTypes[s][j] == 1) { Insertion.
 mismatches[s][j] = Salphabet_ID[subsequence2[j4,2]]

 j4,2++

 } else if(mismatchTypes[s][j] == 2) { Deletion.
 /* nothing needs to be done */ The value of mismatches[j] is

undefined, as it is not relevant
for any decoding process.

 }

 j4,0++, j++

 }

}

10.4.7	 clips

The inputs to this process are:

—	 four subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause 12.6.2.2 when descriptor_ID is equal to 5;

—	 the variable currentRecordCount is the number of processed genomic records in the current AU and
it is initialized to 0 at the beginning of current AU decoding process;

—	 the current values of j5,0, j5,1, j5,2 and j5,3 as defined in subclause 10.4;

﻿

Table 51 (continued)

52� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 the array Salphabet_ID[] as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 7.4.2;

—	 the value Size(Salphabet_ID) as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 7.4.2;

—	 the variable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

—	 the classId variable specified in subclause 10.2.3.

The four subsequences are identified by subsequences_ID from 0 to 3 as specified in Table 29.

The output of this process is an array softClips[][][], an array softClipSizes[][] and an array hardClips[]
[] as specified in Table 54.

The decoding process of the clips descriptor is provided in Table 54 where:

—	 subsequenceN is the subsequence identified by descriptor_subsequence_ID = N;

—	 subsequence0[j5,0] represents the next genomic record containing clipped bases;

—	 subsequence1[j5,1] represent the type and position of clipped bases;

—	 softClips, softClipSizes, and hardClips are the output of this decoding process:

—	 softClips[0][0] and softClips[1][0] contain strings of characters representing soft clips preceding
the first mapped base of the leftmost read and rightmost read respectively,

—	 softClips[0][1] and softClips[1][1] contain strings of characters representing soft clips following
the last mapped base of the leftmost read and rightmost read respectively,

—	 softClipSizes[i][j] contain the number of charcters in the strings in softClips[i][j] respectively,

—	 hardClips[0][0] and hardClips[1][0] contain the number of hard clips preceding the first mapped
base of the leftmost read and rightmost read respectively,

—	 hardClips[0][1] and hardClips[1][1] contain the number of hard clips following the last mapped
base of the leftmost read and rightmost read respectively;

—	 the semantics of subsequence1 are as shown in Table 53.

Table 53 — Values and semantics for subsequence1

subsequence1 values semantics
0 Soft clips before the start of leftmost read. Shall not be

used if 4 is present for the same genomic record.
1 Soft clips after the end of leftmost read Shall not be

used if 5 is present for the same genomic record.
2 Soft clips before the start of rightmost read. Shall not

be used if 6 is present for the same genomic record.
3 Soft clips after the end of rightmost read. Shall not be

used if 7 is present for the same genomic record.
4 Hard clips before the start of leftmost read. Shall not

be used if 0 is present for the same genomic record.

﻿

© ISO/IEC 2020 – All rights reserved� 53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

subsequence1 values semantics
5 Hard clips after the end of leftmost read. Shall not be

used if 1 is present for the same genomic record.
6 Hard clips before start of rightmost read. Shall not be

used if 2 is present for the same genomic record.
7 Hard clips after end of rightmost read. Shall not be

used if 3 is present for the same genomic record.
8 End-of-clips terminator.

For a decoded genomic record each value of subsequence1 as specified in Table 53 shall not be used
more than once.

Table 54 — Decoding process of the clips descriptor

Decoding process Description
for(i = 0; i < numberOfMappedRecordSegments; i++) {

 for(j = 0; j < 2; j++) {

 softClips[i][j] = “” Empty string.
 softClipSizes[i][j] = 0

 hardClips[i][j] = 0

 }

}

if(classId == Class_I || classId == Class_HM){

 if(j5,0 < Size(subsequence0)
 && currentRecordCount == subsequence0[j5,0]){

 end = 0

 do{

 if(subsequence1[j5,1] ≤ 3){ Soft clips.
 j=0

 segmentIdx = subsequence1[j5,1] >> 1

 leftRightIdx = subsequence1[j5,1] & 1

 do{

 softClips[segmentIdx][leftRightIdx][j] =

 Salphabet_ID[subsequence2[j5,2]]

 j5,2++ Increment pointer for
subsequence2.

 j++

 } while(subsequence2[j5,2] != Size(Salphabet_ID)) Continue reading symbols
of clipped bases until the
end-of-soft-clips terminator
is reached.

 j5,2++ Increment pointer for
subsequence2.

 softClipSizes[segmentIdx][leftRightIdx] = j Store soft clips size.
 }

 else if(subsequence1[j5,1] ≤ 7){ Hard clips.
 segmentIdx = (subsequence1[j5,1] – 4) >> 1

 leftRightIdx = (subsequence1[j5,1] – 4) & 1

 hardClips[segmentIdx][leftRightIdx] =
 subsequence3[j5,3]

Store the number of hard
clips.

﻿

Table 53 (continued)

54� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding process Description
 j5,3++ Increment pointer for

subsequence3.
 }

 else if(subsequence1[j5,1] == 8){ End-of-clips terminator.
 end = 1

 }

 j5,1++ Increment pointer for
subsequence1.

 } while(end == 0) Continue decoding soft
and hard clips until the
end of clips terminator is
detected.

 j5,0++ Increment pointer for
subsequence0.

 }

 currentRecordCount++

}

10.4.8	 ureads

The inputs to this process (see Table 55) are:

—	 the array decoded_symbols[descriptor_ID][0] structure as specified in subclause 12.6.2.2 when
descriptor_ID is equal to 6;

—	 the current value of j6,0;

—	 the array Salphabet_ID[] as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 7.4.2.

The output of this process is a string decodedUreads.

Table 55 — Decoding process of the ureads descriptor

Decoding process Description
decodeUreads(length) {

 decodedUreads = “” Empty string.
 for(j = 0; j < length; j++) {

 decodedUreads = strcat(decodedUreads,

 Salphabet_ID[decoded_symbols[6][0][j6,0]]

strcat returns the concatenation of the
two arrays of ASCII characters passed
as input.

 j6,0++

 }

}

10.4.9	 rlen

The rlen descriptor is present when read_length is equal to 0 in the parameter set or when there are
multiple alignments with splices.

The inputs to this process are:

—	 the array decoded_symbols[descriptor_ID][0] as specified in subclause 12.6.2.2 when descriptor_
ID is equal to 7;

﻿

Table 54 (continued)

© ISO/IEC 2020 – All rights reserved� 55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 the value read_length as specified in subclause 7.4.2;

—	 the variable classId computed in subclause 10.2.3;

—	 the variables numberOfRecordSegments and numberOfAlignedRecordSegments computed as
specified in subclause 10.4.10;

—	 if classId is equal to Class_I or Class_HM, the array hardClips[][] computed as specified in
subclause 10.4.7;

—	 the spliced_reads_flag syntax element specified in subclause 7.4.2;

—	 the softClipSizes[][] array specified in subclause 10.4.7;

—	 the current value of j7,0.

The outputs of this process are:

—	 the array readLength[];

—	 the array numberOfSplicedSeg[];

—	 the array splicedSegLength[][];

—	 the array splicedSegMappedLength[][].

The decoding process of the rlen descriptor is specified in Table 56. In this description, subsequenceN
is the subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN = decoded_
symbols[7][N]).

Table 56 — Decoding process of the rlen descriptor

Decoding step Description
if(read_length == 0){
 for(i = 0; i < numberOfRecordSegments; i++){
 readLength[i] = subsequence0[j7,0++] + 1
 }
}else{
 for(i = 0; i < numberOfRecordSegments; i++){
 if(classId == Class_I){
 readLength[i] = read_length
 - hardClips[i][0] - hardClips[i][1]

 }
 else if(classId == Class_HM && i == 0){
 readLength[i] = read_length
 – hardClips[0][0] - hardClips[0][1]

 }
 else {
 readLength[i] = read_length
 }
 }
}
for(i = 0; i < numberOfRecordSegments; i++){
 numberOfSplicedSeg[i] = 1
 splicedSegLength[i][0] = readLength[i]
 splicedSegMappedLength[i][0] = readLength[i]

﻿

56� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
}
if(spliced_reads_flag &&
 (classId == Class_I || classId == Class_HM)){

 for(i = 0; i < numberOfAlignedRecordSegments; i++){

 remainingLen = readLength[i]
 j = 0
 do{
 spliceLen = subsequence0[j7,0++]
 remainingLen -= spliceLen
 splicedSegLength[i][j] = spliceLen
 splicedSegMappedLength[i][j] = spliceLen
 j++
 } while(remainingLen > 0)
 numberOfSplicedSeg[i] = j
 splicedSegMappedLength[i][0] -=
 softClipSizes[i][0]

 splicedSegMappedLength[i][j-1] -=
 softClipSizes[i][1]

 }
}

10.4.10	pair

Table 57 lists the possible decoding cases for the pair descriptor with the associated description for the
first alignment and class U.

Table 57 — Specification of the decoding cases for the pair descriptor for primary alignments
and class U

Decoding case Description
 Classes P, N, M, I Class HM Class U

same_rec Read 1 and read 2 are encoded in the same genomic record.
R1_ split Read 1 in pair is on the same

reference sequence but coded
separately.

N/A Read 1 paired with mate in
the same AU.

R2_split Read 2 in pair is on the same
reference sequence but coded
separately.

N/A Read 2 paired with mate in
the same AU.

R1_diff_ref_seq Read 1 is on a different reference
sequence.

N/A Read 1 paired with mate in a
different AU.

R2_diff_ref_seq Read 2 is on a different reference
sequence.

N/A Read 2 paired with mate in a
different AU.

R1_unpaired Read 1 is unpaired. N/A Read 1 unpaired.
R2_unpaired Read 2 is unpaired. N/A Read 2 unpaired.

Table 58 lists the possible decoding cases for the pair descriptor with the associated description for
alignments after the first one.

﻿

Table 56 (continued)

© ISO/IEC 2020 – All rights reserved� 57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

When the two ends of a paired-end read are coded in two different genomic records, they are part of a
split alignment.

Table 58 — Specification of the decoding cases for the pair descriptor for alignments after the
first one

Decoding case
Description

Classes P, N, M, I
same_rec_short Read 1 and read 2 are encoded in the same genomic record and the absolute

pairing distance is smaller than or equal to 32767.
same_rec_long Read 1 and read 2 are encoded in the same genomic record and the absolute

pairing distance is greater than 32767.
R2_diff_ref_seq Read 2 is on a different reference sequence.

Table 59 lists the possible decoding cases for the pair descriptor with the associated description for
spliced reads.

Table 59 — Specification of the decoding cases for the pair descriptor for spliced reads

Decoding case
Description

Classes I, HM
same_rec_short The next splice is in the same genomic record as current splice, and the splic-

ing distance is smaller than or equal to 65535.
same_rec_long The next splice is in the same genomic record as current splice, and the splic-

ing distance is greater than 65535.
splice_diff_ref_seq The next splice is on a different reference sequence than the current splice.

The inputs to this process are:

—	 the value of numberOfTemplateSegments as specified in subclause 7.4.2;

—	 eight subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified
in subclause 12.6.2.2 when descriptor_ID is equal to 8. The description of each subsequence is
provided in Table 30;

—	 the current values of j8,0, j8,1, j8,2, j8,3, j8,4, j8,5, j8,6and j8,7;

—	 the array mappingPos[][0] computed as specified subclause 10.4.2;

—	 the classId variable specified in subclause 10.2.3;

—	 a seqId variable set to sequence_ID as specified in subclause 7.5.1.2;

—	 the array alignPtr[][] specified in subclause 10.4.12;

—	 the variable numberOfAlignments and the array numberOfSegmentAlignments[] specified in
subclause 10.4.12;

—	 the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclause 10.4.9;

—	 the crps_flag value specified in subclause 7.4.2 and the cr_alg_ID value specified in subclause 7.4.2.4;

The outputs of this process are:

—	 a variable numberOfRecordSegments calculated as follows:

—	 if numberOfTemplateSegments is equal to 1 then numberOfRecordSegments is set to 1,

—	 else if classId is equal to Class_HM as specified in Table 37 then numberOfRecordSegments is
set to 2,

﻿

58� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 else if subsequence0[j8,0] is equal to 0 then numberOfRecordSegments is set to 2,

—	 else numberOfRecordSegments is set to 1;

—	 a variable numberOfAlignedRecordSegments calculated as follows:

—	 if classId is equal to Class_HM as specified in Table 37 then numberOfAlignedRecordSegments
is set to 1,

—	 else if classId is equal to Class_U as specified in Table 37 then numberOfAlignedRecordSegments
is set to 0,

—	 else numberOfAlignedRecordSegments is set to the value of numberOfRecordSegments;

—	 a variable numberOfMappedRecordSegments calculated as follows:

—	 if classId is equal to Class_U as specified in Table 37, and crps_flag is not equal to 0 and cr_alg_
ID is equal to 2 or 4 as specified in subclause 7.4.2, then numberOfMappedRecordSegments is
set to the value of numberOfRecordSegments,

—	 else numberOfMappedRecordSegments is set to the value of numberOfAlignedRecordSegments,

—	 a variable unpairedRead calculated as follows:

—	 if classId is equal to Class_HM as specified in Table 37 then unpairedRead is set to 0,

—	 else if numberOfTemplateSegments is equal to 1 or subsequence0[j8,0] is equal to 5 or 6 then
unpairedRead is set to 1,

—	 else unpairedRead is set to 0;

—	 one flag read1First, whose value follows the same semantics of read_1_first output syntax element
specified in subclause 13.2.8;

—	 the arrays splitMate[][i] for i from 1 to numberOfTemplateSegments, where the value of each
element follows the same semantics of split_alignment output syntax element specified in
subclause 13.2.23;

—	 the arrays splicedSegMappingPos[i][] for i from 0 to numberOfRecordSegments.

When classId is equal to Class_P, Class_N, Class_M or Class_I, additional output of this process is:

—	 the arrays mappingPos[][i] for i from 1 to numberOfTemplateSegments;

—	 the arrays mateSeqId[][i] for i from 1 to numberOfTemplateSegments.

When classId is equal to Class_U, additional output of this process is:

—	 the arrays pairingMate[i] from 1 to numberOfTemplateSegments. A -1 value in an array element is
used as reserved value;

In the following descriptions of the decoding process subsequenceN indicates the subsequence
identified by descriptor_subsequence_ID equal to N.

The decoding process of the pair descriptor is carried out by applying the decoding processes specified
in Table 60, Table 61, and Table 62, in this exact order.

The decoding process of the pair descriptor for the first alignment and for class U is specified in
Table 60.

﻿

© ISO/IEC 2020 – All rights reserved� 59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 60 — Decoding process of the pair descriptor subsequences for the first alignment in the
record or class U

Decoding step Description
splitMate[0][0] = 0

read1First = 1

if(classId == Class_HM) {

 read1First = (subsequence1[j8,1++] & 0x0001) ? 0 : 1 same_rec – in records of class
HM, the paired segments are
always in the same record.

 splitMate[0][1] = 0

} else {

 for(i = 1; i < numberOfTemplateSegments; i++) {

 if(subsequence0[j8,0] == 0){ same_rec
 splitMate[0][i] = 0

 if(classId != Class_U
 || (crps_flag != 0 &&
 (cr_alg_ID == 2 || cr_alg_ID == 4))) {

 read1First = (subsequence1[j8,1] & 0x0001) ? 0 : 1

 delta = subsequence1[j8,1] >> 1 0 ≤ delta ≤ 32767
 mappingPos[0][i] = mappingPos[0][0] + delta

 if(classId != Class_U) {

 mateSeqId[0][i] = seqId

 }else {

 pairingMate[i] = -1

 }

 j8,1++

 } else {

 read1First = 1

 pairingMate[i] = -1

 }

 }

 else if (subsequence0[j8,0] == 1){ R1_split
 splitMate[0][i] = 1

 read1First = 0

 if(classId != Class_U) {

 mappingPos[0][i] = subsequence2[j8,2] Absolute mapping position of
read 1 on the same reference
sequence. The maximum
value is 2posSize – 1 where
posSize is specified in
subclause 7.4.2.

 mateSeqId[0][i] = seqId

 } else {

 pairingMate[i] = -1

 }

 j8,2++

 }

 else if (subsequence0[j8,0] == 2){ R2_split
 splitMate[0][i] = 1

 read1First = 1

﻿

60� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 if(classId != Class_U) {

 mappingPos[0][i] = subsequence3[j8,3] Absolute mapping position
of the read 2 on the same
reference sequence. The
maximum value is 2posSize – 1
where posSize is specified in
subclause 7.4.2.

 mateSeqId[0][i] = seqId

 } else {

 pairingMate[i] = -1

 }

 j8,3++

 }

 else if (subsequence0[j8,0] == 3){ R1_diff_ref_seq
 splitMate[0][i] = 1

 read1First = 0

 if(classId != CLASS_U){

 mateSeqId[0][i] = subsequence4[j8,4] Identifier of the reference
sequence to which read 1 is
mapped.

 mappingPos[0][i] = subsequence6[j8,6] Absolute mapping position
of read 1 on the reference
sequence identified by
mateSeqId[0][i]. The
maximum value is 2posSize – 1
where posSize is specified in
subclause 7.4.2.

 }else{

 pairingMate[i] = -1

 }

 j8,4++, j8,6++,

 }

 else if (subsequence0[j8,0] == 4){ R2_diff_ref_seq
 splitMate[0][i] = 1

 read1First = 1

 if(classId != CLASS_U){

 mateSeqId[0][i] = subsequence5[j8,5] Identifier of the reference
sequence to which read 2 is
mapped.

 mappingPos[0][i] = subsequence7[j8,7] Absolute mapping position of
the read 2 on the reference
sequence identified by
mateSeqId[0][i]. The
maximum value is 2posSize – 1
where posSize is specified
in subclause 7.4.2.

 }else{

 pairingMate[i] = -1

 }

 j8,5++, j8,7++,

 }

 else if (subsequence0[j8,0] == 5){ R1_unpaired

﻿

Table 60 (continued)

© ISO/IEC 2020 – All rights reserved� 61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 splitMate[0][i] = 2

 read1First = 1

 if(classId == CLASS_U){

 pairingMate[i] = -1

 }

 }

 else if (subsequence0[j8,0] == 6){ R2_unpaired
 splitMate[0][i] = 2

 read1First = 0

 if(classId == CLASS_U){

 pairingMate[i] = -1

 }

 }

 j8,0++

 }

}

The decoding process of the pair descriptor for the alignments after the first one is specified in Table 61.

Table 61 — Decoding process of the pair descriptor subsequences for the alignments in the
record after the first one

Decoding step Description
for(i = 1; i < numberOfSegmentAlignments[0]; i++) {

 splitMate[i][0] = 0

}

if((classId == Class_P || classId == Class_N

 || class_ID == Class_M || classId == Class_I)

&& !unpairedRead) {

 for(j = 1; j < numberOfTemplateSegments; j++) {

 currAlignIdx = 0

 for(i = 1; i < numberOfAlignments; i++){

 alignIdx = alignPtr[i][j]

 if(alignIdx > currAlignIdx) {

 currAlignIdx = alignIdx

 if(subsequence0[j8,0] == 0){ same_rec_short
 splitMate[alignIdx][j] = 0

 delta = subsequence1[j8,1] >> 1; 0 ≤ delta ≤ 32767
 if(subsequence1[j8,1] & 0x0001)

 delta = - delta

read sign bit

 mappingPos[alignIdx][j] =

 mappingPos[alignPtr[i][0]][0]

 + delta

 mateSeqId[alignIdx][j] = seqId

 j8,1++

 }

 else if (subsequence0[j8,0] == 2){ same_rec_long
 splitMate[alignIdx][j] = 0

﻿

Table 60 (continued)

62� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 mappingPos[alignIdx][j] =

 subsequence3[j8,3]

For classes P, N, M , I
Absolute mapping position
of read 2 on the same
reference sequence. The
maximum value is
2posSize – 1 where posSize is
specified in subclause 7.4.2.

 mateSeqId[alignIdx][j] = seqId

 j8,3++

 }

 else if (subsequence0[j8,0] == 4){ R2_diff_ref_seq
 splitMate[alignIdx][j] = 1

 mateSeqId[alignIdx][j] =

 subsequence5[j8,5]

Identifier of the reference
sequence to which read 2 is
mapped.

 mappingPos[alignIdx][j] =

 subsequence7[j8,7]

For classes P, N, M , I
Absolute mapping position of
read 2 on the reference sequence
identified by subsequence5[j8,5].
The maximum value is
2posSize – 1 where posSize is
specified in subclause 7.4.2.

 j8,5++, j8,7++,

 }

 else {

 /* other subsequence0[j8,0] values */ reserved
 }

 j8,0++

 }

 }

 }

}

The decoding process of the pair descriptor for spliced reads is specified in Table 62.

Table 62 — Decoding process of the pair descriptor subsequences for spliced reads

Decoding step Description
for(i = 0; i < numberOfMappedRecordSegments; i++) {

 splicedSegMappingPos[i][0] = mappingPos[0][i]

}

if(classId == Class_I || classId == Class_HM) {

 for(i = 0; i < numberOfAlignedRecordSegments;

 i++){

 for(j = 1; j < numberOfSplicedSeg[i]; j++) {

 prevSpliceMappingEnd =

 splicedSegMappingPos[i][j - 1]

 + splicedSegLength[i][j – 1]

 if(subsequence0[j8,0] == 0) { same_rec_short
 delta = subsequence1[j8,1] >> 1 0 ≤ delta ≤ 32767

﻿

Table 61 (continued)

© ISO/IEC 2020 – All rights reserved� 63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 if(subsequence1[j8,1] & 0x0001)

 delta = - delta

read sign bit

 splicedSegMappingPos[i][j] =

 prevSpliceMappingEnd + delta

 j8,1++

 }

 else if (subsequence0[j8,0] == 2){ same_rec_long
 splicedSegMappingPos[i][j] =

 subsequence3[j8,3]

Absolute mapping position
of the splice on the same
reference sequence as
the previous splice. The
maximum value is 2posSize – 1
where posSize is specified in
subclause 7.4.2.

 j8,3++

 }

 else {

 /* other subsequence0[j8,0] values */ reserved
 }

 j8,0++

 }

 }

}

10.4.11	mscore

The mscore descriptor provides a score per segment in each alignment. Some information on how to
use the mscore descriptor to express the mapping quality is provided in Annex B.

The inputs to this process are:

—	 the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 9;

—	 the current value of j9,0;

—	 the value of syntax element as_depth specified in subclause 7.4.2;

—	 the array numberOfSegmentAlignments[] calculated as specified in subclause 10.4.12;

—	 the variable numberOfAlignedRecordSegments calculated as specified in subclause 10.4.10;

—	 the array splitMate as specified in subclause 10.4.10.

The output of this process is the three-dimensional mappingScores[][][]array.

The decoding process of the mscore descriptor is specified in Table 63. In this description,
subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN =
decoded_symbols[9][N]).

﻿

Table 62 (continued)

64� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 63 — Decoding process for the mscore descriptor

Decoding step Description
for(i = 0; i < as_depth; i++) {

 for(j = 0; j < numberOfAlignedRecordSegments; j++) {

 for(k = 0; k < numberOfSegmentAlignments[j]; k++) {

 if(splitMate[k][j] == 0) {

 mappingScores[k][j][i] = subsequence0[j9,0++];

 }

 }

 }

}

10.4.12	mmap

10.4.12.1	 General

The mmap descriptor is used to signal on how many positions the read or the leftmost read of a pair
has been aligned. A genomic record containing multiple alignments is associated with one mmap
descriptor.

The inputs to this process are:

—	 the variables unpairedRead, numberOfAlignedRecordSegments and numberOfRecordSegments
computed in subclause 10.4.10;

—	 the subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause 12.6.2.2 when descriptor_ID is equal to 10. The description of each subsequence is
provided in Table 31;

—	 the current values of j10,0, j10,1, j10,2, j10,3, j10,4;

—	 the classId variable specified in subclause 10.2.3;

—	 the value of multiple_alignments_flag specified in subclause 7.4.2;

—	 the crps_flag value specified in subclause 7.4.2 and the cr_alg_ID value specified in subclause 7.4.2.4.

The outputs of this process are:

—	 the variable numberOfAlignments containing the total number of alignments;

—	 the array numberOfSegmentAlignments[] containing the total number of segment-specific
alignments;

—	 the array numberOfAlignmentsPairs[] containing the number of alignments of the rightmost read
associated to each alignment of the leftmost read;

—	 the bi-dimensional array alignPtr[][] containing unsigned integer values representing, for each
alignment, the indexes of the corresponding segment-specific alignments;

—	 the variable moreAlignments;

—	 the variable moreAlignmentsNextPos;

—	 the variable moreAlignmentsNextSeqId;

﻿

© ISO/IEC 2020 – All rights reserved� 65

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 the variable numberOfSegmentMappings[] calculated as follows:

—	 if classId is equal to Class_U as specified in Table 37, and crps_flag is not equal to 0 and cr_alg_ID is
equal to 2, 3 or 4 as specified in subclause 7.4.2, then the elements numberOfSegmentMappings[i]
are set 1 for all values of i from 0 to numberOfRecordSegments – 1,

—	 else numberOfSegmentMappings[] is set equal to numberOfSegmentAlignments[].

In the following clauses, subsequence0 is the array decoded_symbols[10][0] specified in
subclause 12.6.2.2.

The decoding process shown in Table 64 applies.

Table 64 — Decoding process of mmap

Decoding step Description
if(classId != Class_U) {

 if(multiple_alignment_flag == 0) {

 numberOfSegmentAlignments[0] = 1 Total number of alignments of
the leftmost read.

 } else {

 numberOfSegmentAlignments[0] = subsequence0[j10,0++]

 }

} else {

 numberOfSegmentAlignments[0] = 0

}

moreAlignments = 0

if(unpairedRead || classId == Class_HM) {

 numberOfAlignments = numberOfSegmentAlignments[0]

 for(i = 0; i < numberOfAlignments; i++) {

 alignPtr[i][0] = i

 }

} else if(classId == Class_U) {

 if(numberOfRecordSegments > 1)

 numberOfSegmentAlignments[1] = 0

 numberOfAlignments = 0

} else {

 numberOfSegmentAlignments[1] = 0

 k = 0, i = 0

 while(i < numberOfSegmentAlignments[0]) {

 if(multiple_alignments_flag == 0) {

numberOfAlignmentsPairs[i] = 1 numberOfAlignmentsPairs[i] is
the number of alignments of the
rightmost read associated to
the ith alignments of the
leftmost read.

 } else {

numberOfAlignmentsPairs[i] = subsequence0[j10,0++]

 }

 j = 0

 while (j < numberOfAlignmentsPairs[i]){

if(k != 0){ Skip this for first alignment.
ptr = sequence1[j10,1++]

} else {

﻿

66� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
ptr = 0

}

alignPtr[k][1] =

numberOfSegmentAlignments[1] - ptr

alignPtr[k][0] = i

if(ptr == 0)

numberOfSegmentAlignments[1]++

j++, k++

 }

 i++

 }

 numberOfAlignments = k

}

if (multiple_alignments_flag == 1

 && classId != Class_U

 && subsequence2[j10,2++]){

More alignments on another
reference sequence.

 moreAlignments = 1

 moreAlignmentsNextSeqId =

 subsequence3[j10,3++]

Identifier of the reference
sequence an additional
alignment of read 1 is
mapped to in case of multiple
alignments.

 moreAlignmentsNextPos =

 subsequence4[j10,4++]

Absolute mapping position
of an additional alignment
of read 1 on the reference
sequence identified by
moreAlignmentsNextSeqId.

}

10.4.12.2	 Multiple alignments on different sequences

It can happen that the alignment process finds alternative mappings to another reference sequence
than the one where the first mapping is positioned.

For read pairs that are uniquely aligned, the mmap descriptor shall be used to represent the absolute
read positions when there is for example a chimeric alignment with the mate on another chromosome
(more alignments on another reference sequence case in Table 64). The mmap descriptor shall be used
to signal the reference and the position of the next record containing further alignments for the same
template. The last record (e.g. the third if alternative mappings are coded in three different access
units) shall contain the reference and position of the first record.

10.4.13	msar

The msar (multiple segments alignment record) descriptor supports spliced reads and alternative
alignments that contain indels or soft clips in case of class I data. It shall be present in a compliant
bitstream when multiple_alignments_flag specified in subclause 7.4.2 is set to 1.

msar is intended to convey information related to secondary aligments on:

—	 a mapped segment length;

—	 a different mapping contiguity (i.e. e-cigar string) for additional alignment and/or spliced reads.

﻿

Table 64 (continued)

© ISO/IEC 2020 – All rights reserved� 67

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Each msar descriptor is an array of ASCII characters following the syntax specified in subclause 10.6.

The syntax, semantics and decoding process for msar descriptors are those for the tokentype
descriptors specified in subclause 10.4.20.

The output of the decoding process of the msar descriptor is the array decodedStrings[] specified in
subclause 10.4.20.5, when descriptor_ID is equal to 12.

Table 65 shows how the array of strings decodedMsar[][] is computed using the following additional
input:

—	 the array numberOfSegmentAlignments[] calculated as specified in subclause 10.4.12;

—	 the variable numberOfAlignedRecordSegments calculated as specified in subclause 10.4.10;

—	 the array splitMate as specified in subclause 10.4.10.

For each genomic record the number encoded msar descriptors is equal to (numberOfAlignments – 1) *
numberOfRecordSegments.

Table 65 — Computation of decodedMsar

Decoding step Description
k = 0

for(i = 0; i < numberOfAlignedRecordSegments; i++) {

 decodedMsar[][i] = {} Empty array.
 for(j = 0;

 j < numberOfSegmentAlignments[i]-1; j++){

 if(splitMate[j][i] == 0) {

 decodedMsar[j][i] = decodedStrings[k++]

 }

}

10.4.14	rtype

10.4.14.1	 General

The rtype descriptor is used to signal the subset of descriptors used to decode one unmapped read
(class HM and class U) or read pair (Class U) in a genomic record as shown in Table 66.

The rtype descriptor also enables mixing reference-based and reference-less compression in the same
dataset. In this scenario rtype = 0 signals reference-based encoded records, while rtype > 0 signals
the set of descriptors to be used for reference-less compression (in this case descriptors refer to the
computed reference, when needed).

The input to this process is the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2
when descriptor_ID is equal to 12 and the current value of j12,0.

The output of this process is the decoded_symbols[descriptor_ID] array itself used by the decoder to
select the appropriate descriptors for further decoding the genomic record.

﻿

68� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 66 — Semantics of the rtype descriptor

rtype cr_alg_ID type of encoded reads description
not used 1 Aligned reads with reference

based compression only.
The entire dataset is encoded using reference based
compression for mapped reads.

0 3 Aligned reads with both
reference-based compression
and reference-less compression.

The dataset contains both read (pairs) encoded
using reference based compression and reference
less compression. The decoding process for this
Record uses the external or embedded reference
according to the Class of the AU as specified in
subclause 10.2.

1 .. 4 2, 4 Unmapped reads only. 1 = the decoding process is obtained by applying
the decoding process specified in subclause 10.2.3,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.11),
msar (subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.
2 = the decoding process is obtained by applying
the decoding process specified in subclause 10.2.4,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.11),
msar (subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.
3 = the decoding process is obtained by applying
the decoding process specified in subclause 10.2.5,
but without applying the steps specific to mscore
(subclause 10.4.11), msar (subclause 10.4.13) and
rgroup (subclause 10.4.15) descriptors.
4 = the decoding process is obtained by applying
the decoding process specified in subclause 10.2.6,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.11),
msar (subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.

1, 2, 3, 4,
5, 6

3 Unmapped reads or aligned
with reference less
compression only.

1 = apply the decoding process specified in
subclause 10.2.3.
2 = apply the decoding process specified in
subclause 10.2.4.
3 = apply the decoding process specified in
subclause 10.2.5.
4 = apply the decoding process specified in
subclause 10.2.6.
5 = apply the decoding process specified in
subclause 10.2.8.
6 = apply the decoding process specified in
subclause 10.2.7.

5 2 Unmapped reads only. The decoding process is specified in
subclause 10.2.8.

5 4 Unmapped reads. The decoding process is specified in
subclause 10.2.8 where the U reads representing
the reference sequence are used for compression
but do not generate output records as specified in
subclause 11.3.6.

﻿

© ISO/IEC 2020 – All rights reserved� 69

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

In case of class HM, the mapped read is decoded by following the process for the mapped read of class
HM specified in subclause 10.2, and the unmapped read is decoded following the decoding process
specified in this subclause.

10.4.14.2	 PushIn

When class U data are compressed using the “PushIn” computed reference algorithm specified
in subclause 11.3.4, the decoding process shall follow the one described for classes P, N, M, I in
subclauses 10.2.3 to 10.2.6 (for rtype values 1 to 4 respectively), or by ureads as described in
subclause 10.2.8 (rtype equal to 5). The process to be followed is indicated by the descriptor rtype as
specified in subclause 10.4.14.

Table 67 provides a description on the use of the pos and pair descriptors in this decoding process.

Table 67 — Semantics of the pos and pair descriptors for the PushIn algorithm

descriptor semantics
pos Matching position of the read on the PushIn computed reference, with coordinate as

described in subclause 11.3.4.
pair Used only for paired end reads. It associates a decoded read with its mate.

10.4.15	rgroup

The rgroup descriptor identifies the read group the genomic record belongs to.

The input to this process (see Table 68) is the decoded_symbols[descriptor_ID] array specified in
subclause 12.6.2.2 when descriptor_ID is equal to 13 and the current value of j13,0.

The output of this process is the variable readGroupId.

Table 68 — Determination of the readGroupId value

Decoding step Description
readGroupId = subsequence0[j13,0++]

10.4.16	qv

10.4.16.1	 General

The qv descriptor carries information to reconstruct the quality values.

The process for decoding quality values at a genomic position can be summarized informatively in the
following steps:

1.	 Determine the quality value indexes at the genomic position.

2.	 Determine the quality value codebook identifier at this genomic position.

3.	 Use the quality value codebook identifier to select the quality value codebook for the genomic
position.

4.	 Decode the quality value indexes by lookup in the quality value codebook.

10.4.16.2	 Decoding process of the quality values of a genomic record

The inputs to this process are:

—	 the qv_depth value specified in subclause 7.4.2;

﻿

70� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 the qv_reverse_flag value specified in subclause 7.4.2;

—	 the numberOfRecordSegments value computed in subclause 10.4.10;

—	 the current value of j14,0;

—	 the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 14;

—	 the qvCodebookIndexesLoadFlag set to 1 at the beginning of each AU decoding process;

—	 the reverseComp array computed as specified in subclause 10.4.3.

The outputs of this process are the quality values of each nucleotide for each segment of the current
genomic record and the value of qvCodebookIndexesLoadFlag.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[14][N]).

The decoding process for one genomic record is specified in Table 69:

Table 69 — Decoding process of the quality values of a genomic record

Decoding step Description
decode_quality_values() {

 if(qvCodebookIndexesLoadFlag == 1){

 decode_qv_codebook_indexes() As specified in
Table 70.

 qvCodebookIndexesLoadFlag = 0

 }

 for(tSeg = 0; tSeg <

 numberOfRecordSegments; tSeg++) {

 for(qs = 0; qs < qv_depth; qs++) {

 if(j14,0 < Size(subsequence0[])) {

 qvPresentFlag = subsequence0[j14,0]

 j14,0++

 } else {

 qvPresentFlag = 1

 }

 if(qvPresentFlag == 1) {

 decode_qvs() As specified in
Table 71.

 qvString = “” Empty string.
 len = 0

 for(i=0; i < numberOfSplicedSeg[tSeg]; i++){

 revComp = reverseComp[i][0][tSeg]

 qvSplice =

qualityValues[tSeq][qs][len,len+splicedSegLength[tSeg][i]-1]

 if(qv_reverse_flag && revComp) {

 qvString = strcat(qvString,

reverseStr(qvSplice))

 }

 else{

 qvString = strcat(qvString, qvSplice)

 }

﻿

© ISO/IEC 2020 – All rights reserved� 71

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 }

 qualityValues[tSeq][qs] = qvString

 } else {

 qualityValues[tSeg][qs] = “” Empty string.
 }

 }

 }

}

reverseStr(str) returns the reverse of the input string str where the nth element of the reversed string
reversedStr is computed as

reversedStr[n] = str[Size(str[]) - n - 1], for n in 0 .. Size(str[]) - 1.

10.4.16.3	Decoding processes of quality value codebook indexes and quality values of a segment

The inputs to these processes are:

—	 the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 14;

—	 the qv_num_codebooks_total and qvNumCodebooksAligned values specified in subclause 7.4.2.3;

—	 the current values of j14,1 for the qvCodebookIds subsequence;

—	 the current values of j14,N+2 with N ranging from 0 to qv_num_codebooks_total - 1 for the qv_num_
codebooks_total subsequences for quality value indexes;

—	 the numBases variable equal to number of nucleotide of the segment for which the quality values
shall be decoded;

—	 the basePos array containing the mapping positions relative to the AU_start_position of each
nuclotide in the segment for which quality values shall be decoded, as specified in subclause 10.4.2;

—	 the classId variable specified in subclause 10.2.3;

—	 the value tSeg identifying the segment within the ISO/IEC 23092 series record for which the quality
values shall be decoded;

—	 the value qs identifying the qsth quality value string for the tSegth segment within the ISO/IEC 23092
series record for which the quality values shall be decoded.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[14][N]).

The output of this process is the array of strings qualityValues[][], containing the quality values of each
nucleotide in the segment for which the quality values shall be decoded.

In the case that qvNumCodebooksAligned is larger than 1, the value of subsequence1 shall be used
to identify the quality value codebook for a genomic position of each aligned base. This quality value
codebook is used to reconstruct all quality values at that genomic position. Multiple quality value
codebooks can be used in one access unit. The variable qvCodeBookIds contains the indexes of the
quality value codebooks associated to a given mapping position relative to AU_start_position as
specified in subclause 9.6. The decoding process of qvCodeBookIds variable is specified in Table 70.

﻿

Table 69 (continued)

72� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 70 — Decoding of quality value codebook indexes

Decoding step Description
decode_qv_codebook_indexes() {

 if(qvNumCodebooksAligned > 1) {

 pos = 0

 for(j14,1 = 0; j14,1 < Size(subsequence1[]); j14,1++) {

 qvCodeBookIds[pos] = subsequence1[j14,1] The values qvCodeBookIds[pos]
shall be in the range 0..
(qvNumCodebooksAligned – 1).

 pos++

 }

 }

}

The decoding process of the quality values is specified in Table 71.

Table 71 — Decoding process of quality values

Decoding step Description
decode_qvs() {

 for(baseIdx = 0; baseIdx < numBases; baseIdx++) {

 if((classId == CLASS_I || classId == CLASS_HM)

 && ! isAligned(baseIdx)) {

Classes I and HM contain
bases that are not aligned to
the reference sequence, for
which the last quality values
codebook identifier reserved
for unaligned data shall be
used, as specified in
subclause 7.4.2.3.

 qvCodeBookId = qv_num_codebooks_total - 1

 } else if(classId == CLASS_U) {

 qvCodeBookId = 0 For records belonging to
Class U, only one codebook
shall be used, as specified in
subclause 7.4.2.3.

 } else if(qvNumCodebooksAligned > 1) {

 qvCodeBookId = qvCodeBookIds[basePos[baseIdx]]

 } else {

 qvCodeBookId = 0

 }

 qvCodeBookSubSeq = qvCodeBookId + 2 See subclause 7.4.2.3.
 j = j14,qvCodeBookSubSeq

 j14,qvCodeBookSubSeq++

 qvIndex =

 decoded_symbols[14][qvCodeBookSubSeq][j]

 qualityValues[tSeq][qs][baseIdx] =

 qv_recon[qvCodeBookId][qvIndex]

 }

}

﻿

© ISO/IEC 2020 – All rights reserved� 73

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

isAligned(baseIdx) returns 1 if the nucleotide at baseIdx is aligned to the reference sequence,
otherwise 0. This means that isAligned(baseIdx) returns 0 for every nucleotide corresponding to a soft
clip or to an insertion, or for nucleotides in the second segment of a genomic record in class HM.

Subclause 10.4.2 specifies how to calculate the absolute mapping position of the leftmost mapped
base in each read, and thus every quality value, in a read. Figure 6 shows how quality value codebook
identifiers relate to sequencing reads, quality values, reconstructed quality values, and genomic
positions. The top third of the figure shows how nucleotides of four reads, including quality values, are
mapped to genomic positions. The center of the figure shows how each genomic position is associated
to a quality value codebook. According to the corresponding quality value index the reconstructed
quality value is derived using the associated quality value codebook. The reconstructed quality values
are shown in the bottom third of the figure.

Figure 6 — Relationship between sequencing reads, quality values, reconstructed quality
values and genomic positions

10.4.17	rname

Sequencing read identifiers are encoded as a sequence of rname descriptors (descriptor_ID equal to 15).
Each rname descriptor is composed by tokens which have a type and possibly one or more parameters.

The syntax, semantics and decoding process for rname descriptors are those for the tokentype
descriptors specified in subclause 10.4.20. The output of the decoding process of the rname descriptor
for a ith record in the access unit is the string variable readName equal to decodedStrings[i], using the
array decodedStrings[] is specified in subclause 10.4.20.5. If rname descriptor is not present, readName
is set to the empty string “”.

An example of read identifiers tokenization is provided in Annex A.

10.4.18	rftp

The rftp descriptor

—	 shall be present only in access units of type 3 (class M) when cr_alg_ID specified in subclause 7.4.2
is set to 1;

—	 may be present when cr_alg_ID specified in subclause 7.4.2 is set to 3.

It shall not be present in any other case.

﻿

74� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

The inputs to this process are:

—	 the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 16 and the current value of j16,0;

—	 the value AU_start_position as specified in subclause 7.5.1.2;

—	 the value seq_start as specified in subclause 7.3.2.

The output of this process is an array refTransfPos[] containing the positions of the transformations to
be applied to a decoded raw reference as specified in subclause 11.3.3. The decoding process for rftp is
specified in Table 72 for an entire access unit.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N
(i.e. subsequenceN = decoded_symbols[16][N]).

Table 72 — Decoding process of the rftp descriptor

Decoding step Description
refTransfPos[0] = subsequence0[j16,0++] +

 AU_start_position – seq_start

Position of the first reference
transformation in the current
ref_sequence as specified in
subclause 7.3.2.

for(i = 1; i < Size(subsequence0); i++){

 refTransfPos[i] = refTransfPos[i - 1] +

 subsequence0[j16,0++]

}

10.4.19	rftt

The rftt descriptor

—	 shall be present only in access units of type 3 (class M) when cr_alg_ID specified in subclause 7.4.2
is set to 1;

—	 may be present when cr_alg_ID specified in subclause 7.4.2 is set to 3.

It shall not be present in any other case.

The inputs to this process are:

—	 the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 17;

—	 the current value of j17,0.

The output of this process is one array refTransfSubs[]containing the type of transformations to be
applied to a decoded raw reference as specified in subclause 11.3.3.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[17][N]).

The output of the rftt descriptor decoding process shall be calculated following the process described in
Table 73, after having decoded subsequence0 according to the decoding process specified in Table 124
using, if required by the said decoding process specified in Table 124 and by following the decoding
process specified in subclause 12.6.2.3, the array refTransfPos[] decoded as specified in Table 72.

﻿

© ISO/IEC 2020 – All rights reserved� 75

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 73 — Decoding process of the rftt descriptor

Decoding step Description
for(i = 0; i < Size(subsequence0); i++){

 refTransfSubs[i] = Salphabet_ID[subsequence0[j17,0++]]

}

10.4.20	tokentype descriptors

10.4.20.1	 General

The msar and rname share the same syntax, semantics and the decoding process specified in this
subclause for the generic tokentype descriptor. The tokentype descriptor is not a genomic descriptor
identified by a descriptor_ID, but a simple alias for rname and msar in the syntax, semantics and
decoding process specified in this subclause.

tokentype descriptors can be of three types:

—	 strings,

—	 digits,

—	 single characters.

Both a read identifier and an e-cigar string are represented as set of differences and matches with
respect to one of the previously decoded reads identifiers or e-cigar strings, respectively. The first
identifier coded in an access unit always starts with a DIFF token followed by the value 0.

A tokentype descriptor can take the values listed in the table below. The tokentype descriptors can
possibly be followed by one or more parameters.

Table 74 — The tokentype values and related semantics.

tokentype
value

Token
name

Parameters Semantics

0 DUP unsigned integer
DISTANCE ranging from
0 to 232-1

Indicates that the current descriptor is an exact
duplicate of the descriptor DISTANCE records ago, with
“1” being the previously decoded descriptor and
counting backwards in the list of previously decoded
descriptors. The value of DISTANCE shall always refer
to a descriptor coded in the current access unit. If a DUP
token is found no further tokens are required to decode
the descriptor. DUP can only occur at the first token
position.

1 DIFF unsigned integer
DISTANCE ranging from
0 to 232-1

Indicates which descriptor this token is being compared
against, usually “1” to indicate the previous descriptor.
DIFF can only occur at the first token position.
The first descriptor of a coded access units always starts
with “DIFF 0”.

2 STRING st(v) This is an arbitrary run of ASCII characters (as specified
in ISO/IEC 10646) and need not be purely alphabetical.
STRING is always null-terminated.

3 CHAR c(1) ASCII character as specified in ISO/IEC 10646.
4 DIGITS unsigned integer ranging

from 0 to 232-1
Numerical value no more than 9 digits long and not
starting with a leading zero.

5 DELTA unsigned integer ranging
from 0 to 28-1

Numerical delta to a previous DIGITS value, between 0
and 255.

﻿

76� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

tokentype
value

Token
name

Parameters Semantics

6 DIGITS0 an 8-bit length and a
32-bit unsigned integer

Fixed-width numerical value no more than 8 digits long,
possibly starting with a leading zero.

7 DELTA0 8-bit unsigned integer Numerical delta to a previous DIGITS0 value. The same
fixed length is assumed.

8 MATCH none The next token value is identical to the token at the same
position in the descriptor the currently decoded
descriptor is compared against (regardless of token type).

9 DZLEN unsigned integer
DISTANCE ranging
from 0 to 28-1

Used internally by DIGITS0 to code length.

10 END none Marker indicating the termination of the current
tokentype descriptor sequence.

10.4.20.2	 Decoding process

The input to this process is the block payload (as specified in subclause 7.5.1.3.3) for descriptor_ID equal
to 11 or descriptor_ID equal to 15, which corresponds to the msar and rname descriptors respectively.
The encoded_tokentype() structure of this block payload internally contains a list of compressed
representation of tokentype descriptor sequences.

The output of this process is the list of decompressed representation of these tokentype descriptor
sequences, which serve as input to the assembly process (specified in subclause 10.4.20.5) to reconstruct
the msar descriptors or read identifiers respectively.

10.4.20.3	 Syntax and semantics

The syntax of encoded_tokentype() is specified in Table 75.

Table 75 — Syntax of encoded_tokentype()

Syntax Type
encoded_tokentype() {

 num_output_descriptors u(32)
 num_tokentype_sequences u(16)
 for(i = 0; i < num_tokentype_sequences; i++) {

 encoded_tokentype_sequence(i)

 }

}

num_output_descriptors specifies the number of descriptors (msar or read identifiers) encoded in the
current block payload.

num_tokentype_sequences specifies the number of tokentype descriptor sequences in the current
block payload.

encoded_tokentype_sequence(i) specifies the data structure containing the byte-aligned compressed
representation of the ith tokentype descriptor sequence. Its syntax is specified in Table 76.

﻿

Table 74 (continued)

© ISO/IEC 2020 – All rights reserved� 77

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 76 — Syntax of encoded_tokentype_sequence()

Syntax Type
encoded_tokentype_sequence(i) {

 type_ID u(4)
 method_ID u(4)
 if(method_ID == 0) {

 ref_type_ID u(16)
 COP(i)

 }

 else {

 num_output_symbols u7(v)
 decode_tokentype_sequence(i, method_ID,

 num_output_symbols)

 }

}

type_ID specifies the type of the ith tokentype descriptor sequence. This process internally maintains
a state variable typeNum, which is initialized with -1 for every block payload of the descriptor and is
incremented for every tokentype descriptor sequence with type_ID = 0. The current values of state
variable typeNum and type_ID are then used to generate a “mapped” value of type_ID as specified in
Table 77.

Table 77 — Computation of mappedTypeId

if(type_ID == 0)

 typeNum++

mappedTypeId = (typeNum<<4) | (type_ID & 0xf)

Every decoded tokentype descriptor for which ref_type_ID is equal to a previously calculated
mappedTypeId shall be identical to the previously decoded tokentype descriptor.

method_ID specifies the compression method (among those listed in Table 78) used for the ith
tokentype descriptor sequence.

Table 78 — Description of compression methods for the tokentype descriptor sequence

method_ID Description
0 COP The current tokentype descriptor sequence is an exact duplicate

of a previously decoded tokentype descriptor sequence for which
mappedTypeId is equal to the current ref_type_ID as specified in
subclause 10.4.20.4.2.

1 CAT The null coding, ideal for small data. Its syntax is specified in
subclause 10.4.20.4.3.

2 RLE Run length coding, ideal for long list of repeated symbols. Its syntax is
specified in subclause 10.4.20.4.4.

3 CABAC_METHOD_0 The CABAC method 0 as specified in subclause 10.4.20.4.5. The signaling
of its configuration parameters are specified in subclause 12.3.5.

﻿

78� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

method_ID Description
4 CABAC_METHOD_1 The CABAC method 0 as specified in subclause 10.4.20.4.5. The signaling

of its configuration parameters are specified in
subclause 12.3.5.

5 X4 A recursive decorrelation method to split a tokentype_sequence into
four equisized interleaved subsequences (whenever size is divisible
by 4), each of them being coded with one of the above methods except
method_ID 0x0. Its syntax is specified in subclause 10.4.20.4.7.

0x6 .. 0xf reserved

ref_type_ID is the mappedTypeId of a previously decoded tokentype descriptor sequence of which
payload of current tokentype descriptor sequence is an exact duplicate.

num_output_symbols signals the number of symbols to be reconstructed from the compressed
payload of the ith tokentype descriptor sequence.

decode_tokentype_sequence(i, method_ID, numOutputSymbols) specifies the syntax for decoding the
ith tokentype descriptor sequence (of size numOutputSymbols) using the decoding method indicated
by method_ID. Its syntax is specified in Table 79.

Table 79 — Syntax of decode_tokentype_sequence()

Syntax
decode_tokentype_sequence(i, methodID, numOutputSymbols) {

 if(methodID == 1)

 CAT(i, numOutputSymbols)

 else if(methodID == 2)

 RLE(i, numOutputSymbols)

 else if(methodID == 3)

 CABAC_METHOD_0(i, numOutputSymbols)

 else if(methodID == 4)

 CABAC_ METHOD_1(i, numOutputSymbols)

 else if(methodID == 5)

 X4(i, numOutputSymbols)

 else

 /* reserved for future use */

}

10.4.20.4	 Decoding process for compressed tokens

10.4.20.4.1	 General

The input to this process is the data structure encoded_tokentype_sequence() specifying the byte-
aligned compressed representation of the ith tokentype descriptor sequence, which is decoded with
one of the compression methods listed in Table 78 and specified in this subclause.

The output of this process is the decompressed representation of the ith tokentype descriptor sequence.

10.4.20.4.2	 COP

The input to this process is ref_type_ID, which shall be equal to a previously computed variable
mappedTypeId of a previously decoded tokentype descriptor sequence as specified in Table 77.

The output of this process is a tokentype descriptor sequence, obtained by copying the already decoded
reference tokentype descriptor sequence uniquely identified by ref_type_ID.

﻿

Table 78 (continued)

© ISO/IEC 2020 – All rights reserved� 79

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.4.20.4.3	 CAT

This subclause specifies the decoding process for the method CAT (see Table 80). The output of this
process is a reconstructed tokentype descriptor sequence of size numOutputSymbols.

Table 80 — Decoding process for the method CAT

Decoding process Type
CAT(i, numOutputSymbols) {

 for(j=0; j<numOutputSymbols; j++) {

 decoded_tokens[i][j] u(8)
 }

}

decoded_tokens[i][j] specifies the jth token in the ith decompressed tokentype descriptor sequence.

10.4.20.4.4	 RLE

This subclause specifies the decoding process for the method RLE (see Table 81). The output of this
process is a reconstructed tokentype descriptor sequence of size numOutputSymbols.

Table 81 — Decoding process for the method RLE

Decoding process Type
RLE(i, numOutputSymbols) {

 for(j=0; j< numOutputSymbols ;) {

 tmp_value u(8)
 if(tmp_value == rle_guard_tokentype) {

 rle_len u7(v)
 if(rle_len == 0)

 decoded_tokens[i][j++] = rle_guard_tokentype

 else {

 tmp_value u(8)
 for(r=0; r< rle_len ; r++) {

 decoded_tokens[i][j++] = tmp_value

 }

 }

 } else

 decoded_tokens[i][j++] = tmp_value

 }

}

rle_guard_tokentype specifies the guard value signalled in decoder configuration for sequences of
tokentype descriptors (see 12.3.5).

decoded_tokens[i][j] specifies the jth token in the ith decompressed tokentype descriptor sequence.

10.4.20.4.5	 CABAC_METHOD_0

This subclause specifies the decoding process for the method CABAC_METHOD_0 used to decompress a
tokentype descriptor sequence (see Table 82). The output of this process is a reconstructed tokentype
descriptor sequence.

﻿

80� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 82 — Decoding process for the method CABAC_METHOD_0

Decoding process Type
CABAC_METHOD_0(i, numOutputSymbols) {

 decoded_symbols[descriptor_ID][0] = decode_descriptor_
subsequence(descriptor_ID, 0, numOutputSymbols, remainingPayloadSize)

As specified in
subclause 12.6.2.2.

 decoded_token[i][] = decoded_symbols[descriptor_ID][0][]

}

decode_descriptor_subsequence(descriptor_ID, 0, numOutputSymbols, remainingPayloadSize) specifies
the decoding process for the 0th descriptor subsequence (of size numOutputSymbols) of the descriptor
identified by descriptor_ID. For the CABAC_METHOD_0, the descriptor_ID is equal to 11 or 15.

decoded_symbols[descriptor_ID][0][] specifies the list of symbols decoded by decode_descriptor_
subsequence(descriptor_ID, 0, numOutputSymbols).

remainingPayloadSize is the number of bytes remaining in the current block payload.

decoded_tokens[i] specifies the list of tokens in the ith decompressed tokentype descriptor sequence.

10.4.20.4.6	 CABAC_METHOD_1

This subclause specifies the decoding process for the method CABAC_METHOD_1 (see Table 83). The
output of this process is a reconstructed tokentype descriptor sequence of size numOutputSymbols.

Table 83 — Decoding process for the method CABAC_METHOD_1

Decoding process Type
CABAC_METHOD_1(i, numOutputSymbols) {

 decoded_symbols[descriptor_ID][1] = decode_descriptor_
subsequence(descriptor_ID, 1, numOutputSymbols, remainingPayloadSize)

As specified in
subclause 12.6.2.2.

 decoded_token[i][] = decoded_symbols[descriptor_ID][1][]

}

decode_descriptor_subsequence(descriptor_ID, 1, numOutputSymbols, remainingPayloadSize) specifies
the decoding process for the 1st descriptor subsequence (of size numOutputSymbols) of the descriptor
identified by descriptor_ID. For the CABAC_METHOD_1, the descriptor_ID is equal to 11 or 15.

decoded_symbols[descriptor_ID][1][] specifies the list of symbols decoded by decode_descriptor_
subsequence(descriptor_ID, 1, numOutputSymbols).

remainingPayloadSize is the number of bytes remaining in the current block payload.

decoded_tokens[i][] specifies the list of tokens in the ith decompressed tokentype descriptor sequence.

10.4.20.4.7	 X4

This subclause specifies the decoding process for the method X4, which is be used to decompress a
tokentype descriptor sequence (see Table 84). The output of this process is a reconstructed tokentype
descriptor sequence of size numOutputSymbols.

﻿

© ISO/IEC 2020 – All rights reserved� 81

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 84 — Decoding process for the method X4

Decoding process Type
X4(i, numOutputSymbols) {

 x4_method_IDs u(16)
 for (s=0; s<4; s++) {

 methodID = (x4_method_IDs >>(12 - (s*4))) & 0xf

 decoded_tokens_x4[s][] = decode_tokentype_sequence(s, methodID,

 numOutputSymbols/4)

As specified in
subclause 10.4.20.3.

 }

 /* Multiplexing of interleaved subsequences */

 for(j=0, j< numOutputSymbols ; j += 4) {

 for(s=0, s<4; s++) {

 decoded_tokens[i][j+s] = decoded_tokens_x4[s][j>>2]

 }

 }

}

x4_method_IDs specifies the four compression methods (among those listed in Table 78 except
method_ID = 0) used to decompress the four interleaved subsequences, where the method_ID for the sth
subsequence can be derived as method_ID = (x4_method_IDs >>(12 - (s*4))) & 0xf.

decode_tokentype_sequence(s, method_ID, numOutputSymbols/4) decodes the sth interleaved
subsequence (of size numOutputSymbols/4) as a tokentype descriptor sequence using the decoding
method indicated by method_ID.

decoded_tokens_x4[s][j] specifies the jth byte token in the sth decompressed interleaved subsequence.

decoded_tokens[i][j] specifies the jth byte token in the ith decompressed tokentype descriptor sequence.

10.4.20.5	 Assembly of tokens

The input to this process (see Table 85) is the bi-dimensional array decoded_tokens[][], which is the
decompressed representation of encoded_tokentype() specified in subclause 10.4.20.3, containing a list
of num_tokentype_sequences decompressed tokentype descriptor sequences.

The output of this process is the data structure decodedStrings[] containing a list of either msar
descriptors (when descriptor_ID is equal to 11) or read identifiers (when descriptor_ID is equal to 15)
as strings.

﻿

82� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 85 — Decoding process of tokentype descriptors into strings representing either msar
descriptors or read identifiers

Decoding process
cIdx = 0

refIdx = 0

decodedStrings[] = {“”}

do {

 t = 0

 tokType = get_tok_type(decoded_tokens[t<<4])

 distance = get_tok_int(decoded_tokens[t<<4 | tokType])

 refIdx = cIdx – distance

 if(tokType == 0) /* Token: DUP */

 strcpy(decodedStrings [cIdx], decodedStrings [refIdx])

 else { /* Token: DIFF */

 for (t=1; t< num_tokentype_sequences; t++) {

 tokType = get_tok_type(decoded_tokens[t<<4])

 if(tokType == 10) /* Token: END */

 break

 tokStr = extract_tok_value (decoded_tokens, tokType, t, refIdx)

 strcat(decodedStrings[cIdx], tokStr)

 }

 }

} while(cIdx < num_output_descriptors && strlen(decodedStrings[cIdx++]) > 0)

num_output_descriptors specifies the number of descriptors (msar or read identifiers) encoded in the
current block payload. It is specified in 10.4.20.3.

get_tok_type(decoded_tokens[]) pops and returns one byte from data structure decoded_tokens[].

get_tok_int(decoded_tokens[]) pops four bytes from data structure decoded_tokens[] and decodes
them as a 32-bit integer as specified in subclause 6.2.

strcpy(dst, src) specifies the string copying operation from the source string to the destination string.

strcat(dst, src) specifies the string concatenation operation of source string to the destination string.

strlen(str) returns the length of the input string.

extract_tok_value() pops and returns token value based on its type (as listed in Table 74) and the co-
located tokens in the reference descriptor (msar or read identifier). The syntax of extract_tok_value() is
described in Table 86.

﻿

© ISO/IEC 2020 – All rights reserved� 83

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 86 — Decoding process associated to a call to extract_tok_value()

Decoding process
extract_tok_value(decoded_tokens[][], tokType, t, refIdx) {

 tokIdx = (t << 4) | tokType

 if(tokType == 2) /* Token: STRING */

 tmp_str = get_tok_string(decoded_tokens[tokIdx])

 else if(tokType == 3) /* Token: CHAR */

 tmp_str = get_tok_char(decoded_tokens[tokIdx])

 else if(tokType == 4) /* Token: DIGITS */

 tmp_str = get_tok_digits(decoded_tokens[tokIdx])

 else if(tokType == 5) /* Token: DELTA */

 tmp_str = get_tok_delta(decoded_tokens[tokIdx], refIdx)

 else if(tokType == 6) /* Token: DIGITS0 */

 tmp_str = get_tok_digits0(decoded_tokens[tokIdx])

 else if(tokType == 7) /* Token: DELTA0 */

 tmp_str = get_tok_delta0(decoded_tokens[tokIdx], refIdx)

 else if(tokType == 8) /* Token: MATCH */

 tmp_str = get_tok_match(refIdx)

 return tmp_str

}

get_tok_string(decoded_tokens[]) pops and returns a null terminated string from data structure
decoded_tokens[] as described for token STRING in Table 74.

get_tok_char(decoded_tokens[]) pops and returns one ASCII character from data structure decoded_
tokens[] as described for token CHAR in Table 74.

get_tok_digits(decoded_tokens[]) pops four bytes from data structure decoded_tokens[], decodes
them as a 32-bit integer as specified in subclause 6.2, as described for token DIGITS in Table 74, and
returns a string with the big-endian decimal representation of said integer.

get_tok_delta(decoded_tokens[], refIdx) pops a one byte delta value from data structure encoded_
tokens[] as described for token DELTA in Table 74, sums said delta value and the digit value of the
co-located DIGITS token in the reference descriptor (msar or read identifier) identified by refIdx, and
returns a string with the big-endian decimal representation of the result of said sum.

get_tok_digits0(decoded_tokens[]) pops a one byte length value as DZLEN token and a four bytes value,
decoded as a 32-bit integer as specified in subclause 6.2, as described for token DIGITS0 in Table 74, and
returns a string with the big-endian zero-padded fixed-width decimal representation of said integer.

get_tok_delta0(decoded_tokens[], refIdx) pops a one byte delta value from data structure decoded_
tokens[] as described for token DELTA in Table 74, sums said delta value and the digit value of the
co-located DIGITS0 token in the reference descriptor (msar or read identifier) identified by refIdx, and
returns. a string with the big-endian zero-padded fixed-width decimal representation of the result of
said sum.

get_tok_match(refIdx) returns the token value of the co-located token in the reference descriptor (msar
or read identifier) identified by refIdx as described for token MATCH in Table 74.

﻿

84� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

10.5	 sequence

10.5.1	 General

This subclause specifies how sequences of nucleotides are computed by a conformant decoder. For
class HM, the mapped read is computed as specified in subclause 10.5.2 while the unmapped read as
specified in subclause 10.5.3.

The inputs to this process are the variables numberOfRecordSegments and
numberOfMappedRecordSegments calculated as specified in subclause 10.4.10.

The output of this process is the array splicedSequence[i][] (with 0 ≤ i < numberOfRecordSegments).

10.5.2	 Aligned reads (Classes P, N, M, I, HM)

Additional input to this process are:

—	 the array mappingPos[0][] is computed as specified in subclause 10.2.3;

—	 the arrays numberOfSplicedSeg[], and splicedSegLength[][] computed as specified in
subclause 10.4.9;

—	 the array splicedSegMappingPos[][] computed as specified in subclause 10.4.10;

—	 the array softClipSizes[][] computed as specified in subclause 10.4.7;

—	 the variable classId is computed as specified in subclause 10.2.3;

—	 The variable seqId set equal to sequence_ID as specified in subclause 7.5.1.2;

—	 The arrays ref_sequence[][] and seq_start[] as specified in subclause 7.3.

If crps_flag specified in Table 7 is equal to 1 and cr_alg_ID specified in Table 16 to is equal to 2, 3 or 4,
in the decoding process specified in Table 87, seqId is set equal to 0, ref_sequence[seqId][] is set equal to
refBuf[] specified in subclauses 11.3.4, 11.3.5, 11.3.6, respectively, and seq_start[seqId] is set equal to 0.

The decoding process specified in Table 87 shall be applied:

Table 87 — Decoding process of sequence[] array for aligned reads

Decoding step Description
for(i = 0; i < numberOfMappedRecordSegments; i++) {

 for(j = 0; j < numberOfSplicedSeg[i]; j++) {

 pRef = splicedSegMappingPos[i][j] –

seq_start[seqId]

 mappedLength = splicedSegLength[i][j]

 if(classId == Class_I || classId == Class_HM) {

 if(j == 0) {

 mappedLength -= softClipSizes[i][0]

 }

 if(j == numberOfSplicedSeg[i] – 1) {

 mappedLength -= softClipSizes[i][1]

 }

 }

 splicedSequence[i][j] =

 ref_sequence[seqId][pRef,

 pRef + mappedLength – 1]

﻿

© ISO/IEC 2020 – All rights reserved� 85

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 if(classId == Class_N) {

 processSplSegN(i, j) Specified in subclause 10.2.4.
 } else if(classId == Class_M) {

 processSplSegM(i, j) Specified in subclause 10.2.5.
 } else if(classId == Class_I

 || classId == Class_HM) {

 processSplSegI(i, j) Specified in subclause 10.2.6.
 }

 }

}

10.5.3	 Unmapped reads (Class HM, U)

The decoding process specified in Tables 88 and 89 shall be applied:

Table 88 — Decoding process of sequence[] array for unmapped reads

Decoding step Description
for(i = numberOfAlignedRecordSegments;
 i < numberOfRecordSegments; i++) {

 if(crps_flag == 0){

 decodeUreads(splicedSegLength[i][0]) Specified in subclause 10.4.8.
 splicedSequence[i][0] = decodedUreads decodedUreads as specified in

subclause 10.4.8.
 }else if(crps_flag == 1 && cr_alg_ID == 2){

decode according to the process specified in subclause 11.3.4

 }else if(crps_flag == 1 && cr_alg_ID == 4){

decode according to the process specified in subclause 11.3.6

 }

}

Table 89 — Sequence decoding processes corresponding to crps_flag and cr_alg_ID

crps_flag cr_alg_ID sequence decoded as
specified in subclause

0 — 10.4.8
1 2 11.3.4
1 4 11.3.6

10.6	 e-cigar

10.6.1	 Syntax

This subclause specifies an extended CIGAR (E-CIGAR) syntax for strings to be computed from
sequences and related mismatches, indels, clipped bases and information on multiple alignments and
spliced reads.

Alignments are described as a sequence of consecutive edit operations between the reference sequence
and a sequence mapped onto the reference sequence.

﻿

Table 87 (continued)

86� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Edit operations might involve skipping or replacing part of the sequence of either reference or read;
due to this reason one has to keep track of a pointer R to the current position within the reference,
and a pointer r to the current position within the read. They are both set to 0 at the beginning of the
alignment process, the 0 of the reference being the position of the match.

Edit operations specified in this document are listed in Table 90.

Table 90 — Syntax of the ISO/IEC 23092 series E-CIGAR string

Operation Semantics E-CIGAR
representation

Equivalent SAM CIGAR
representation

Increment both pointer-to-
reference R and pointer-to-read
r by n positions (match).

n matching bases n= nM in older versions
(not equivalent),
= in recent versions

Replace nucleotide in the read
with base b from the reference,
increment pointer-to-reference R
and pointer-to-read r by 1.

substitution of character b
(b is present in the read and
not in the reference) where
b is one of the symbols of
the alphabets defined in
subclause 9.2.

b M in older versions,
X in recent versions
(not equivalent)

Increment pointer-to-read r by n
positions (insert from the read).

n bases are inserted in the
read (not present in the
reference)

n+ nI

Increment pointer-to-reference R
by n positions (deletion of sequence
S in the read).

n bases are deleted in the
read (but present in the
reference).

n- nD

Increment pointer-to- read r by n
positions (insertion in the read).
Can only occur at beginning or end
of read.

n soft clips (n) nS

Hard trim. Can only occur at
beginning or end of read.

n hard clips [n] nH

Increment pointer-to-reference R
by n positions, splice consensus
observed (splice in the read).

An undirected splice of n
bases.

n* nN

Increment pointer-to-reference R
by n positions, splice consensus
observed on the forward strand
(forward splice in the read).

A forward splice of n bases. n/ Not existing.

Increment pointer-to-reference R
by n positions, splice consensus
observed on the reverse strand
(reverse splice in the read).

A reverse splice of n bases. n% Not existing.

The general framework is illustrated in Table 91 shows an example of alignment with soft clips,
deletions and substitutions.

﻿

© ISO/IEC 2020 – All rights reserved� 87

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 91 — Example of e-cigar string

0000000000111111111122222222223333333 Position in the reference

0123456789012345678901234567890123456

ACAGATATATCAGAGACCATACAGGAACATAACAGAC Reference

AAAGATCTAT+++++++++++CAGGTACATA Read

0000000000 1111111111 Position in the read

0123456789 0123456789

E-CIGAR=(2)4=C3=11+4=T5=

10.6.2	 Decoding process for the first alignment

10.6.2.1	 General

The inputs to this process are:

—	 readLength[] array computed as specified in subclause 10.2.3;

—	 the classId variable specified in subclause 10.2.3;

—	 the numberOfAlignedRecordSegments variable specified in subclause 10.4.10.

For classId equal to Class_N, Class_M, Class_I, and Class_HM:

—	 the mismatchOffsets[][] array computed as specified in subclause 10.4.5;

—	 the numMismatches[] array computed as specified in subclause 10.4.5.

If cr_alg_ID specified in subclause 11.3 is set to 1, for classId equal to Class_M mismatchOffsets[][] and
numMismatches[] are pre-processed as per subclause 10.6.4 prior to being decoded as specified in this
subclause.

For classId equal to Class_M, Class_I, and Class_HM:

—	 the mismatches[][] arrays computed as specified in subclause 10.4.6.

If cr_alg_ID specified in subclause 11.3 is set to 1, for classId equal to Class_M mismatches[][] is pre-
processed as per subclause 10.6.4 prior to being decoded as specified in this subclause.

For classId equal to Class_I and Class_HM:

—	 the mismatchTypes[] array computed as per subclause 10.4.6;

—	 the softClips[][][] arrays, the softClipSizes[][] array, and the hardClips[][] array computed as
specified in subclause 10.4.7.

The output of this process is the array of strings ecigarString[], and the array of the corresponding
string lengths ecigarLength[].

In this subclause, the decoding process uses strings, where strings are sequences of a given length
of universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in
ISO/IEC 10646 of a given length.

In this subclause the following strings operators are defined:

﻿

88� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

arraytostr(a, l) returns a string of length l created by copying the first l characters from array a,
where a is a one‑dimensional array of characters

strtoc(s) returns all characters in string s in a sequence compliant with c(n) data type
specified in subclause 6.3, where n corresponds to the length of string s

‘…’ returns a string composed by the characters between the quotes

inttostr(i) returns a string containing the base‑10 representation of the integer

strcat(s1, …, sN) returns the concatenation of the strings from s1 to sN. If any of the input strings s1
through sN is a single character, it is considered a string of length 1

strlen(s) returns the length of string s

10.6.2.2	 Decoding process without spliced reads

When the spliced_reads_flag syntax element specified in subclause 7.4.2 is equal to 0, the decoding
process of e-cigar strings is specified in Table 92.

Table 92 — Decoding process for the e-cigar strings of a genomic record without spliced reads

Decoding step Description
for(s = 0; s < numberOfAlignedRecordSegments; s++) {
 if(classId == Class_P){ Class P.
 mmOffsets = {} Empty array.
 mms = {} Empty array.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 0, mmOffsets, mms, mmTypes)

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as specified
in Table 93.

 }
 else if(classId == Class_N){ Class N.
 mms = {} Empty array.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 numMismatches[s], mismatchOffsets[s], mms, mmTypes)

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as specified
in Table 93.

 }
 else if(classId == Class_M){ Class M.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 numMismatches[s], mismatchOffsets[s],

 mismatches[s], mmTypes)

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as specified
in Table 93.

﻿

© ISO/IEC 2020 – All rights reserved� 89

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 }
 else if(classId == Class_I || classId == Class_HM){ Classes I or HM.
 leftSoftClips =

 arraytostr(softClips[s][0][],

 softClipSizes[s][0])

 rightSoftClips =

 arraytostr(softClips[s][1][],

 softClipSizes[s][1])

 leftHardClips = hardClips[s][0]
 rightHardClips = hardClips[s][1]
 mappedLength = readLength[s]

 – strlen(leftSoftClips) – strlen(rightSoftClips)

 decodeECigarMismatches(classId, mappedLength,

 numMismatches[s], mismatchOffsets[s],

 mismatches[s], mismatchTypes[s])

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as specified
in Table 93.

 if(strlen(leftSoftClips) != 0) {
 ecigar = strcat(

 ‘(‘, inttostr(strlen(leftSoftClips)), ’)’,

 ecigar)

Soft clips are present
before the leftmost
mapped base.

 }
 else if(leftHardClips != 0) {
 ecigar = strcat(

 ‘[‘, inttostr(leftHardClips), ’]’,

 ecigar)

Hard clips are present
before the leftmost
mapped base.

 }
 if(strlen(rightSoftClips) != 0) {
 ecigar = strcat(ecigar,

 ‘(‘, inttostr(strlen(rightSoftClips)), ’)’)

Soft clips are present
after the rightmost
mapped base.

 }
 else if(rightHardClips != 0) {
 ecigar = strcat(ecigar,

 ‘[‘, inttostr(rightHardClips), ’]’)

Hard clips are present
after the rightmost
mapped base.

 }
 }
 ecigarString[s] = strtoc(ecigar)
 ecigarLength[s] = strlen(ecigar)
}

﻿

Table 92 (continued)

90� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 93 — Decoding process for the mismatches within one e-cigar string

Decoding step Description
decodeECigarMismatches(classId, len,

 mmNumber, mmOffsets, mms, mmTypes) {

 ecigar = “” Empty string.
 if(classId == Class_P){ Class P.
 ecigar = strcat(inttostr(len), ‘=’)
 }
 else if(classId == Class_N){ Class N.
 previousOffset =0
 i = 0
 while(i < mmNumber){
 delta = mmOffsets[i] – previousOffset
 previousOffset = mmOffsets[i] + 1
 if(delta == 0){
 ecigar = strcat(ecigar, ‘N’)
 } else {
 ecigar = strcat(ecigar, inttostr(delta), ‘=’)
 ecigar = strcat(ecigar, ‘N’)
 }
 i++
 }
 delta = len – previousOffset
 if(delta > 0) {
 ecigar = strcat(ecigar, inttostr(delta), ‘=’)
 }
 }
 else if(classId == Class_M){ Class M.
 previousOffset = 0
 i = 0
 while(i < mmNumber){
 delta = mmOffsets[i] – previousOffset
 previousOffset = mmOffsets[i] + 1
 if(delta == 0){
 ecigar = strcat(ecigar, mms[i]))
 } else {
 ecigar = strcat(ecigar, inttostr(delta), ‘=’)
 ecigar = strcat(ecigar, mms[i])
 }
 i++
 }
 delta = len – previousOffset
 if(delta > 0) {
 ecigar = strcat(ecigar, inttostr(delta), ‘=’)
 }
 }

﻿

© ISO/IEC 2020 – All rights reserved� 91

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 else if(classId == Class_I || classId == Class_HM)){ Classes I or HM.
 previousOffset = 0
 i = 0
 while(i < mmNumber) {
 count = 0
 delta = mmOffsets[i] – previousOffset
 previousOffset = mmOffsets[i]
 if(delta > 0) {
 ecigar = strcat(ecigar, inttostr(delta), ‘=’)
 delta = 0
 }
 if(mmTypes[i] == 0) { Substitution.
 ecigar = strcat(ecigar, mms[i]))
 previousOffset = mmOffsets[i] + 1
 i++
 }
 else if(mmTypes[i] == 1) { Insertion.
 while(i < mmNumber

 && mmTypes[i] == 1

 && mmOffsets[i] – previousOffset

 == 0) {

 previousOffset = mmOffsets[i] + 1
 count++, i++
 }
 ecigar = strcat(ecigar, inttostr(count))
 ecigar = strcat(ecigar, ‘+’)
 }
 else if(mmTypes[i] == 2) { Deletion.
 while(i < mmNumber

 && mmTypes[i] == 2

 && mmOffsets[i] – previousOffset

 == 0) {

 previousOffset = mmOffsets[i]
 count++, i++
 }
 ecigar = strcat(ecigar, inttostr(count))
 ecigar = strcat(ecigar, ‘-’)
 }
 }

﻿

Table 93 (continued)

92� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 delta = len – previousOffset
 if(delta > 0) {
 ecigar = strcat(ecigar, tostr(delta), ‘=’)
 }
 }
 decodedEcigar = ecigar
}

10.6.2.3	 Decoding process with spliced reads

When the spliced_reads_flag syntax element specified in subclause 7.4.2 is equal to 1, the e-cigar
strings are decoded as follows.

Additional input to this process are:

For classId equal to Class_N, Class_M, Class_I, and Class_HM:

—	 the numberOfSplicedSeg[], splicedSegMappedLength[][] and splicedSegLength[][] arrays computed
as specified in subclause 10.4.9;

—	 the splicedSegMismatchOffsets[][][], splicedSegMismatchNumber[][] and splicedSegMismatchIdx[]
[] arrays computed as specified in subclause 10.4.5;

—	 the array splicedSegMappingPos[][] computed as specified in subclause 10.4.10;

—	 the array reverseComp[][][] computed as specified in subclause 10.4.3

The decoding process is specified in Table 94.

Table 94 — Decoding process for the e-cigar strings of a genomic record with spliced reads.

Decoding step Description
for(s = 0; s < numberOfAlignedRecordSegments; s++) {

 if(classId == Class_P){ Class P.
 mmOffsets = {} Empty array.
 mms = {} Empty array.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 0, mmOffsets, mms, mmTypes)

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as
specified in
Table 93.

 }

 else if(classId == Class_N){ Class N.
 mms = {} Empty array.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 numMismatches[s], mismatchOffsets[s], mms, mmTypes)

As specified in
Table 93.

﻿

Table 93 (continued)

© ISO/IEC 2020 – All rights reserved� 93

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 ecigar = decodedEcigar decodedEcigar

computed as
specified in
Table 93.

 }

 else if(classId == Class_M){ Class M.
 mmTypes = {} Empty array.
 decodeECigarMismatches(classId, readLength[s],

 numMismatches[s], mismatchOffsets[s],
 mismatches[s], mmTypes)

As specified in
Table 93.

 ecigar = decodedEcigar decodedEcigar
computed as
specified in
Table 93.

 }

 else if(classId == Class_I || classId == Class_HM){ Classes I or HM.
 leftSoftClips =
 arraytostr(softClips[s][0][],
 softClipSizes[s][0])

 rightSoftClips =
 arraytostr(softClips[s][1][],
 softClipSizes[s][1])

 leftHardClips = hardClips[s][0]

 rightHardClips = hardClips[s][1]

 ecigar = “” Empty string.
 for(i = 0; i < numberOfSplicedSeg[s]; i++) {

 length = splicedSegLength[s][i]

 if(i == 0) {

 length -= softClipSizes[s][0]

 }

 if(i == (numberOfSplicedSeg[s] – 1)) {

 length -= softClipSizes[s][1]

 }

 if(i > 0) {

 spliceOffset = splicedSegMappingPos[s][i]

 - splicedSegMappingPos[s][i - 1]

 - splicedSegMappedLength[s][i – 1]

 ecigar = strcat(ecigar, inttostr(spliceOffset))

 if(reverseComp[i][s][0] == 0) {

 ecigar = strcat(ecigar, “/”) Forward splice.
 } else if(reverseComp[i][s][0] == 1)

 ecigar = strcat(ecigar, “%”) Reverse splice.
 } else if(reverseComp[i][s][0] == 2)

 ecigar = strcat(ecigar, “*”) Undirected splice.
 } else {

 /* reserved */

 }

 }

﻿

Table 94 (continued)

94� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Decoding step Description
 mmStartIdx = splicedSegMismatchIdx[s][i]

 mmEndIdx = mmStartIdx + splicedSegMismatchNumber[s][i] – 1

 decodeECigarMismatches(classId, length,

 splicedSegMismatchNumber[s][i],
 splicedSegMismatchOffsets[s][i],
 mismatches[s][mmStartIdx, mmEndIdx],
 mismatchTypes[s][mmStartIdx, mmEndIdx])

As specified in
Table 93.

 ecigar = strcat(ecigar, decodedEcigar) decodedEcigar
computed as
specified in
Table 93.

 }

 if(strlen(leftSoftClips) != 0) {

 ecigar = strcat(
 ‘(‘, inttostr(strlen(leftSoftClips)), ’)’,
 ecigar)

Soft clips are
present before
the leftmost
mapped base.

 }

 else if(leftHardClips != 0) {

 ecigar = strcat(
 ‘[‘, inttostr(leftHardClips), ’]’,

 ecigar)

Hard clips are
present before
the leftmost
mapped base.

 }

 if(strlen(rightSoftClips) != 0) {

 ecigar = strcat(ecigar,
 ‘(‘, inttostr(strlen(rightSoftClips)), ’)’)

Soft clips are
present after
the rightmost
mapped base.

 }

 else if(rightHardClips != 0) {

 ecigar = strcat(ecigar,
 ‘[‘, inttostr(rightHardClips), ’]’)

Hard clips are
present after
the rightmost
mapped base.

 }

 }

 ecigarString[s] = strtoc(ecigar)

 ecigarLength[s] = strlen(ecigar)

}

10.6.3	 Decoding process for other alignments

For all alignments other than the first one, the e-cigar strings are decoded as specified in
subclause 10.4.13.

10.6.4	 Reference transformation

When cr_alg_ID specified in subclause 11.3 is set to 1, for records belonging to class Class_M, the input
arrays mismatchOffsets[][], mismatches[][], and numMismatches[] specified in subclauses 10.4.5 and
10.4.6 shall be pre-processed according to the process described in Table 95 prior to being decoded as
specified in subclause 10.6.2.

﻿

Table 94 (continued)

© ISO/IEC 2020 – All rights reserved� 95

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Additional input to the process is:

—	 the array mappingPos[][] computed as specified in subclauses 10.4.2 and 10.4.10;

—	 the readLen[] array computed as specified in subclause 10.4.9;

—	 the array refSequence equal to ref_sequence[i] specified in subclause 7.4.2 where i is equal to ref_
sequence_ID as specified in subclause 7.5.1;

—	 the array refTransfOrigSymbols computed in subclause 11.3.3;

—	 the variables numberOfRecordSegments computed as specified in subclause 10.4.10.

The output of the process are the modified arrays mismatchOffsets[][], mismatches[][], and
numMismatches[].

Table 95 — Pre-processing process when cr_alg_ID is equal to 1

Processing step Description
for(s = 0; s < numberOfRecordSegments; s++) {
 mPos = mappingPos[0][s] – seq_start
 newMismatchOffsets[] = {}

 newMismatches[] = {}

Empty arrays.

 i = 0, j = 0, k = 0
 while(i < Size(refTransfPos) &&

 refTransfPos[i] < mPos) i++

Search for the transforma-
tions in the leftmost read
range.

 while(i < Size(refTransfPos) &&

 refTransfPos[i] < mPos + readLength[s]){

 if(j ≥ numMismatches[s] ||

 refTransfPos[i] – mPos <

 mismatchOffsets[s][j]){

One ref transformation found
before the next mismatch
position.

 newMismatchOffsets[k] =

 refTransfPos[i] - mPos

 newMismatches[k] = refSequence[refTransfPos[i]] Read the base in the ref
sequence.

 i++, k++
 }
 else if(refTransfPos[i] – mPos ==

 mismatchOffsets[s][j]){

One substitution in the read
found at the same place as the
reference transformation.

 if(mismatches[s][j] !=

 refTransfOrigSymbols[i]){

Store it only if different from
the original reference.

 newMismatchOffsets[k] = 	 mismatchOffsets[s][j]

 newMismatches[k] = mismatches[s][j]
 k++
 }
 i++, j++
 } else {
 while(j < numMismatches[s] &&

 refTransfPos[i] – mPos >

 mismatchOffsets[s][j]){

Copy all mismatches until
the next reference
transformation.

﻿

96� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Processing step Description
 newMismatchOffsets[k] =

 mismatchOffsets[s][j]

 newMismatches[k] = mismatches[s][j]
 k++, j++
 }
 }
 }
 while(j < numMismatches[s]){ Copy the remaining

mismatches if any.
 newMismatchOffsets[k] = mismatchOffsets[s][j]
 newMismatches[k] = mismatches[s][j]
 k++, j++
 }
 mismatchOffsets[s] = newMismatchOffsets
 numMismatches[s] = k
 mismatches[s] = newMismatches
}

11	 Representation of reference sequences

The reference sequence is usually part of an available reference genome (split into chromosomes and
other sequences), but can in principle have any origin. With respect to a bitstream compliant with
ISO/IEC 23092-1, the following types of reference sequences are supported:

—	 External Reference: the reference sequence is coded as an independent resource either locally or
remotely and shall be retrieved to enable the decoding of the bitstream.

—	 Embedded Reference: the reference sequence is coded within the bitstream as dataset.

—	 Computed Reference: the reference sequence can be computed using the information contained in
the sequencing reads coded in the bitstream.

In the scope of this document embedded and computed references are referred to as internal references.

11.1	 External reference

The reference used for compression is not included in the bitstream. A mechanism for unique
identification is specified in ISO/IEC 23092-1.

11.2	 Embedded reference

The reference is stored in the bitstream as dataset as specified in ISO/IEC 23092-1.

11.3	 Computed reference

11.3.1	 General

A computed reference is used:

—	 to improve compression efficiency by modifying an available external reference before decoding
sequence data, or

﻿

Table 95 (continued)

© ISO/IEC 2020 – All rights reserved� 97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 to encode aligned sequencing reads without using the reference sequences used for alignment, or

—	 to encode raw (unmapped) reads.

In case of aligned reads it can be beneficial to support encoding and decoding without requiring access
to the reference sequences used for alignment.

This approach uses the sequencing reads to be encoded to build a local consensus assembly to perform
reference-based encoding. In this case all reads shall be encoded using class U descriptors, but the
classification in P, N, M, I and HM classes shall be preserved.

When sequencing reads are encoded using a computed reference, the rtype descriptor currently
specified in subclause 10.4.11 shall be used as specified in Table 96 to:

1.	 signal the set of descriptors needed to decode the current record,

2.	 signal the type of reference (embedded reference or computed reference) needed to decode the
current record.

11.3.2	 Supported Algorithms

Table 96 specifies the supported reference computation algorithms. cr_alg_ID is specified in
subclause 11.3.

Table 96 — Supported reference computation algorithms

cr_alg_ID Name Description
0 reserved
1 RefTransform To improve compression efficiency, an available external

reference is modified before decoding sequence data. This
algorithm applies only to aligned data as described in
subclause 11.3.3.

2 PushIn The reference is created by simple concatenation of already
decoded reads, with padding. This is described in
subclause 11.3.4.

3 Local assembly The reference is created by performing a local assembly. This
algorithm applies only to aligned data as described in
subclause 11.3.5.

4 Global assembly The reference used to perform reference based decoding is
encoded in each AU as sequence of ureads descriptors. This is
described in subclause 11.3.6.

5 … 255 reserved

11.3.3	 Reference transformation

The input to this process is the ref_sequence[seqId] array specified in subclause 7.4.2, with seqId equal
to ref_sequence_ID as specified in subclause 7.5.1, and the arrays refTransfPos[],and refTransSubs[]
computed as specified in subclauses 10.4.18 and 10.4.19 respectively.

The output of this process is the modified ref_sequence[seqId] array computed by applying the
decoding process shown in Table 97 and a refTransfOrigSymbols[] array containing the substituted
symbols in the original reference.

﻿

98� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 97 — Reference transformation process

Transformation step Description
len = Size(refTransfPos[])

refTransfOrigSymbols[] = {} Empty array.
for (i = 0; i < len; i++){

 refTransfOrigSymbols[i] =

 ref_sequence[seqId][refTransfPos[i]]

Save the symbol in the reference before
transformation.

 ref_sequence[seqId][refTransfPos[i]] =

 refTransSubs[i]

Substitution.

}

When cr_alg_ID is equal to 1 the decoder shall first apply the reference transformation described in
Table 97 to the raw reference structure received as input and then use it for reference-based decoding
as specified in subclause 10.2.

11.3.4	 PushIn

11.3.4.1	 General

The reference is created by pushing into a reference buffer refBuf[] of size crBufSize, i.e. concatenating,
already decoded reads. In this subclause reads are specified as the sequences computed as output of
the process described in Table 66 for cr_alg_ID equal to 2. The reference is built from crBufNumReads
decoded reads, each composed by a sequence of symbols from one of the alphabets as specified in
subclause 9.2.

A decoded read is pushed in front of the computed reference buffer only if it is different from the
previous one. The computed reference obtained in this way is padded at its beginning and its end.

11.3.4.2	 Process for the construction of the reference

The inputs to this process are:

—	 the buffer refBuf[] of size crBufSize specified in subclause 11.3.4.3 which contains crBufNumReads;

—	 cr_buf_max_size as specified in subclause 7.4.2.4;

—	 cr_pad_size as specified in subclause 7.4.2.4;

—	 signature_flag, num_signatures, signature_length[] and signature[] fields in the access unit header
as specified in subclause 7.5.1.2;

11.3.4.3	 Initialization of the reference

At the start of the decoding process of an AU set crBufSize equal to 2*cr_pad_size and crBufNumReads
equal to 0.

If signature_flag is equal to 1 and num_signatures is bigger than 0:

1.	 insert the contents of signature[0] to the refBuf[] (at position cr_pad_size), increment
crBufNumReads by 1 and increment crBufSize by signature_length[0];

2.	 for each remaining signature, if (crBufSize + 2* cr_pad_size + the size of the previous signature) is
greater than cr_buf_max_size, oldest signatures are pushed out of the buffer refBuf[] and crBufSize
decremented of the length in nucleotides of each pushed out signature until (crBufSize + 2* cr_
pad_size + the size of the current signature) is smaller than or equal to cr_buf_max_size. Push the

﻿

© ISO/IEC 2020 – All rights reserved� 99

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

current signature in front of the previous signature and increment crBufSize with the length in
nucleotides of the current signature.

11.3.4.4	 Update of the reference

The output of this process is the updated buffer refBuf[] and the updated variable crBufSize.

This process is skipped when the last decoded read perfectly matches the previously pushed read into
the refBuf[] in the sense that all the following conditions are all satisfied:

—	 rtype value of the last decoded read is smaller or equal to 2

—	 crBufNumReads is greater than 0

—	 lengths of both reads are equal

This process consists of the following steps:

1.	 If (crBufSize + the size of the last decoded read) is greater than cr_buf_max_size, oldest reads are
pulled out of the buffer refBuf[] and crBufSize decremented of the length in nucleotides of each
pushed out read until (crBufSize + the size of the last decoded read) is smaller than or equal to
cr_buf_max_size. Decrement crBufNumReads by the number of reads pushed out of the refBuf[].

2.	 If reads are present in the buffer, the whole buffer, except the leftmost cr_pad_size positions, is
pushed back until the leftmost base of the oldest read is at cr_pad_size position.

3.	 The last decoded read, decoded as described in Table 66 for cr_alg_ID equal to 2, is pushed in the
refBuf[] after the last decoded read already in the refBuf[], crBufNumReads is incremented by 1
and crBufSize is incremented of the length in nucleotides of the pushed in read.

4.	 cr_pad_size rightmost remaining positions of refBuf[] are padded with the rightmost base of the
newly inserted read.

5.	 cr_pad_size leftmost positions of refBuf[] are padded with the leftmost base of the oldest read
remaining in refBuf[].

The leftmost position in the buffer shall have position 0; by consequence the leftmost base of the oldest
read shall have position cr_pad_size.

The output of the computation process described above is a reference sequence contained in the
array refBuf[] which shall be used to decode the next genomic records contained in the current AU
corresponding to values of rtype not equal to 5 as specified in subclause 10.4.14.

The refBuf[] shall be deleted at the end of the decoding process of each AU.

If the reverseComp[][][] flag (as specified in subclause 10.4.3) corresponding o the last decoded read
is 1, output the read as reverse-complemented as specified in subclause 9.4 after that this has been
pushed to the computed reference.

11.3.5	 Local assembly

11.3.5.1	 General

The reference is created by computing a local sliding consensus reference sequence. This can be seen as
equivalent to performing a local assembly. A local assembly is created by collecting all bases mapping to
a unique genomic position and by deriving the consensus base at that position through a majority vote.
In this subclause reads are specified as the sequences computed as output of the process described in
subclause 10.5.2 This algorithm applies only to aligned data as described in subclause 11.3.5.2.

An array crBuf[][] is built during the decoding process. A number of already decoded reads may be
needed and are stored in the array crBuf[][]. The number of decoded reads stored in the array crBuf[]

﻿

100� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

[] is stored in the variable crBufNumReads. The current size in bytes of the array crBuf[][] is stored in
the variable crBufSize.

If the optional rftp and rftt descriptors are present, an additional output of this decoding process
is a raw_referenceoutput structure (specified in subclause 7.3.2) containing the computed Local
Assembly reference specific to current Access Unit, as specified in point 6 of subclause 11.3.5.3 and in
subclause 11.3.5.4.

11.3.5.2	 Process for adding a decoded aligned read to the list crBuf

The inputs to this process is an array crBuf[][] which contains crBufNumReads reads of size in bytes
equal to crBufSize.The output of this process is the updated array crBuf[][] and the updated variables
crBufNumReads and crBufSize.

This process consists of the following steps:

1.	 If the variable crBufSize plus the length in bases of the already decoded aligned read is greater
than cr_buf_max_size, the oldest reads are removed from the array crBuf[][] until crBufSize plus
the size of the already decoded aligned read is smaller than or equal to cr_buf_max_size.

2.	 The last decoded read is added to the array crBuf[][] as newest read.

11.3.5.3	 Process for the construction of the reference

The input to this process is an array crBuf[][] containing at least one aligned read and the position on
the reference sequence of each nucleotide.

The output of this process is an array refBuf[] containing a sequence of consensus symbols.

For each position covered by aligned reads in the array crBuf[][], the consensus symbol is derived as
follows:

1.	 Collect all bases mapping to the current position.

2.	 Count the occurrences of each symbol.

3.	 If two symbols si, sj (with i < j indexes of one of the alphabets specified in subclause 9.2) have the
same maximum number of occurrences, then select si as consensus symbol.

4.	 Otherwise, select the symbol with the maximum number of occurrences as consensus symbol.

5.	 Append the consensus symbol to the array refBuf[].

6.	 If the optional rftp and rftt descriptors are present, copyrefBuf[] into ref_sequenceoutput[seqId][]
in a raw_referenceoutput structure (specified in subclause 7.3.2) according to the mapping position.

The result of the decoding process described above is a reference sequence contained in the array
refBuf[] which shall be used to decode the genomic records contained in the current AU corresponding
to values of rtype not equal to 0 or 5 as specified in subclause 10.4.14.

11.3.5.4	 Decoding process for rftp and rftt

When cr_alg_ID is equal to 3, if the optional descriptors rftp and rftt are present in the bitstream, they
shall be used to reconstruct the original reference used for sequence alignment for the records in current
Access Unit. The decoder shall apply a transformation to the reference sequence ref_sequenceoutput
[seqId][] constructed according to the process described in subclause 11.3.5.3 by replacing the symbols
present in the reference sequence ref_sequenceoutput[seqId][] at the absolute position represented by
each rftpi descriptor with the symbols conveyed by each corresponding rftti descriptor.

﻿

© ISO/IEC 2020 – All rights reserved� 101

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

11.3.6	 Global assembly

When cr_alg_ID is equal to 4, the the reference sequence and the genomic records are decodedas
follows for each AU of type 6 (Class U) or of type 5 (class HM):

1.	 An array refBuf[] is set equal to the empty array.

2.	 Decode one rtype descriptor as specified in subclause 10.4.14.

3.	 If the value of the decoded rtype descriptor is equal to 5 then go to step 4 else go to step 8.

4.	 Decode one rlen descriptor as specified in subclause 10.4.9.

5.	 Decode the ureads descriptor with decodeUreads(rlen) as specified in subclause 10.4.8, where rlen
is the value from rlen descriptor decoded at previous step 4.

6.	 Concatenate the array refBuf[]with the output of step 5.

7.	 Go to step 2.

8.	 Decode the next sequence as specified in subclause 10.4.14 according to the value of the rtype
descriptor decoded at step 2.

9.	 For each sequence decoded at the previous step whose reverseComp[][][] flag (as specified in
subclause 10.4.3) is 1, replace the sequence with its reverse-complement sequence as specified in
subclause 9.4, and set the reverseComp[][][] flag to 0.

10.	 If more rtype descriptors are present go to step 2.

The result of the decoding process specified above is 1) a reference sequence contained in the array
refBuf[], and 2) the genomic records contained in the current AU corresponding to values of rtype not
equal to 5 (as specified in subclause 10.4.14) and decoded using the reference sequence in refBuf[].

12	 Block payload parsing process

12.1	 General

This clause describes the parsing process of encoded_descriptor_sequences and encoded_tokentype
carried by a block payload as specified in subclause 7.5.1.3.3.

The input to this process is the block payload.

The outputs of this process are decoded symbols of all descriptor subsequences populated into the
decoded_symbols[][][] data structure, as specified in subclause 12.6.2.

A graphical representation of the parsing process is show in Figure 7 and Figure 8.

﻿

102� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Figure 7 — Block payload parsing process

Figure 8 — Decoding process for descriptor subsequences

12.2	 Inverse binarizations

12.2.1	 General

The process of inverse binarization converts the decoded binary symbols (binVals) into a non-binary-
valued symbol (symVal). The following subclauses describe the decoding process for the different
binarizations adopted in this document.

The following variables are specified:

—	 binVal is the binary value returned by the decoded_bit().

﻿

© ISO/IEC 2020 – All rights reserved� 103

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 symVal is the non-binary reconstructed value yielded by the inverse binarization process. In this
subclause, it is also referred as decodedCabacSubsym.

—	 cmax is the largest possible binarized value. Larger values are truncated.

Annex C provides examples of inverse binarizations.

12.2.2	 Binary (BI)

The inputs to this process are bits from the block payload.

The output of this process is the variable symVal.

The parameter cLength computed in subclause 12.3.6.2 indicates the length in bits of the binarized
symVal. The decoding process is described in Table 98.

Table 98 — BI decoding process

symVal = 0

for (i=0; i<cLength; i++) {

 symVal = (symVal<<1) | decode_bit()

}

12.2.3	 Truncated unary (TU)

The inputs to this process are bits from the block payload.

The output of this process is the variable symVal.

The parameter cmax indicates the maximum value of symVal. The decoding process is described in
Table 99.

Table 99 — TU decoding process

symVal=0;

while(symVal < cmax && decode_bit() == 1) {

 symVal++

}

12.2.4	 Exponential golomb (EG)

12.2.4.1	 General

The inputs to this process are bits from the block payload.

The output of this process is the variable symVal.

The decoding process is described in Table 100.

﻿

104� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 100 — EG decoding process

leadingZeroBits= −1

for(b = 0; !b; leadingZeroBits++)	

 b = decode_bit()

symVal = 0

for(i = 0; i < leadingZeroBits; i++)

 symVal = (symVal << 1) + decode_bit()

symVal += 2leadingZeroBits – 1

12.2.4.2	 Signed exponential golomb (SEG) binarization

The input to this process is the output of an exponential golomb binarization as specified in
subclause 12.2.4.1.

The output of this process is the variable symVal.

1.	 Perform the Exponential Golomb decoding process specified in subclause 12.2.4.1.

2.	 If the output of step 1 is not equal to 0, decode a one-bit sign flag.

12.2.5	 If the output of step 2 is 1, symVal= -1*symValTruncated exponential golomb (TEG)

The inputs to this process are bits from the block payload.

The output of this process is the variable symVal.

Truncated exponential golomb is a concatenation of a truncated unary binarization (with cmax equal to
cmax_teg signalled in subclause 12.3.3.2) and an exponential golomb binarization. The parsing process
for these syntax elements are processed as follows:

1.	 Perform the truncated unary decoding process with cmax equal to cmax_teg (see 12.2.3).

2.	 If the output of step 1 is equal to cmax_teg:

a.	 Perform the exponential golomb decoding process specified in subclause 12.2.4.

symVal is equal to the sum of step 1 and step 2a.

12.2.6	 Signed truncated exponential golomb (STEG)

The inputs to this process are bits from the block payload.

The output of this process is the variable symVal.

Signed truncated exponential golomb is a concatenation of a truncated unary binarization (with cmax
equal to cmax_teg signalled in subclause 12.3.3.2), an exponential golomb representation and a 1-bit
binary binarization (flag). The decoding process for these syntax elements is as follows:

1.	 Perform the truncated unary decoding process with cmax equal to cmax_teg (see 12.2.3).

2.	 If the output of step 1 is equal to cmax_teg:

a.	 Perform the exponential golomb decoding process specified in subclause 12.2.4.

3.	 If the sum of the outputs of step 1 and step 2 is not equal to 0:

a.	 Decode a one-bit sign flag.

﻿

© ISO/IEC 2020 – All rights reserved� 105

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

symVal is equal to the sum of the output values of step 1 and step 2a. If the output of step 3a is 1,
symVal= -1*symVal.

12.2.7	 Split unit-wise truncated unary (SUTU)

The inputs to this process are bits from the block payload and:

—	 split_unit_size specified in subclause 12.3.3.2;

—	 output_symbol_size specified in subclause 12.3.2.

where split_unit_size ≤ output_symbol_size.

The output of this process is the variable symVal.

The SUTU binary string is a concatenation of n TU binarizations (subclause 12.2.3), where n =
Ceil(output_symbol_size / split_unit_size).

The decoding process for SUTU binarization is described in Table 101

Table 101 — SUTU decoding process

symVal=0

for (i=0; i<output_symbol_size; i+=split_unit_size) {

 unitVal = 0

 cmax = (i == 0 && (output_symbol_size % split_unit_size) != 0) ?

 (1<<(output_symbol_size % split_unit_size))-1 :

 (1<<split_unit_size)-1

 while(unitVal < cmax && decode_bit() == 1)

 unitVal++

 symVal = (symVal<<split_unit_size) | unitVal

}

12.2.8	 Signed split unit-wise truncated unary (SSUTU)

The inputs to this process are bits from the block payload and:

—	 split_unit_size specified in subclause 12.3.3.2,

—	 output_symbol_size specified in subclause 12.3.2,

where split_unit_size ≤ (output_symbol_size-1) and output_symbol_size has one bit reserved for the sign.

The output of this process is the variable symVal.

The SSUTU bin string is extension of the SUTU binarization (subclause 12.2.7) with sign of symVal
coded as a separate flag. The decoding process for this binarization is as follows:

1.	 The SUTU binarization produces the absolute value of symVal (of size output_symbol_size-1).

2.	 If the output of step 1 is not equal to 0, decode a one-bit sign flag.

If the output of step 2 is 1, symVal= -1*symVal.

﻿

106� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

12.2.9	 Double truncated unary (DTU)

The inputs to this process (see Table 102) are bits from the block payload and:

—	 cmax_dtu, split_unit_size (specified in 12.3.3.2),

—	 output_symbol_size (specified in 12.3.2),

where Log2(cmax_dtu) < split_unit_size and split_unit_size ≤ output_symbol_size.

The output of this process is the variable symVal.

The DTU binary string is a concatenation of two binarizations, a TU binarization (subclause 12.2.3) and
a SUTU binarization (subclause 12.2.7). The parameter cmax_dtu is used for the TU binarization with
cmax equal to cmax_dtu, and the parameters split_unit_size and output_symbol_size are used for the
SUTU binarization (where cmax is computed internally).

Table 102 — DTU decoding process

symVal = decode_cabac_TU(cmax_dtu)

if(symVal ≥ cmax_dtu) {

 symVal += decode_cabac_SUTU(split_unit_size, output_symbol_size)

}

decode_cabac_TU() specifies the decoding process specified in subclause 12.2.3.

decode_cabac_SUTU() specifies the decoding process specified in subclause 12.2.7.

12.2.10	Signed double truncated unary (SDTU)

The inputs to this process are bits from the block payload and:

—	 cmax_dtu and split_unit_size specified in subclause 12.3.3.2,

—	 output_symbol_size specified in subclause 12.3.2,

where Log2(cmax_dtu) < split_unit_size, split_unit_size ≤ (output_symbol_size-1) and output_symbol_
size has one bit reserved for the sign.

The output of this process is the variable symVal.

The SDTU bin string is an extension of the DTU binarization with sign of symVal coded as a flag. It is
obtained as follows:

1.	 The DTU binarization produces the absolute value of symVal (of size output_symbol_size-1).

2.	 If the output of step 1 is not equal to 0, decode a one-bit sign flag.

If the output of step 2 is equal to 1 then symVal is set to -1 * symVal.

12.3	Decoder configuration

This subclause provides syntax and semantics to convey information related to the decoder
configuration in the parameter set specified in subclause 7.4.

12.3.1	 Sequences and quality values

The decoder configuration syntax is specified in Table 103.

﻿

© ISO/IEC 2020 – All rights reserved� 107

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 103 — Decoder configuration syntax

Syntax Type
decoder_configuration(encodingModeID){
 if (encodingModeID == 0){ /* CABAC */

 num_descriptor_subsequence_cfgs_minus1 u(8)
 for(i = 0;

 i ≤ num_descriptor_subsequence_cfgs_minus1;

 i++){

 descriptor_subsequence_ID u(10)
 transformSubseqCounter = 1

 transform_subseq_parameters() As specified in 12.3.4.
 for (j = 0; j < transformSubseqCounter ; j++){

 transform_ID_subsym u(3)
 support_values() As specified in 12.3.2.
 cabac_binarization() As specified in 12.3.3.
 }

 }
 } else if(encodingModeID ≥ 1){
 /* reserved for future use */
 }
}

num_descriptor_subsequence_cfgs_minus1 plus 1 specifies the number of subsequences the genomic
descriptor for which configurations are being signalled in this syntax. The number of descriptor
subsequences for each genomic descriptor are specified in Table 24.

descriptor_subsequence_ID identifies the descriptor subsequence to which the current decoder
configuration is applied. Its value is comprised between 0 and the number of descriptor subsequences
minus 1 as specified in Table 24. Within the same descriptor_configuration(), no value of descriptor_
subsequence_ID shall be used more than once.

transform_subseq_parameters() signals the parsing of parameters for transformed subsequences. It is
specified in subclause 12.3.4.

transform_ID_subsym specifies the subsymbol transform to be applied. Allowed values are specified
in in subclause 12.3.4.

support_values() specifies a set of configuration parameters used to parse the transformed
subsequence. It is specified in subclause 12.3.2.

cabac_binarization() specifies information about the binarization used for the CABAC decoding of the
transformed subsequence. It is specified in subclause 12.3.3.

﻿

108� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

12.3.2	 Support values

Table 104 — Support values data structure

Syntax Type
support_values(){

 output_symbol_size u(6)
 coding_subsym_size u(6)
 coding_order u(2)
 if(coding_subsym_size < output_symbol_size && coding_order > 0) {

 if(transform_ID_subsym == 1)

 share_subsym_lut_flag u(1)
 share_subsym_prv_flag u(1)
 }

}

output_symbol_size signals the size in bits of each transformed symbol of the transformed
subsequence to be output by the decoding process. For unsigned binarizations the minium value of
output_symbol_size is 1, while for signed binarizations the minimum value of output_symbol_size is
2. For signed values one bit is used for the sign.

coding_subsym_size signals the size in bits of the transformed subsymbol, which serve as the
atomic unit of coding. The value of coding_subsym_size shall be a factor (exact divisor) of output_
symbol_size. It yields X = output_symbol_size / coding_subsym_size atomic subsymbol slots.
These X transformed subsymbols shall be independently decoded with CABAC, go through subsymbol
transformations (if any) to yield decoded subsymbols, which shall be combined to output a transformed
symbol (of size output_symbol_size). If LUTs subsymbol transformation (subclause 12.3.4) is used, the
maximum allowed value for coding_subsym_size is 8. For signed values, one bit is used for the sign.

coding_order signals the number of previously decoded symbols internally maintained as state
variables and is used to decode the next subsymbol. The maximum allowed value is 2.

share_subsym_lut_flag if set to 1 only one look-up-table is signalled (subclause 12.6.2.5) to be
shared among all transformed subsymbols to perform inverse LUT subsymbol transformation
(subclause 12.6.2.8). Otherwise, for each transformed subsymbol their own look-up-table is signalled
and used for inverse LUT subsymbol transformation. The default value is 1.

share_subsym_prv_flag if set to 0 a separate copy of the the previously decoded subsymbols (prvValues
in subclause 12.6.2.2) is maintained to decode transformed subsymbol for each subsymbol slot.
Otherwise, a single copy of previously decoded subsymbols is circularly shared to decode transformed
subsymbols at all subsymbol slots. The default value is 1.

12.3.3	 CABAC binarizations

12.3.3.1	 General

Table 105 — CABAC binarization data structure

Syntax Type
cabac_binarization(){

 binarization_ID u(5)
 bypass_flag u(1)
 cabac_binarization_parameters(binarization_ID) 12.3.3.2
 if(!bypass_flag){

﻿

© ISO/IEC 2020 – All rights reserved� 109

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type
 cabac_context_parameters() 12.3.3.3
 }

}

binarization_ID indicates the binarization method to be used for CABAC decoding. The list of
binarizations is shown in Table 106. The signed binarizations identified by binarization_ID = {3, 5, 7, 9}
are only allowed when coding_subsym_size is equal to output_symbol_size.

bypass_flag if equal to 1, all bins of the binarization are decoded using the CABAC bypass mode. It can
only be set to 1 with coding_order equal to 0.

Table 106 — Values of binarization_ID and associated binarizations

binarization_ID Type of binarization
0 Binary coding as specified in subclause 12.2.2.
1 Truncated unary as specified in subclause 12.2.3.
2 Exponential golomb as specified in subclause 12.2.4.
3 Signed exponential golomb as specified in subclause 12.2.4.2.
4 Truncated exponential golomb as specified in subclause 12.2.5.
5 Signed truncated exponential golomb as specified in subclause 12.2.6.
6 Split unit-wise truncated unary as specified in subclause 12.2.7.
7 Signed split unit-wise truncated unary as specified in subclause 12.2.8.
8 Double truncated unary as specified in subclause in 12.2.9.
9 Signed double truncated unary as specified in subclause in 12.2.10.

10 .. 31 Reserved for future use.

12.3.3.2	 CABAC binarizations parameters

The cabac_binarization_parameters data structure contains the binarization parameters for the
transformed subsequence. binarization_ID is specified in subclause 12.3.3.

Table 107 — CABAC binarization parameters

Syntax Type
cabac_binarization_parameters(binarization_ID) {
 if(binarization_ID == 1) {
 cmax u(8)
 } else if (binarization_ID==4 ||

binarization_ID==5) {

 cmax_teg u(8)
 } else if (binarization_ID==8 ||

binarization_ID==9) {

 cmax_dtu u(8)
 }

﻿

Table 105 (continued)

110� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Syntax Type
 if (binarization_ID==6 || binarization_ID==7 ||

 binarization_ID==8 || binarization_ID==9) {

 split_unit_size u(4)
 }
}

cmax is specified in subclause 12.2.3. The maximum allowed value is 255 and shall always be less than
(1<< coding_subsym_size). It shall be greater than zero.

cmax_teg is specified in subclauses 12.2.5 and 12.2.6. The maximum allowed value is 255 and shall
always be less than (1<< coding_subsym_size) and greater than 0.

cmax_dtu is specified in clauses 12.2.9 and 12.2.10. The maximum allowed value is 255 and shall
always be smaller than (1<<split_unit_size) and greater than 0.

split_unit_size is specified in subclause 12.2.7. The maximum allowed value is 8 and shall always be
greater than 0 and smaller than output_symbol_size specified in subclause 12.3.2.

The binarizations SUTU (subclause 12.2.7), SSUTU (subclause 12.2.8), DTU (subclause 12.2.9) and
SDTU (subclause 12.2.9) shall only be used when coding_order is equal to 0 and output_symbol_size
is equal to coding_subsym_size, while the internal subsymbol size is signalled by the parameter split_
unit_size.

12.3.3.3	 CABAC context parameters

The cabac_context_parameters data structure signals the parameters used for the initialization and
adaptation of the ctxTable[] (specified in 12.4) for the transformed subsequence (see Table 108).

Table 108 — Syntax of the cabac_context_parameters data structure

Syntax Type
cabac_context_parameters(){
 adaptive_mode_flag u(1)
 num_contexts u(16)
 for (i=0; i<num_contexts; i++){
 context_initialization_value[i] u(7)
 }
 if(coding_subsym_size < output_symbol_size) {
 share_subsym_ctx_flag u(1)
 }
}

adaptive_mode_flag if set to 1 signals that the arithmetic decoding engine specified in subclause 12.5
uses context adaptation, otherwise contexts adaptation is disabled.

num_contexts signals the size of the table ctxTable[] (initialized as defined in 12.4) containing the list
of context variables needed for the decoding of the LUTs and the transformed subsequence.

When num_contexts is signalled as 0:

—	 the process defined in 12.3.6.6 shall be used to calculate the state variable numCtxTotal;

—	 the process defined in 12.4 initializes the contexts in ctxTable[] with initState equal to 64
(equiprobability).

﻿

Table 107 (continued)

© ISO/IEC 2020 – All rights reserved� 111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Otherwise

—	 the state variable numCtxTotal is set to the signalled value of num_contexts;

—	 the process defined in 12.4 initializes the contexts in ctxTable[] with the values signalled in
context_initialization_values[].

context_initialization_values[i] specifies the initialization state value for the ith context variable. The
state value can range between 0 and 127, with value 64 representing the equiprobable state value.

coding_subsym_size is specified in subclause 12.3.2.

output_symbol_size is specified in subclause 12.3.2.

share_subsym_ctx_flag if set to 1, all transformed subsymbols are decoded on the same set of contexts.
Otherwise, separate set of contexts are initialized and used to decode each transformed subsymbol.
The default value is 0.

12.3.4	 Transformation parameters

Table 109 — Data structure for transformation parameters

Syntax Type
transform_subseq_parameters(){
 transform_ID_subseq u(8)
 if(transform_ID_subseq == equality_coding){
 transformSubseqCounter += 1
 } else if(transform_ID_subseq == match_coding) {
 match_coding_buffer_size u(16)
 transformSubseqCounter += 2
 } else if(transform_ID_subseq == rle_coding) {
 rle_coding_guard u(8)
 transformSubseqCounter += 1
 } else if (transform_ID_subseq == merge_coding)
 merge_coding_subseq_count u(4)
 transformSubseqCounter = merge_coding_subseq_count
 for(i=0; i<merge_coding_subseq_count; i++)
 merge_coding_shift_size[i] u(5)
 }
}

transform_ID_subseq signals the applied subsequence transformation according to Table 110.

﻿

112� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 110 — Values of transform_ID_subseq and transform_ID_subsym

Sub-sequence transformations
transform_ID_subseq name Remarks

0 no_transform No transform is applied.
1 equality_coding As specified in 12.6.2.10.2.
2 match_coding As specified in 12.6.2.10.3.
3 rle_coding As specified in 12.6.2.10.4.
4 merge_coding As specified in 12.6.2.10.5.
5 .. 255 Reserved for future use.
Subsymbol transformations
transform_ID_subsym name Remarks
0 no_transform No transformation is applied.
1 lut_transform It can only be used when cod-

ing_order > 0.
2 diff_coding It can only be used when cod-

ing_order is equal to 0.
3 .. 7 Reserved for future use.

transform_ID_subsym specified in subclause 12.3.1 signals the applied subsymbol transformation
according to Table 110. The value transform_ID_subsym equal to 1 is not allowed whenever either of
the following is true: coding_order is equal to 0, coding_subsym_size is greater than 8, or binarization_
ID is equal to one of the values {3, 5, 6, 7, 8, 9}.

transformSubseqCounter is a state variable defined in subclause 12.3.1.

match_coding_buffer_size signals the size of the internal fifo buffer used in match coding
transformation (subclause 12.6.2.10.3).

rle_coding_guard is the guard value used in run-length coding transform (subclause 12.6.2.10.4).

merge_coding_subseq_count signals the number of transform subsequences to be merged by the
merge subsequence transformation (subclause 12.6.2.10.5). The minimum allowed value is 2.

merge_coding_shift_size[i] signals the number of bits to be shifted in the transformed symbols
of each transformed subsequence while applying the merge subsequence transformation
(subclause 12.6.2.10.5).

The merge subsequence transformation shall adhere to the following restrictions:

—	 For each transformed subsequence, coding_subsym_size shall be equal to output symbol_size.

—	 All transformed subsequences shall have exactly the same number of transformed symbols, which
shall also be equal to the number of symbols encoded in the descriptor subsequence.

—	 The sum of the sizes of transformed symbols (output_symbol_size) for all transformed subsequences
shall not be greater than 32.

12.3.5	 Msar descriptor and read identifiers

The decoder configuration syntax for the msar descriptor and read identifiers (decoded as specified in
subclause 10.4.20) is specified in Table 111.

﻿

© ISO/IEC 2020 – All rights reserved� 113

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 111 — Decoder configuration syntax for msar and read identifiers

Syntax Type
decoder_configuration_tokentype(encodingModeID){
 if (encodingModeID == 0){
 /* configuration for RLE specified in subclause 10.4.19.3.3 */
 rle_guard_tokentype u(8)
 /* configuration for CABAC_METHOD_0 specified in subclause 10.4.19.3.4 */
 decoder_configuration_tokentype_cabac(0)
 /* configuration for CABAC_METHOD_1 specified in subclause 10.4.19.3.5 */
 decoder_configuration_tokentype_cabac(1)
 } else if(encodingModeID ≥ 1){
 /* reserved for future use */
 }
}

rle_guard_tokentype represents the guard value used in the decoding process of RLE method (listed
in Table 78 and specified in subclause 10.4.20.4.4) for the decoding of tokentype descriptor sequences.

Table 112 — Decoder configuration syntax for CABAC decoding of tokentype descriptors

Syntax Type
decoder_configuration_tokentype_cabac() {

 transformSubseqCounter = 1

 transform_subseq_parameters() As specified in 12.3.4.
 for (j = 0; j < transformSubseqCounter; j++) {

 transform_ID_subsym u(3)
 support_values() As specified in 12.3.2.
 cabac_binarization() As specified in 12.3.3.
 }

}

transform_subseq_parameters() signals the parameters for transformed subsequences. It is
specified in subclause 12.3.4.

transform_ID_subsym signals the subsymbol transformion to be applied. Allowed values are as
specified in 12.3.4.

support_values() signals a set of configuration parameters used to parse the transformed subsequence.
It is specified in subclause 12.3.2.

cabac_binarization() signals information about the binarization used for the CABAC decoding of the
transformed subsequence. It is specified in subclause 12.3.3.

12.3.6	 State variables

This subclause specifies how to calculate state variables used during the decoding process.

12.3.6.1	 Number of alphabet symbols

The number of alphabet symbols for each subsymbol shall be calculated as numAlphaSubsym = 1 <<
coding_subsym_size. However, for some descriptor subsequences, this calculation produces larger

﻿

114� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

alphabets than needed. Table 113 lists these special cases and the value of numAlphaSubsym when
numAlphaSubsym is not calculated as numAlphaSubsym = 1 << coding_subsym_size.

Table 113 — Special cases for numAlphaSubsym values.

descriptor_ID subsequence_ID numAlphaSubsym
4 0 3
4 1 Size(Salphabet_ID)
4 2 Size(Salphabet_ID)
5 1 9
5 2 Size(Salphabet_ID) + 1
6 0 Size(Salphabet_ID)
12 0 6
17 0 Size(Salphabet_ID)

The number of subsymbols shall be calculated as numSubsyms = output_symbol_size / coding_
subsym_size.

12.3.6.2	 Number of contexts per subsymbol

When bypass mode is not used (as signalled in subclause 12.3.3), the cabac decoding of the transformed
subsymbol uses a number of contexts (as specified in subclause 12.5.2). Table 114 lists the number of
contexts needed to decode each transformed subsymbol with all binarizations.

Table 114 — Calculation of numCtxSubsym

binarization_ID numCtxSubsym
0 coding_subsym_size

1 cmax

2 Floor(Log2(numAlphaSubsym + 1)) + 1

3 Floor(Log2(numAlphaSubsym + 1)) + 2

4 cmax_teg + Floor(Log2(numAlphaSubsym + 1)) + 1

5 cmax_teg + Floor(Log2(numAlphaSubsym + 1)) + 2

6 (output_symbol_size / split_unit_size) * ((1<< split_unit_size) – 1) +
((1<<(outputSymSize % split_unit_size)) – 1)

7 (output_symbol_size / split_unit_size) * ((1<< split_unit_size) – 1) +
((1<<(outputSymSize % split_unit_size)) – 1) + 1

8
cmax_dtu +
 (output_symbol_size / split_unit_size) * ((1<< split_unit_size) – 1)
+ ((1<<(outputSymSize % split_unit_size)) – 1)

9
cmax_dtu +
 (output_symbol_size / split_unit_size) * ((1<< split_unit_size) – 1)
+ ((1<<(output_symbol_size % split_unit_size)) – 1) + 1

coding_subsym_size is specified in subclause 12.3.2.

output_symbol_size is specified in subclause 12.3.2.

cLength is specified as a parameter to BI binarization (subclause 12.2.2) and it is set to coding_
subsym_size.

cmax is specified as a parameter to TU (subclause 12.2.3) and signalled in 12.3.3.2.

cmax_teg is specified as a parameter to the TEG (subclause 12.2.5) and STEG (subclause 12.2.5)
binarizations, and signalled in 12.3.3.2.

﻿

© ISO/IEC 2020 – All rights reserved� 115

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

split_unit_size is specified as a parameter to the SUTU (subclause 12.2.7), SSUTU (subclause 12.2.8),
DTU (subclause 12.2.9) and SDTU (subclause 12.2.9) binarizations, and signalled in 12.3.3.2.

cmax_dtu is specified as a parameter to the DTU (subclause 12.2.9) and SDTU (subclause 12.2.9)
binarizations, and signalled in 12.3.3.2.

12.3.6.3	 Coding order context offset

The decoding process of a subymbol can depend on a number of previously decoded subsymbols (at the
same bit positions) by signaling coding_order > 0 as specified in subclause 12.3.2.

The process of context selection (subclause 12.6.2.6) requires the context offsets corresponding to the
coding order to correctly calculate the starting ctxIdx in the ctxTable[], where each subsymbol is to be
decoded.

Table 115 specifies how the list codingOrderCtxOffset[] containing these offsets for each coding
order is calculated. If bypass_flag is equal to 1 (as signalled in subclause 12.3.3), all elements of
codingOrderCtxOffset are set to 0.

Table 115 — Calculation of codingOrderCtxOffset[]

coding_order State variable Value
0 codingOrderCtxOffset[0] 0
1 codingOrderCtxOffset[1] numCtxSubsym
2 codingOrderCtxOffset[2] numCtxSubsym *

numAlphaSubsym

12.3.6.4	 Coding size context offset

The state variable codingSizeCtxOffset specifies the number of contexts needed to decode each
transformed subsymbol.

This state variable is used in the contexts selection process (subclause 12.6.2.6) to correctly calculate
the starting ctxIdx in the ctxTable[] where each transformed subsymbol is to be decoded. It is computed
as specified in Table 116. If bypass_flag is equal to 1 (as signalled in subclause 12.3.3), this state variable
is set to 0.

Table 116 — Calculation of codingSizeCtxOffset

if(share_subsym_ctx_flag)

 codingSizeCtxOffset = 0

else if(coding_order == 0)

 codingSizeCtxOffset = numCtxSubsym

else

 codingSizeCtxOffset = codingOrderCtxOffset[coding_order] * numAlphaSubsym

12.3.6.5	 Number of contexts for LUTs

The state variable numCtxLuts specifies the number of contexts needed to decode the LUTs using
the the decoding process for LUTs (specified in subclause 12.6.2.5), where each LUT symbol shall be
decoded using the SUTU binarization (binarization_ID equal to 6) with parameters splitUnitSize equal
to 2 and outputSymSize = coding_subsym_size. The value of numCtxLuts is computed as specified in
Table 117. If bypass_flag is equal to 1 (as signalled in subclause 12.3.3), this state variable is set to 0.

﻿

116� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 117 — Calculation of numCtxLuts

numCtxLuts = 0

if(transform_ID_subsym == 1)

 /* Compute according to Table 114 for SUTU binarization */

 numCtxLuts = (coding_subsym_size / 2) * ((1<< 2) – 1) +
 ((1<<(coding_subsym_size % 2)) – 1)

}

12.3.6.6	 Total number of contexts

The state variable numCtxTotal specifies the total number of contexts needed to decode a transformed
subsequence, which includes all the contexts needed for decoding of LUTs (subclause 12.6.2.5) and
symbols (subclause 12.6.2.7) and shall be calculated as specified in Table 118. If bypass_flag is equal to
1 (as signalled in subclause 12.3.3), this state variable is set to 0.

Table 118 — Calculation of numCtxTotal

if(num_contexts != 0) {

 numCtxTotal = num_contexts

} else {

 numCtxTotal = numCtxLuts

 numCtxTotal += ((share_subsym_ctx_flag) ? 1 : numSubsyms) *

 ((coding_order > 0) ? codingOrderCtxOffset[coding_order] *

 numAlphaSubsym : numCtxSubsymbol)

}

num_contexts is signalled in 12.3.3.3 along with the list of specific context_initialization_values[].

12.4	 Initialization process for context variables

ctxTable[] is the data structure containing all context variables needed to decode a transformed
subsequence. Each element of the ctxTable[] represents one context variable and consists of two
state variables: pStateIdx and valMps. The variable pStateIdx represents a probability state index
and the variable valMps represents the value of the most probable symbol as further described in
subclause 12.5.2.

The inputs to this process are:

—	 ctxTable[] specified in subclause 12.6.2.4;

—	 the ctxIdx and initState variables specified in12.6.2.4.

The output of this process is an initialized context variable in the ctxTable array at index ctxIdx.

The state variables pStateIdx and valMps corresponding to index ctxIdx are initialized based on a 7-bit
initState as described in Table 119.

﻿

© ISO/IEC 2020 – All rights reserved� 117

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Table 119 — Calculation of ctxTable

Syntax
context_initialize_state(ctxTable[], ctxIdx, initState) {

 ctxTable[ctxIdx].valMps = (initState ≤ 63) ? 0 : 1

 ctxTable[ctxIdx].pStateIdx = ctxTable[ctxIdx].valMps ? (initState − 64) :
(63 – initState)

}

where

ctxTable[ctxIdx].valMps represents the variable valMps associated to the element in ctxTable at
index ctxIdx

ctxTable[ctxIdx].pStateIdx represents the variable pStateIdx associated to the element in ctxTable at
index ctxIdx

12.5	 Arithmetic decoding engine

12.5.1	 Initialization

The outputs of this process are the initialized decoding engine registers ivlCurrRange and ivlOffset
both in 16 bit register precision.

The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and
ivlOffset. In the initialization procedure of the arithmetic decoding process, ivlCurrRange is set equal
to 510 and ivlOffset is set equal to the value returned from read_bits(9) interpreted as a 9 bit binary
representation of an unsigned integer with the most significant bit written first.

The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511.

NOTE	 The description of the arithmetic decoding engine in this Specification utilizes 16 bit register
precision. However, a minimum register precision of 9 bits is required for storing the values of the variables
ivlCurrRange and ivlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in
subclause 12.5.2. The arithmetic decoding process for a binary decision (DecodeDecision) as specified in
subclause 12.5.2.2 and the decoding process for a binary decision before termination (DecodeTerminate) as
specified in subclause 12.5.2.5 require a minimum register precision of 9 bits for the variables ivlCurrRange and
ivlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in subclause 12.5.2.4
requires a minimum register precision of 10 bits for the variable ivlOffset and a minimum register precision of
9 bits for the variable ivlCurrRange.

12.5.2	 Arithmetic decoding process

12.5.2.1	 General

The inputs to this process are ctxTable, ctxIdx, and bypass_flag, as specified in subclause 12.6.2.7, and
the state variables ivlCurrRange and ivlOffset of the arithmetic decoding engine.

The output of this process is the value of the bin.

Figure 9 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of
a bin, the context index table ctxTable and the ctxIdx are passed to the arithmetic decoding process
DecodeBin(ctxTable, ctxIdx), which is specified as follows:

—	 If bypassFlag is equal to 1, DecodeBypass() as specified in subclause 12.5.2.4 is invoked.

—	 Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0, and ctxIdx is equal to 0, DecodeTerminate()
as specified in subclause 12.5.2.5 is invoked.

﻿

118� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

—	 Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision() as specified
in subclause 12.5.2.2 is invoked.

Figure 9 — Overview of the arithmetic decoding process for a single bin

NOTE	 Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability
estimation p(0) and p(1) = 1 – p(0) of a binary decision (0, 1), an initially given code sub-interval with
the range ivlCurrRange will be subdivided into two sub-intervals having range p(0) * ivlCurrRange and
ivlCurrRange – p(0) * ivlCurrRange, respectively. Depending on the decision, which has been observed, the
corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing into that
interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most
probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as
either MPS or LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of
the LPS and the value of MPS (valMps), which is either 0 or 1. The arithmetic core engine in this document has
three distinct properties:

—	 The probability estimation is performed by means of a finite-state machine with a table-based transition
process between 64 different representative probability states { pLPS(pStateIdx) | 0 ≤ pStateIdx < 64 } for
the LPS probability pLPS. The numbering of the states is arranged in such a way that the probability state with
index pStateIdx = 0 corresponds to an LPS probability value of 0.5, with decreasing LPS probability towards
higher state indices.

—	 The range ivlCurrRange representing the state of the coding engine is quantized to a small set {Q1,…,Q4} of
pre-set quantization values prior to the calculation of the new interval range. Storing a table containing all
64x4 pre-computed product values of Qi * pLPS(pStateIdx) allows a multiplication-free approximation of the
product ivlCurrRange * pLPS(pStateIdx).

—	 For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed
to be given a separate simplified encoding and decoding bypass process is used.

12.5.2.2	 Arithmetic decoding process for a binary decision

12.5.2.2.1	 General

The inputs to this process are the variables ctxTable, ctxIdx, ivlCurrRange, and ivlOffset.

﻿

© ISO/IEC 2020 – All rights reserved� 119

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

The outputs of this process are the decoded value binVal, and the updated variables ivlCurrRange and
ivlOffset.

Figure 10 shows the flowchart for decoding a single decision (DecodeDecision):

1.	 The value of the variable ivlLpsRange is derived as follows:

—	 Given the current value of ivlCurrRange, the variable qRangeIdx is derived as follows:

	 qRangeIdx =(ivlCurrRange >> 6) & 3

—	 Given qRangeIdx and pStateIdx associated with ctxTable and ctxIdx, the value of the variable
rangeTabLps as specified in Table 121 is assigned to ivlLpsRange:

	 ivlLpsRange = rangeTabLps[pStateIdx][qRangeIdx]

2.	 The variable ivlCurrRange is set equal to ivlCurrRange − ivlLpsRange and the following applies:

—	 If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to–1 − valMps,
ivlOffset is decremented by ivlCurrRange, and ivlCurrRange is set equal to ivlLpsRange.

—	 Otherwise, the variable binVal is set equal to valMps.

Given the value of binVal, the state transition is performed as specified in subclause 12.5.2.2.2.
Depending on the current value of ivlCurrRange, renormalization is performed as specified in
subclause 12.5.2.3.

Figure 10 — Flowchart for decoding a decision

﻿

120� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

12.5.2.2.2	 State transition process

The inputs to this process are the current pStateIdx, the decoded value binVal and valMps values of the
context variable associated with ctxTable and ctxIdx.

The outputs of this process are the updated pStateIdx and valMps of the context variable associated
with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateIdx and valMps associated
with ctxIdx is derived as specified in Table 120.

Table 120 — Update of the two variables pStateIdx and valMps

If (adaptive_mode_flag) {

 if(binVal = = valMps)

 pStateIdx = transIdxMps(pStateIdx)

 else {

 if(pStateIdx = = 0)

 valMps = 1 – valMps

 pStateIdx = transIdxLps(pStateIdx)

 }

}

Table 122 specifies the transition rules transIdxMps() and transIdxLps() after decoding the value of
valMps and 1 − valMps, respectively.

Table 121 — Specification of rangeTabLps depending on the values of pStateIdx and qRangeIdx

pStateIdx
qRangeIdx

pStateIdx
qRangeIdx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28

10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16

﻿

© ISO/IEC 2020 – All rights reserved� 121

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

pStateIdx
qRangeIdx

pStateIdx
qRangeIdx

0 1 2 3 0 1 2 3
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

Table 122 — State transition table

pStateIdx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transIdxLps 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transIdxMps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStateIdx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
transIdxLps 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24
transIdxMps 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pStateIdx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
transIdxLps 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33
transIdxMps 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
pStateIdx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
transIdxLps 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63
transIdxMps 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

12.5.2.3	 Renormalization process in the arithmetic decoding engine

The inputs to this process are bits from block payload data and the variables ivlCurrRange and ivlOffset.

The outputs of this process are the updated variables ivlCurrRange and ivlOffset.

A flowchart of the renormalization is shown in Figure 11. The current value of ivlCurrRange is first
compared to 256 and then the following applies:

—	 If ivlCurrRange is greater than or equal to 256, no renormalization is needed and the RenormD
process is finished;

—	 Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop,
the value of ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by
using read_bits(1).

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to
ivlCurrRange upon completion of this process.

﻿

Table 121 (continued)

122� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Figure 11 — Flowchart of renormalization

12.5.2.4	 Bypass decoding process for binary decisions

The inputs to this process are bits from block payload data and the variables ivlCurrRange and ivlOffset.

The outputs of this process are the updated variable ivlOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 12 shows a flowchart of
the corresponding process.

First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by
using read_bits(1). Then, the value of ivlOffset is compared to the value of ivlCurrRange and then the
following applies:

—	 If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivlOffset
is decremented by ivlCurrRange.

—	 Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0.

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to
ivlCurrRange upon completion of this process.

﻿

© ISO/IEC 2020 – All rights reserved� 123

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

﻿

ISO/IEC 23092-2:2020(E)

Figure 12 — Flowchart of bypass decoding process

12.5.2.5	 Decoding process for binary decisions before termination

The inputs to this process are bits from block payload data and the variables ivlCurrRange and ivlOffset.

The outputs of this process are the updated variables ivlCurrRange and ivlOffset, and the decoded
value binVal.

This decoding process applies to decoding of end_of_descriptor_subsequence_terminate corresponding
to ctxTable equal to 0 and ctxIdx equal to 0. Figure 13 shows the flowchart of the corresponding
decoding process, which is specified as follows:

First, the value of ivlCurrRange is decremented by 2. Then, the value of ivlOffset is compared to the
value of ivlCurrRange and then the following applies:

—	 If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, no
renormalization is carried out, and CABAC decoding is terminated. The last bit inserted in register
ivlOffset is equal to 1. When decoding end_of_descriptor_subsequence_terminate, this last bit
inserted in register ivlOffset is interpreted as the stop bit for the decoding of descriptor subsequence.

—	 Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 and
renormalization is performed as specified in subclause 12.5.2.3.

This procedure may also be implemented using DecodeDecision(ctxTable, ctxIdx, bypassFlag) with
ctxTable = 0, ctxIdx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, seven
more bits would be read by DecodeDecision(ctxTable, ctxIdx, bypassFlag) and a decoding process
would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.

﻿

124� © ISO/IEC 2020 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
09

2-2
:20

20

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Conventions
	5.1 General
	5.2 Arithmetic operators
	5.3 Logical operators
	5.4 Relational operators
	5.5 Bit-wise operators
	5.6 Assignment operators
	5.7 Range notation
	5.8 Mathematical functions
	5.9 Order of operation precedence
	5.10 Variables, syntax elements and tables
	5.11 Text description of logical operators
	5.12 Processes
	6 Syntax and semantics
	6.1 Method of specifying syntax in tabular form
	6.2 Bit ordering
	6.3 Specification of syntax functions and data types
	6.4 Semantics
	7 Data structures
	7.1 General
	7.2 Data unit
	7.3 Raw reference
	7.3.1 General
	7.3.2 Syntax and semantics
	7.4 Parameter set
	7.4.1 Syntax and semantics
	7.4.2 Encoding parameters
	7.5 Access unit
	7.5.1 Syntax and semantics
	7.5.2 Access unit types
	8 Descriptors
	9 Sequencing reads
	9.1 General
	9.2 Supported symbols
	9.3 Paired-end reads
	9.4 Reverse-complement reads
	9.5 Data classes
	9.6 Aligned data
	9.7 Unaligned data
	10 Decoding process
	10.1 General
	10.2 dataset_type = 0 or 1
	10.2.1 General
	10.2.2 References padding
	10.2.3 Type 1 AU (Class P)
	10.2.4 Type 2 AU (Class N)
	10.2.5 Type 3 AU (Class M)
	10.2.6 Type 4 AU (Class I)
	10.2.7 Type 5 AU (Class HM)
	10.2.8 Type 6 AU (Class U)
	10.3 dataset_type = 2
	10.3.1 General
	10.3.2 Type 1 AU
	10.3.3 Type 2 AU
	10.3.4 Type 3 AU
	10.3.5 Type 4 AU
	10.3.6 Type 6 AU
	10.4 Genomic descriptors
	10.4.1 General
	10.4.2 pos
	10.4.3 rcomp
	10.4.4 flags
	10.4.5 mmpos
	10.4.6 mmtype
	10.4.7 clips
	10.4.8 ureads
	10.4.9 rlen
	10.4.10 pair
	10.4.11 mscore
	10.4.12 mmap
	10.4.13 msar
	10.4.14 rtype
	10.4.15 rgroup
	10.4.16 qv
	10.4.17 rname
	10.4.18 rftp
	10.4.19 rftt
	10.4.20 tokentype descriptors
	10.5 sequence
	10.5.1 General
	10.5.2 Aligned reads (Classes P, N, M, I, HM)
	10.5.3 Unmapped reads (Class HM, U)
	10.6 e-cigar
	10.6.1 Syntax
	10.6.2 Decoding process for the first alignment
	10.6.3 Decoding process for other alignments
	10.6.4 Reference transformation
	11 Representation of reference sequences
	11.1 External reference
	11.2 Embedded reference
	11.3 Computed reference
	11.3.1 General
	11.3.2 Supported Algorithms
	11.3.3 Reference transformation
	11.3.4 PushIn
	11.3.5 Local assembly
	11.3.6 Global assembly
	12 Block payload parsing process
	12.1 General
	12.2 Inverse binarizations
	12.2.1 General
	12.2.2 Binary (BI)
	12.2.3 Truncated unary (TU)
	12.2.4 Exponential golomb (EG)
	12.2.5 If the output of step 2 is 1, symVal= -1*symValTruncated exponential golomb (TEG)
	12.2.6 Signed truncated exponential golomb (STEG)
	12.2.7 Split unit-wise truncated unary (SUTU)
	12.2.8 Signed split unit-wise truncated unary (SSUTU)
	12.2.9 Double truncated unary (DTU)
	12.2.10 Signed double truncated unary (SDTU)
	12.3 Decoder configuration
	12.3.1 Sequences and quality values
	12.3.2 Support values
	12.3.3 CABAC binarizations
	12.3.4 Transformation parameters
	12.3.5 Msar descriptor and read identifiers
	12.3.6 State variables
	12.4 Initialization process for context variables
	12.5 Arithmetic decoding engine
	12.5.1 Initialization
	12.5.2 Arithmetic decoding process
	12.6 Decoding process for sequence descriptors
	12.6.1 General
	12.6.2 Block payload decoding process
	13 Output format
	13.1 General
	13.2 MPEG-G record
	13.2.1 General
	13.2.2 number_of_template_segments
	13.2.3 number_of_record_segments
	13.2.4 number_of_alignments
	13.2.5 class_ID
	13.2.6 read_group_len
	13.2.7 reserved
	13.2.8 read_1_first
	13.2.9 seq_ID
	13.2.10 as­_depth
	13.2.11 read_len
	13.2.12 qv_depth
	13.2.13 read_name_len
	13.2.14 read_name
	13.2.15 read_group
	13.2.16 sequence
	13.2.17 quality_values
	13.2.18 mapping_pos
	13.2.19 ecigar_len
	13.2.20 ecigar_string
	13.2.21 reverse_comp
	13.2.22 mapping_score
	13.2.23 split_alignment
	13.2.24 delta
	13.2.25 split_pos
	13.2.26 split_seq_ID
	13.2.27 flags
	13.2.28 more_alignments
	13.2.29 next_pos
	13.2.30 next_seq_ID
	13.3 Initialization process
	Annex A (informative) Tokenization of reads identifiers
	Annex B (informative) Mapping quality
	Annex C (informative) Inverse binarization examples

