INTERNATIONAL ISO/IEC
STANDARD 23092-2

Second edition
2020-10

Information technology =< Genomjic
information representation —

Part 2:
Coding of genomicinformation

Technologies de l'information — Représentation des informations
génomiques —

Partie 2: Codage desiriformations génomiques

Reference number
ISO/IEC 23092-2:2020(E)

© ISO/IEC 2020

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

COFPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 e Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Contents Page
FFOT@WOTcoocccoveeses st 5555855855855 vii
IIMETOUICEIONL.........ooo e85 viii
1
2
3
4
5 6
51 6
5.2 Arithmetic operators.. q; w7
5.3 0T eq Tor 1 0} o Tc) =1) S QQ) .. 7
5.4 Relational 0Perators. ... (]:b .. 7
5.5 Bit-wise operators........ 8
5.6 Assignment operators 8
5.7 Range notation............. 8
5.8 Mathematical functions............cccocies 9
59 Order of operation precedence . 9
5.10 Variables, syntax elements and tables ..., 52
5.11 Text description of logical operators......
5012 PIOCESSES oot Nt
N
6 Syntax and semantics s\\) ...
6.1 Method of specifying syntax in tabulapform
6.2 Bit ordering.......in \\'Q ... 13
6.3 Specification of syntax functlon&g\ld dAta LYPES oo 13
6.4 Semantics......eccccooeeene. Q\Q) .. 15
7 Data structures...................... REY s ——————————— 15
7.1 General..... ...
7.2 Data unit.......cccc..... C)
7.3 Raw reference...
7.3.1 Gene%
7.3.2 Syn@{ nd semantics
7.4 Paramete ..
7.4.1 @/ntax and semantics
7.4 (O Encoding parameters
7.5 F30 0 oL L
.1 Syntax and semantics
?‘ 5.2 ACCESS UINIL LY POS ..ot
&riptors ... 28
g &%equencmg TEAMS ...
General
9.2 Supported symbols..
9.3 Paired-end reads..........ccccccc...
9.4 Reverse-complement reads ..
9.5 DIATA ClASSES ot
0.6 ALIGNEA AATA.... e
9.7 UNALGNEA QALA e
10 DIECOMITIG PIOCESSoooeeee et
10.1 General.....nnnn
10.2 dataset_type=0or1..
10.2.1 General.....cooonen

10.2.2 References padding

© ISO/IEC 2020 - All rights reserved iii

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

11

12

10.3

10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

dataset_type = 2

10.3.1
10.3.2

1022
TUT

Type 1 AU (Class P).cce,
Type 2 AU (Class N)
Type 3 AU (Class M)
TYPE 4 AU [(CIASS 1) oo

TYPE 5 AU (CIASS HIM) oo 41
Type 6 AU (Class U)

General

S o

10.3.5
10.3.6
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.4.8
10.4.9
10.4.10
10.4.11
10.4.12
10.4.13

10.5.1

1053

w@?

tation Of referenCe SEQUEIICES ...
EXEETNAL TEFRTEIICE ...t

Embedded reference

General.......
10.5.2 Aligned 1@@ (Classes P, N, M, I, HM)

Unma@ 1eads (Class HM, U) ..o

coding process for the first alignment..
ecoding process for other alignments.....
Reference transformation ...

Block payload parsing process
General
Inverse binarizations.

121
12.2

COMPULEA TEFETEIICE ..ot

11.3.1
11.3.2
11.3.3
11.34
11.3.5
11.3.6

12.2.1

General.........eeeeeeeeeeeeseeeeee,
Supported Algorithms................
Reference transformation
Pushln ...,
Local assembly
GLODAL @SSEIMIDLY ...t

[0S 4 T=) =

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

12.3

12.4
12.5

12.6

13.1
13.2

12.2.2 Binary (BI) e
12.2.3 Truncated unary (TU).....cccn
12.2.4 Exponential golomb (EG)
12.2.5 Ifthe output of step 2 is 1, symVal= -1*symValTruncated exponential

OLOIMND (TEG) e
12.2.6 Signed truncated exponential golomb (STEG) .
12.2.7 Split unit-wise truncated UNary (SUTU) ...
12.2.8 Signed split unit-wise truncated unary (SSUTU) ..., 106
12.2.9 Double truncated unary (DTU) ...
122-10-Sisped-double-truneatedurary{ShHH
Decoder CONFIGUIAtION ...)
12.3.1 Sequences and qUAlity ValUes ...y o
12.3.2 Support values
12.3.3 CABAC bBiNariZations. ... @@y e Voensnnsesinses
12.3.4 Transformation Parameters. ... ol Lo
12.3.5 Msar descriptor and read identifiers ..
12.3.6 State variables.........

Initialization process for context variables....
Arithmetic decoding engine ...

12.5.1
12.5.2

Decoding process for SeqUence deSCriPLOTsS. e

12.6.1
12.6.2

13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2:12
13.2413
1372.14
13.2.15
13.2.16
13.2.17

13.2.18
13219

[nitialization ...,
Arithmetic decOding PIrOCESS. ... ottt

General. ...,
Block payload decoding process

read_group-lerm.....
reserved... ...
read_d_first...
SO D e
ASLACPTN
read_len

SEQUETICE ...
QUAITEY_VAIUES ..o

INAPPINIZ POS i

13.3

13.2.20
13.2.21
13.2.22
13.2.23
13.2.24
13.2.25
13.2.26
13.2.27
13.2.28
13.2.29
13.2.30

ecigar len
gal—

CCIGAT_STITIIE etk
reverse_comp....
mapping_score......
split_alignment.....
delta ..o
split_pos..........
SPIIE_SEO_ID e
LA e
more_alignments. .
next_pos.........

next_seq_ID...

INIHIAlIZATION PIOCESS .o

© ISO/IEC 2020 - All rights reserved v

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Annex A (informative) Tokenization of reads identifiers

Annex B (informative) Mapping QUALIEY ...

Annex C (informative) Inverse binarization eXamples ...

vi © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that

are members of ISO or IEC participate in the development of International Standards

through

technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also

take partin the work

The procedures used to develop this specification and those intended for its further mainten
described in the ISO/IEC Directives, Part 1. In particular, the different approval criterianeede
different types of document should be noted. This specification was drafted in accordance
gditorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ttention is drawn to the possibility that some of the elements of this specification may
ubject of patent rights. ISO and IEC shall not be held responsible for identifyirig any or all sud
ights. Details of any patent rights identified during the development of the document will h
htroduction and/or on the ISO list of patent declarations received (see-www.iso.org/patents) o
st of patent declarations received (see http://patents.iec.ch).

== n

Any trade name used in this specification is information given for\the convenience of users and
donstitute an endorsement.

or an explanation of the voluntary nature of standards, the meaning of ISO specific tel
xpressions related to conformity assessment, ascwell as information about ISO's adhet
he World Trade Organization (WTO) principles, inh the Technical Barriers to Trade (T
hww.iso.org/iso/foreword.html.

< o D

This specification was prepared by Joint Technical Committee ISO/IEC JTC 1, Information ted
Subcommittee SC 29, Coding of audio, picture,' multimedia and hypermedia information.

—

his second edition cancels and replaces the first edition (ISO/IEC 23092-1:2019), which h
echnically revised.

—

The main changes compared to the previous edition are as follows:
-+ The sequence decoding-process for mismatches in classes I and HM has been clarified.

-+ Insubclause 10.4'and its subclauses variable numberOfAlignedRecordSegments has been ren
numberOfMappedRecordSegments.

~+ Insubclause10.4.2 the decoding process of pos and rtype descriptors with computed refer
been clarified.

1 Insubclause 11.3.4 the decoding process of pushin has been revised.

hnce are
i for the
with the

¥ be the
h patent
e in the
 the IEC

does not

'ms and
ence to
BT) see

hnology,

as been

amed to

ence has

+C-The decoding of the reverseComp values has been revised.

— The determination of the offset of mismatches within spliced segments has been revised.
— The decoding process for signatures has been revised.

— The signalling of computed references has been clarified.

— In Clause 12 some decoding processes and some transformations have been clarified.
Alist of all parts in the ISO/IEC 23092 series can be found on the ISO website.

Any feedback or questions on this specification should be directed to the user’s national st
body. A complete listing of these bodies can be found at www.iso.org/members.html.

© ISO/IEC 2020 - All rights reserved

andards

vii

http://www.iso.org/directives
http://www.iso.org/patents
http://patents.iec.ch
http://www.iso.org/iso/foreword.html
http://www.iso.org/members.html
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Introduction

The advent of high-throughput sequencing (HTS) technologies has the potential to boost the adoption
of genomic information in everyday practice, ranging from biological research to personalized genomic
medicine in clinics. As a consequence, the volume of generated data has increased dramatically during
the last few years, and an even more pronounced growth is expected in the near future.

At the moment genomic information is mostly exchanged through a variety of data formats, such as
FASTA/FASTQ for unaligned sequencing reads and SAM/BAM/CRAM for aligned reads. With respect to
such formats, the ISO/IEC 23092 series provides a new solution for the representation and compressiop
of genome sequencing information by:

— Spetifying an abstract representation of the sequencing data rather than a specific format with is
dirgct implementation.

— Being designed at a time point when technologies and use cases are more mature/ This permif
addressing one limitation of the textual SAM format, for which the incremental ad-hoc addition d
featpures followed along the years, resulting in an overall redundant and suboptimal format which
wasjunnecessarily complicated.

—_

— Sepgirating free-field user-defined information with no clear semauntics from the genomic da]
representation. This allows a fully interoperable and automatic exchange of information betweep
diff¢rent data producers.

<)

— Allgwing multiplexing of relevant metadata information with/the data since data and metadata are
partitioned at different conceptual levels.

(s

— Follpwing a strict and supervised development progcéss which has proven successful in the lag
30 years in the domain of digital media for the transport format, the file format, the compressefd
representation and the application program interfaces.

The ISOfIEC 23092 series provides the enablingtechnology that will allow the community to create a
ecosystg¢m of novel, interoperable, solutions in the field of genomic information processing. In particula
it offers

=]

— Conpistent, general and properly designed format definitions and data structures to store sequencing
and|alignment information. A rebust framework which can be used as a foundation to implement
diffgrent compression algorithms.

— Spegd and flexibility in the selective access to coded data, by means of newly designed data clustering
and|optimized storagé.umethodologies.

— Low latency in data’ transmission and consequent fast availability at remote locations, based op
trarjsmission ptetocols inspired by real-time application domains.

— Built-in privacy and protection of sensitive information, thanks to a flexible framework which
allopvs-€ustomizable secured access at all layers of the data hierarchy.

— Reliability of the technology and interoperabpility among tools and syStems, OWing to the provision
of a procedure to assess conformance to this document on an exhaustive dataset.

— Support to the implementation of a complete ecosystem of compliant devices and applications,
through the availability of a normative reference implementation covering the totality of the
ISO/IEC 23092 series.

The fundamental structure of the ISO/IEC 23092 series data representation is the genomic record. The
genomic record is a data structure consisting of either a single sequencing read, or a paired sequencing
read, and its associated sequencing and alignment information; it may contain detailed mapping and
alignment data, a single or paired read identifier (read name) and quality values.

viii © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Without breaking traditional approaches, the genomic record introduced in the ISO/IEC 23092 series
provides a more compact, simpler and manageable data structure grouping all the information related

to a single DNA template, from simple sequencing data to sophisticated alignment information.

The genomicrecord, although itis an appropriate logic data structure for interaction and manipulation of

coded information, is not a suitable atomic data structure for compression. To achieve high compression
ratios, it is necessary to group genomic records into clusters and to transform the information of the
same type into sets of descriptors structured into homogeneous blocks. Furthermore, when dealing
with selective data access, the genomic record unit is too small to allow effective and fast information

retrieval

Hor these reasons, this document introduces the concept of access unit, which is the-fund
structure for coding and access to information in the compressed domain.

The access unit is the smallest data structure that can be decoded by a decodet”complis
IBO/IEC 23092-2. An access unit is composed of one block for each descriptor-used to repre
ihformation of its genomic records; therefore, a block payload is the coded representation of all
df the same type (i.e. a descriptor) in a cluster.

Ih addition to clusters of genomic records compressed into access unitsy)réads are further clag
siix data classes: five classes are defined according to the result of their alignment against one
reference sequences; the sixth class contains either reads that could-not be mapped or raw sed
data. The classification of sequencing reads into classes enablesthe development of powerful §
data access. In fact access units inherit a specific data characterization (e.g. perfect matches
H substitutions in class M, indels in class I, half-mapped reads in class HM) from the genomig
domposing them, and thus constitute a data structure capable of providing powerful filtering c4
fpr the efficient support of many different use cases.

Access units are the fundamental, finest grainidata structure in terms of content protect
ih terms of metadata association. In other words each access unit can be protected individu
ihdependently. Figure 1 shows how access uiits, blocks and genomic records relate to each oth|
IFO/IEC 23092 series data structure.

amental

Int with
sent the
the data

sified in
or more
uencing
elective
in class
records

pability

ion and
ally and
er in the

| Access Unit 1

| Access Unit P

Cluster

Access UnitM |

| Access Unit Protection and Metadata | ~

Genomic Record Genomic Record Genomic Record

1
1 Block Header Desc. pos value Desc. pos value EEEsmEnm Desc. pos value

: .
j Block Header Desc. mmtype value LLLL LD Desc. mmtype value
! -

Figure 1 — Access units, blocks and genomic records

© ISO/IEC 2020 - All rights reserved

ix

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

1A

Dataset Grou i
P | Dataset Group Protection and Metadata i Genomic Reference and Metadata i
i
| Dataset
| Dataset
Dataset Descriptor Stream Descriptor Stream Descriptor Stream
| Dataset Protection and Metadata | E Descriptor Stream Descriptor Stream Descriptor Stream
PProtection and Metadatal Protection and Metadatal Protection and Metadatal

[— i e e e T e e o e e s e i e e g
1 . i i Block 1
J Access Unit Access Unit Protection Block. Block. ammmmmEE oc] H
I and Metadata (Read Descriptors) (Read Descriptors) Read Descriptors |

1 Afcess Unit

Access Unit Protection Block Block

Block 1
and Metadata (Read Descriptors) (Read Descriptors) 1

(Read Descriptors)

Access Unit Protection Block Block
and Metadata (Read Descriptors) (Read Descriptors)

Ccess Unit EssmEEmn

A datasg
could, fd

could contain for example a reference genome or a subset of its chromosomes. Datasets are grouped i

dataset

According to the ISO/IEC 23092 series, the compressed sequencing data can be multiplexed into

bitstrea
use casé
per desd
type of
provide

The ISO

represeftation and the deterministic decoding process that reconstructs the contents of datasets. Thie

decodin
identica

Figure 2 — High-level data structure: datasets and . dataset group

tis a coded data structure containing headers and oner more access units. Typical dataset
r example, contain the complete sequencing of an individual, or a portion of it. Other dataset]

=2

broups, as shown in Figure 2.

2¥)

I suitable for packetization for real-time.transport over typical network protocols. In storag
s, coded data can be encapsulated int¢ya file format with the possibility to organize block
riptor stream or per access unit, to.further optimize the selective access performance to the
Hata access required by the different application scenarios. The ISO/IEC 23092 series furthdr
areference process to convert atransport stream into a file format and vice versa.

wnn O

IEC 23092 series defines thesyntax and semantics of the compressed genome sequencing dat]

Y]

b process is fully specified such that all decoders that conform to this document will produde
decoded output. Alsimplified diagram of the decoding process is shown in Figure 3.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

B ettt LD
Blloclzl 0 AU Type 1 (P)i | —
— i i
L I Block payload parser M‘q Descriptor decoder I-—:-
Block stream 0 :
payload1 § | descripto ! dataset type
i L L
- | Block payload parser '@ﬁ| Descriptor decoder |- i 0
g : i ! MPEG-G records
P :a-.) lilocdk : H ' 25
N- i —
3 < PR Block payload parser }Mr.l Descriptor decoder I : fé
'8 raw 8 tream N-4! ! 5 dataset type
O |reference| & | Block] H 7 1
g O |payload N-33 | descriptor N ' © MPEG-G records
) = | Block payload parser Descriptor decoder ”
Data Units b1 = stream N-3 ' 2]
g access = 0 O B R e e e L 1} [;J_'I}I_p_e_ g _[N_).' 8
5] units & [pay oaé N-23} [descripto . o
8
S S | Block payload parser m Descnptor;l[ejcoder 3}@ 5 dataset type
< Type
) © A ference

d] {EEI‘E

Descriptor decoder

payload N

paramete;

Parameter set I

Figure 3 — The decoding process

|

he International Organization for Standardization (ISQ) and International Electro
(Jommission (IEC) draw attention to the fact that it is claimed that compliance with this documn
hvolve the use of a patent.

—e

Yt

50 and [EC take no position concerning the evidenge, validity and scope of this patent right.

he holder of this patent right has assured ISO and IEC that he/she is willing to negotiate licenc
easonable and non-discriminatory terms and,conditions with applicants throughout the worl
espect, the statement of the holder of thispatent right is registered with ISO and IEC. Informat
e obtained from the patent database available at www.iso.org/patents.

ttention is drawn to the possibility'that some of the elements of this document may be the
f patent rights other than thosein the patent database. ISO and IEC shall not be held respon
lentifying any or all such patent rights.

= O o o= =

echnical
ent may

bs under
1. In this
ion may

subject
sible for

© ISO/IEC 2020 - All rights reserved

Xi

http://www.iso.org/patents
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

INTERNATIONAL STANDARD ISO/IEC 23092-2:2020(E)

Information technology — Genomic information
representation —

1 Scope

This document provides specifications for the representation of the following'types of genomic
hformation:

—

- unaligned sequencing reads including read identifiers and quality values;

- aligned sequencing reads including read identifiers and quality values;

—+ reference sequences.

2 Normative references

o |

he following documents are referred to in the text.in'such a way that some or all of their| content
onstitutes requirements of this document. For dated references, only the edition cited applies. For
yYndated references, the latest edition of the refes€nced document (including any amendments)|applies.

Q

IPO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

IBO/IEC 23092-1:2020, Information technology — Genomic information representation —| Part 1:
Transport and storage of genomic inforination

3 Terms and definitions

v w]

or the purposes of thisdocument, the terms and definitions given in ISO/IEC 23092-1 [and the
bllowing apply.

-

[F0 and IEC maintain‘terminological databases for use in standardization at the following addresses:

- ISO Onlinebrowsing platform: available at https://www.iso.org/obp

—+ IEC Electropedia: available at http://www.electropedia.org/

ja
alignment
information describing the similarity between a sequence [typically a sequencing read (3.28)] and a
reference sequence (for instance, a reference genome)

Note 1 to entry: An alignment is described in terms of a position within the reference, the strand of the reference,
and a set of edit operations (matches, mismatches, insertions and deletions, clipping of the sequence ends and
splicing information) needed to turn the first sequence into the second.

© ISO/IEC 2020 - All rights reserved 1

https://www.iso.org/obp
http://www.electropedia.org/
https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

3.2

CIGAR string

CIGAR

textual way of representing an alignment (3.1)

Note 1 to entry: Several definitions have been used by different programs; the one referred to here is the one used
in the SAM format. It encodes a set of edit operations (matches, mismatches, insertions and deletions, clipping of
the sequence ends and splicing information) needed to turn the sequencing read into the reference.

3.3

dataset
compregsion unit containing one or more of: reference sequences; sequencing reads (3.28); and alignmier
(3.1) infprmation

~

Note 1 to entry: Datasets shall be as specified in ISO/IEC 23092-1.

34
deletion
contigugus removal of one or more bases from a genomic sequence

3.5
E-CIGAR
extendefl CIGAR syntax specified as a superset of the CIGAR syntax

[W

Note 1 td entry: Among other things, E-CIGAR enables the unambiguousrepresentation of substitutions, splice
reads andgl splice strandedness.

3.6
edit op¢ration

modification of a sequence of nucleotides (3.20) by mearns of a substitution, deletion (3.4), insertio
(3.18) oy clip

~

3.7
FASTA
GIR that{includes a name and a nucleotide (3:20) sequence for each sequencing read (3.28)

Note 1 td entry: Additional information is usually encoded in the read identifier by bioinformatics tools (such g
databaseginformation, and base calling.information).

%)

3.8
FASTQ
GIR thafjincludes FASTA (3%)and quality values (3.22)

3.9
first endl
end 1

read 1
first segment'of a paired-end template (3.33)

N 1 += 11l H 1osl 11 . £ . 1 | | H 4 PR o | o 4l |
ote toenty Y- TITUIIITIT A PTAUUTTIIS US UAITY S TUTTTIT S UdITU S TLUITU TITUS TITTWU ST AT ALTTITTS dITU TN UTT S ATITTUT ocr

— i.e. the n-th read of the first FASTQ file and the n-th read of the second FASTQ file belong to the same template.

3.10

genomic descriptor

descriptor

element of the syntax used to represent a feature of a genomic sequencing read (3.28) or associated
information such as alignment (3.1) information or quality values (3.22)

2 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

3.11
genomic information representation
way to describe a sequence and some information associated with it

Note 1 to entry: Which information is represented varies depending on the GIR.

3.12

genomic record
record

data structure representing a tuple (3.34) optionally associated with alignment (3.1) information, read
ilentifier (3.24) and quality values (3.22)

A3
enomic record index
osition of a genomic record in the sequence of genomic records (3.12) encoded in anyaccess unit

14

enomic record position
-based position of the leftmost mapped base on the reference genome-of the first alignment (3.1)
ntained in a genomic record (3.12)

ote 1 to entry: A base present in the aligned read and not present in«tlie reference sequence (inserfion) and
ases preserved by the alignment process but not mapped on the reference sequence (soft clips) do|not have
apping positions.

A5

enomic reference

ference

llection of reference sequences

ote 1 to entry: Typical examples are a reference génome or a reference transcriptome.

ase or set of bases originally present at either side of a read, and removed from it fgpllowing
lignment (3.1)

ote 1 to entry: The bases are no\longer present in the sequence of the read.

17

ipdel
ntiguous stretch.of nucleotides (3.20) that, when aligning two sequences, are inserted Into one
sequence, or alternatively deleted from the other, in order to make the two sequences the sams

ote 1 to entryiFrom “insertion or deletion”.

18
ipsertion
fitiguous addition of one or more bases into a genomic sequence

3.19

leftmost read end

leftmost read

sequencing read (3.28) generated by a paired-end sequencing run and mapped at a position on the
reference sequence which is smaller than the mapping position of the other read in the pair

© ISO/IEC 2020 - All rights reserved 3

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

3.20

nucleotide

base
base pai

r

monomer of a nucleic acid polymer such as DNA or RNA

Note 1 to

entry: Nucleotides are denoted as letters (‘A’ for adenine; ‘C’ for cytosine; ‘G’ for guanine; ‘T’ for thymine

which only occurs in DNA; and ‘U’ for uracil which only occurs in RNA). The chemical formula for a specific
DNA or RNA molecule is given by the sequence of its nucleotides, which can be represented as a string over the

alphabet

(‘A’,’C’,’G’, “T’) in the case of DNA, and a string over the alphabet (‘A’, ‘C’, ‘G’, ‘U’) in the case of RNA. Bases

with unk

3.21

paired-
paired-4
tuple (3.

Note 1 to|

3.22

quality
quality {
number

Note 1t
nucleotid

3.23
read gr
set of re

3.24
read id¢
read hes

read namne

text stri
and SAM

Note 1 td
as encod

3.25

rightmgst read end

rightmo
sequencl
referend

3.26

nown molecular composition are denoted with ‘N’.

end read
nd template
34) made of two segments

entry: Typically the segments correspond to the beginning and the end of the same nugcleic acid moleculg.

value
core
assigned to each nucleotide (3.20) base call in automated sequencing processes

<)

entry: Quality values express the base-call accuracy, i.e. the probability (or a related measure) for
e in the sequence to have been incorrectly determined.

Dup
hds having some property in common

bntifier
der

hg associated with each sequending read (3.28) stored in GIRs such as FASTA (3.7), FASTQ (3.9)
(3.26)

entry: The read identifier_is usually unique within its dataset, and may contain additional informatiojn
bd by bioinformatics tools\(such as database information, and base calling information).

Kt read
ng read (3i28) generated by a paired-end sequencing run and mapped at a position on thie
e sequetice which is greater than the mapping position of the other read in the pair

SAM

GIR that

1s human readable and includes FASTQ plus alignment (3.1) and analysis information

Note 1 to entry: From “Sequence Alignment/Map format”. SAM originates from the 1000 Genome Sequencing
Project. It is represented in plain ASCII, extensible by users and includes sequence, quality, alignment and
analysis information.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

3.27

second end

read 2

second segment of a paired-end template (3.33)

Note 1 to entry: Sequencing platforms usually store first and second ends in two separate files and in the same
order — i.e. the n-th read of the first FASTQ file and the n-th read of the second FASTQ file belong to the same

template.

3.28

quencing read

ad

adout, by a specific technology more or less prone to errors, of a continuous part ef\a seg
ucleotides (3.20) extracted from an organic sample

.29
ingle-end read
iple (3.34) made of one segment

~

3.30

soft clip

oft clipped bases

hase or set of bases at either side of the read that have been ignored during the alignment (3.1)

(%)

Note 1 to entry: The bases are still present in the sequence of theread.

3.31
jpliced read

ligned read which, as a consequence of biological splicing, covers non-continuous portion
reference genome being the result of biological splicing

Note 1 to entry: This means the read must come\firom RNA-sequencing, and contain at least one junction|
tvo consecutive exons.

3.32
lit alignment
ligned paired-end read (3.21) whose ends are encoded in two different genomic records (3.12)

.33
template
enomic sequence that is produced by a sequencing machine as a single unit

ote 1 to entry: Atemplate can be made of one or more segments (being called single-end sequencing r
it only has one-segment, and paired-end sequencing read when it has two segments — typically they
oth the beginning and the end of a nucleic acid molecule).

rment of

process

s of the

between

bad when
r capture

llection of one or more segments

Note 1 to entry: Each segment can be: unmapped; mapped once; or mapped more than once.

3.35
decoded genomic descriptor
result of multiplexing the decoded symbols (3.37) of one or more descriptor subsequences (3.36)

3.36
descriptor subsequence
ordered collection of decoded symbols (3.37)

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

3.37

decoded symbol

value ne

eded to reconstruct a descriptor subsequence (3.36)

Note 1 to entry: If no inverse subsequence transformation is applied, the transformed symbol shall be equal to
the decoded symbol.

3.38

transformed subsequence

ordered collection of transformed symbols (3.39)

Note 1 tg entry: The transformed symbols of one or more transformed subsequences can be multiplexed to-yield
decoded pymbols.

3.39

transformed symbol

concatepation of one or more decoded subsymbols (3.40)

3.40

decodedl subsymbol

output df an inverse subsymbol transformation applied on a transformed subsymbol (3.41)

Note 1 tolentry: See subclause 12.6.2.7. If no inverse subsymbol transformationds applied, the decoded subsymbl
shall be ¢qual to the transformed subsymbol.

3.41

transformed subsymbol

decoded cabac subsymbol

atomic yalue yielded by the cabac decoding process

4 Abbreviated terms

AU access unit

CRPS | computed reference parameters set

GIR genomic information representation

LUT look up table

QVPS [quality values parameters set

5 Conventions

5.1 General

This clalisecontains the definition of operators, notations, functions, textual conventions and processes

used throughout this document.

The mathematical operators used in this document are similar to those used in the C programming
language. However, the results of integer division and arithmetic shift operations are specified more
precisely, and additional operations are specified, such as exponentiation and real-valued division.

Number

ing and counting conventions generally begin from 0, e.g., "the first" is equivalent to the 0-th,

"the second" is equivalent to the 1-th, etc.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

5.2 Arithmetic operators

+ addition
- subtraction (as a two-argument operator) or negation (as a unary prefix operator)
* multiplication, including matrix multiplication
exponentiation
Qppr‘ifipq x to the pawer of v In other contexts such notation isused for superscripting not
intended for interpretation as exponentiation.
integer division with truncation of the result toward zero
For example, 7 / 4 and -7 / -4 are truncated to 1 and -7 / 4 and 7 / -4 are trjuncated to -1.
K division in mathematical equations where no truncation or rounding is\intended
£ division in mathematical equations where no truncation or rourding is intended
1%
& : Ny . . ,
;) summation of f(i) with i taking all integer values from xup to and includin
f(i) g g p g8y
M
IFX
nry modulus
0y Remainder of x divided by y, defined only for infegers x and y withx 2 0 and y > 0.
3.3 Logical operators
®&&y Booleanlogical AND of x and y
||y Boolean logical OR of x and y
! Boolean logical NOT
®?y:z ifxis TRUE or not equalto 0, evaluates to the value of y; otherwise, evaluates to the value of z

\/

I\

IA

3.4 Relational operators

greater than
greateythan or equal to
lesS than

less than or equal to

equal to

not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value
"na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The
value "na" is considered not to be equal to any other value.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

5.5 Bit-wise operators

&

AND

When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

OR
When operating on integer arguments, operates on a two's complement representation of the

X>>y

X<y

5.6 Asgsignment operators

++

5.7 R'1mge notation

iutcgu vathre—When oper atiug o abitar yargurmert thatcontains fewer bitsthamanother
argument, the shorter argument is extended by adding more significant bits equal to 0.

exclusive or
When operating on integer arguments, operates on a two's complement representation of thie
integer value. When operating on a binary argument that contains fewer bits tharyanother
argument, the shorter argument is extended by adding more significant bits-equal to 0.

right shift of a two's complement integer representation of x by y binary digits This functior|
is defined only for non-negative integer values of y. Bits shifted into the/MSBs as a result of
the right shift have a value equal to the MSB of x prior to the shift 0peration.

left shift of a two's complement integer representation of x by'y binary digits
This function is defined only for non-negative integer values of y. Bits shifted into the LSBs
as a result of the left shift have a value equal to 0.

not operator returning 1 if applied to 0 and 0 if applied to 1

assignment operator

increment
i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment @peration.

decrement
i.e., x— - is equivalent to.x'= x — 1; when used in an array index, evaluates to the value of the
variable prior to the decrement operation.

increment by amount specified
i.e, x += 3 isrequivalent to x = x + 3, and x += (-3) is equivalent to x = x + (-3).

decrementby amount specified
i.e, x<=/3 is equivalentto x = x - 3, and x —= (-3) is equivalent to x = x - (-3).

X=Y.Z
array[x, y]
8

x takes on integer values starting from y to z, inclusive, with x, y, and z being integer
numbers and z being greater than y

sub-array containing the elements of array comprised between position x and y included
If x is greater than y, the resulting sub-array is empty.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2

5.8 Mathematical functions

Ceil(x) smallest integer greater than or equal to x
Floor(x) largestinteger less than or equal to x

Log2(x) base-2 logarithm of x

X ; XxX<=
Min(x,y)= | d

020(E)

1)
(2)
(3

(4)

W 5 x>y

x>=y

X
Nax(x,y) =
Yy i X<y

La

.9 Order of operation precedence

Vhen the order of precedence in an expression is not indicated explicitly by use of parenth¢
bllowing rules apply:

e Wl

- Operations of a higher precedence are evaluated before any operation of a lower preceden

- Operations of the same precedence are evaluated sequentially from left to right.

=]

able 1 specifies the precedence of operations from highést to lowest; a higher position in {
ndicates a higher precedence.

—e

NOTE For those operators that are also used in the C programming language, the order of precede
1 this document is the same as used in the C programining language.

—-

Table 1 — Operation precedence from highest (at top of table) to lowest (at bottom of {

(5)

bses, the

he table

nce used

able)

perations (with operands x, y, and z)

x++", "x

Ix","-x" (as a unary prefix operatot)

Xy

x*y" "% /Y Xy %","x%y"

Y
x+y", "x - y" (as &xwo-argument operator), " Zf(i) '

1=Xx

x <<y", "x S>>y

x<y" "x&y" "x>y", "x2y

AT

x=z=y"x!=y"

X&yn

”X | yll

nX && yu

x11y"

"X?y "

"X..y”

"x=y" "x+=y", "x —=y"

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

5.10 Variables, syntax elements and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by
its name (all lower case letters with underscore characters), and one data type for its method of coded
representation. The decoding process behaves according to the value of the syntax element and to the
values of previously decoded syntax elements. When a value of a syntax element is used in the syntax
tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements
values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper
case letter and without any underscore characters (camel case notation). Variables starting with~ap
upper cgse letter are derived for the decoding of the current syntax structure and all depending syntajx
r
S

structuiles. Variables starting with an upper case letter may be used in the decoding process forlate
syntax ptructures without mentioning the originating syntax structure of the variable! Variable
starting|with a lower case letter are only used within the clause in which they are derivegd,

In some fases, "mnemonic” names for syntax element values or variable values are used interchangeably
with thgir numerical values. Sometimes "mnemonic" names are used without anyassdciated numericgl
values. The association of values and names is specified in the text. The name$-are constructed from
one or more groups of letters separated by an underscore character. Each group starts with an uppdr
case letter and may contain more upper case letters.

NOTE The syntax is described in a manner that closely follows the C-langtiage syntactic constructs.

I3

Functiops that specify properties of the current position in the.bitstream are referred to as synta
functions. These functions are specified in Clause 6 and assumé- the existence of a bitstream pointe
with an [indication of the position of the next bit to be read by-the decoding process from the bitstreanj.
Syntax functions are described by their names, which are>constructed as syntax element names anfd
end with left and right round parentheses including zero or more variable names (for definition) o
values (for usage), separated by commas (if more thamtone variable).

—

—

Functiofs that are not syntax functions (including*mathematical functions specified in subclause 5.2)
are desdribed by their names, which start witli-an upper case letter, contain a mixture of lower and
upper cdse letters without any underscore ¢haracter, and end with left and right parentheses including
zero or more variable names (for definition) or values (for usage) separated by commas (if more thap
one varipble).

A one-d|mensional array is referfed to as a list. A two-dimensional array is referred to as a matrix.
Arrays ¢an either be syntax elements or variables. Subscripts or square parentheses are used for the
indexing of arrays. In referehce to a visual depiction of a matrix, the first subscript is used as a roy
(vertical) index and the second subscript is used as a column (horizontal) index. The indexing ordgr
is reverged when using-square parentheses rather than subscripts for indexing. Thus, an element of p
matrix { at horizontalposition x and vertical position y may be denoted either as s[x][y] or ass,,.
single c¢lumn of a matrix may be referred to as a list and denoted by omission of the row index. '[yhu 5,
the column of a matrix s at horizontal position x may be referred to as the list s[x].

A speciffication of values of the entries in rows and columns of an array may be denoted by { {...} {..|}
}, wherq each inner pair of brackets specifies the values of the elements within a row in increasinig
column order and the rows are ordered in increasing row order. Thus, setting a matrix s equalto {{1 6
}{49}}specifiesthats[0][0]issetequalto1,s[1][0]issetequalto6,s[0][1]issetequalto4,and
s[1][1]1issetequaltoO9.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example,
'01000001' represents an eight-bit string having only its second and its last bits (counted from the most
to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of
binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an
eight-bit string having only its second and its last bits (counted from the most to the least significant
bit) equal to 1.

10 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by

any value different from zero.

5.11 Text description of logical operators
In the text, a statement of logical operations as would be described mathematically in the followi

if(condition 0)

ng form:

statement 0
¢lse if(condition 1)
statement 1

D -

[se /* informative remark on remaining condition */
statement n

may be described in the following manner:

.4 as follows / ... the following applies:

— If condition 0, statement 0

— Otherwise, if condition 1, statement 1

- Otherwise (informative remark on remaining cendition), statement n

Q O o

an be identified by matching "... as follows" or "... the following applies" with the ending "Other

]

—

(condition 0a && condition Ob)
statement 0

¢lse if(condition 1a || condition 1b)

statement 1

dlse

statementn

.} as follows'/ ... the following applies:

— _“f all of the following conditions are true, statement 0:

ach "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "...
he following applies” immediately followedchy "If ... ". The last condition of the "If ... Otherwise, if ...
therwise, ..." is always an "Otherwise, ..."~Interleaved "If ... Otherwise, if ... Otherwise, ..." stdqtements

wise, ...".

h the text, a statement of logical operations as would be described mathematically in the following form:

— condition Ua
— condition 0b

— Otherwise, if one or more of the following conditions are true, statement 1:
— condition 1a

— condition 1b

— Otherwise, statement n

© ISO/IEC 2020 - All rights reserved

11

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

In the text, a statement of logical operations as would be described mathematically in the following form:

if(condi

tion 0)

statement 0

if(condi

tion 1)

statement 1

may be described in the following manner:

— Wh

ncondition Q0 statement0

— Wh

5.12 Py

Process
and inv
dependi
specific

has explicitly specified an output. The output is a variable that can either b& an upper-case variable g

a lower-

When in

— Ifthe variables at the invoking and the process specification doret have the same name, the variables

are

— Oth
assi

In the sy
a value ¢

6 Syn

61 M

The syn
the synt]

Table 2
that a sy
position

bn condition 1, statement 1

[0CESSES

s are used to describe the decoding of syntax elements. A process has a separate specificatio
pking. All syntax elements and variables that pertain to the current syntax structure an
hg syntax structures are available in the process specification and (invoking. A proces
htion may also have alower-case variable explicitly specified as input. Each/process specificatio

= e W D

case variable.

voking a process, the assignment of variables is specified as follews:

explicitly assigned to lower-case input or output variables of the process specification.

brwise (the variables at the invoking and the process specification have the same name),
pnment is implied.

ecification of a process, a specific coding bléck may be referred to by the variable name havinjg
qual to the address of the specific coding block.

tax and semantics

ethod of specifying syntax'in tabular form

Lax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints op
ax may be specified; either directly or indirectly, in other clauses.

[72)

ists examples,of-the syntax specification format. When syntax_element appears, it specifie
mtax elemenfis parsed from the bitstream and the bitstream pointer is advanced to the nex
beyond the/syntax element in the bitstream parsing process.

(i

Table 2 — Examples of the syntax specification format

Svntax Tvne
Y I

/* A statement can be a syntax element with an associated data type or can be an expression used
to specify conditions for the existence, type and quantity of syntax elements, as in the following two
examples */

syntax_element ue(v)

conditioning statement

/*A group of statements enclosed in curly brackets is a compound statement and is treated func-
tionally as a single statement. */

12

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 2 (continued)

Syntax

Type

Statement

Statement

A wihtle “structure spectfies a testof Witethera condition 1S Trie, and f Irue, Spectfies evatuation
fa statement (or compound statement) repeatedly until the condition is no longer true */

yhile(condition)

statement

* A"do ... while" structure specifies evaluation of a statement once, followed by a tesbefwhether a
ondition is true, and if true, specifies repeated evaluation of the statement until the condition is no
longer true */

dlo

statement

yhile(condition)

* An "if ... else" structure specifies a test of whether a conditign'is true and, if the condition is

{rue, specifies evaluation of a primary statement, otherwisejspecifies evaluation of an alternative
tatement. The "else" part of the structure and the associated alternative statement is omitted if no
\Iternative statement evaluation is needed */

if(condition)

primary statement

blse

alternative statement

* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and
f the condition is true, specifiesi\repeated evaluation of a primary statement followed by a subse-
uent statement until the condition is no longer true. */

for(initial statement; condition; subsequent statement)

primary statement

.2 Bit ordering

NISB and-proceed to the LSB.

4.3” Specification of syntax functions and data tyvpes

Hor bit-oriented delivery, the bit order of syntax fields in the syntax tables is specified to start

with the

The functions presented here are used in the syntactical description. These functions are expressed
in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the

decoding process from the bitstream.

byte_aligned() is specified as follows:

— Ifthe current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is the

first bitin a byte, the return value of byte_aligned() is equal to TRUE.

— Otherwise, the return value of byte_aligned() is equal to FALSE.

© ISO/IEC 2020 - All rights reserved

13

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit

position

s. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance

the bitstream pointer.

decode_bit() decodes the next bit from the bitstream using either the arithmetic decoding engine
(subclause 13.2.4) or read_bits(1), as determined by the decoding configuration.

Size(array_name[]) returns the number of elements contained in the array named array_name.

The following data types specify the parsing process of each syntax element:

— ae(V
typ¢

— ae(t
dats

— f(n)

pro

— i(n):
ma
is s]
inte|

— se(V
pro

— st(v
(UT
st(v
conf
poiy
rety

— u(n)
ma|
spe
an y

— ue(y
par

— u7(y
sign
sign
for 4

): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this-datpa
e is specified in subclause 12.5.2.2.

: context-adaptive arithmetic entropy-coded termination syntax. The parsing process for this
type is specified in subclause 12.5.2.5.

fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing
fess for this data type is specified by the return value of the function read(bits(n).

n__n

signed integer using n bits. When n is "v" in the syntax table, the aumber of bits varies in
ner dependent on the value of other syntax elements. The parsing-process for this data typ
pecified by the return value of the function read_bits(n) integpréted as a two's complemer
oer representation with most significant bit written first.

—+ O

:signed integer 0-th order Exp-Golomb-coded syntax elentent with the left bit first. The parsinig
ress for this data type is specified in subclause 12.2.4.2;

: null-terminated string encoded as universal coded character set (UCS) transmission format-
F-8) characters as specified in ISO/IEC 10646:. The parsing process is specified as follow

reads and returns a series of bytes from thesbitstream, beginning at the current position an
inuing up to but not including the next byteécthat is equal to 0x00, and advances the bitstrear
ter by (stringLength + 1) * 8 bit positions, where stringLength is equal to the number of byte
rned.

n = 770

n_n

: unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in
ner dependent on the value of other syntax elements. The parsing process for this data type i
rified by the return value ofithe function read_bits(n) interpreted as a binary representation d
nsigned integer with most significant bit written first.

[*Y)

—_— "

): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. Thie
ing process for thisidata type is specified in subclause 12.2.4.

-

): variable sized unsigned integer computed by iteratively reading 8 bits, where the leas
ificant 7 bitsiare interpreted as a binary representation of an unsigned integer v, with the mos
ificant bit written first, and the 8th bit signaling if the iteration should stop. The parsing proceg
his datatype is specified below:

w0 ~+

V=

do {

c =read_bits(8);

v=(v<<7)] (c&0x7f);

} while (c & 0x80)

— c(n)

14

: sequence of n ASCII characters as specified in ISO/IEC 10646.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

6.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within each structure
are specified in a clause following the clause containing the syntax structures. When the semantics of
a syntax element are specified using a table or a set of tables, any values that are not specified in the
table(s) shall not be present in the bitstream unless otherwise specified in this document.

7 Data structures

.1 General

bclause 7.2 specifies the structure of a data unit. A data unit is a data structure used as-contpiner for
draw reference structure, a parameter set structure or an access unit structure.

jubclause 7.3.2 specifies the structure of a raw reference.
bclause 7.4 specifies the structure of a parameter set. A parameter set consists of a parent parameter

set identifier, a parameter set identifier and encoding parameters as specified in subclause 7.4.1.

(@s)

ubclause 7.5 specifies the structure of an access unit. An access unit.consists of an access unif header,
bllowed by one or more blocks. Table 19 in subclause 7.5.1.2 specifies.the syntax for an access unit header.

-

lwul

ach block consists of a block header, as specified in subclause 7.5.1.3.2, followed by a block payload as
pecified in subclause 7.5.1.3.3.

%)

.2 Data unit

~1

Table 3 — Data unit syntax

Syntax Type
data unit () {
data_unit_type u(8)
if (datd ynit type == 0) {
data.unit_size u(64)
¥aw_reference () raw reference
}
else if (data unit type == 1) {
reserved u(10)
data_unit_size u(22)
parameter_set () parameter set
}
else if(data unit type == 2){
reserved u(3)
data_unit_size u(29)
access_unit () access unit

}
else /*(data unit type > 2)*/{

/*skip data unit*/

© ISO/IEC 2020 - All rights reserved 15

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

data_unit_type specifies the type of data unit. Table 4 lists the values of data_unit_type and the

associated data unit types.

Table 4 — Values of data_unit_type and associated data unit types

data_unit_type Data unit type Clause
0 raw reference 7.3
1 parameter set 74
2 access unit 75

data_unit_size is the total size in bytes of the data unit including the bytes used for data_unit.typ

and data_unit_size.

raw_ref¢rence() is a raw_reference structure as specified in subclause 7.3.

parameter_set() is a parameter_set structure as specified in subclause 7.4.

access_ynit() is an access_unit structure as specified in subclause 7.5.

A confomant bitstream containing at least one data unit of type access unitshall contain at least one

data unilt of type parameter set.
7.3 Raw reference

7.3.1 [General

This subiclause specifies the data structure used to represent a raw reference. This structure shall b

used to:

— deliyer reference sequences to the decoder,

— retyrn decoded reference sequences or part-thereof from the decoder.

If a raw|reference is required to decode acgess units, this raw reference shall be made available to thie

decoder|prior to any other data unit.

7.3.2 Byntax and semantics

Table 5 — Raw reference syntax

[¢]

Syntax Type
raw_reference () {
seq_count u(16)
for (i=0; i<seq count; i++) {
sequence_ID u(16)
Seq_sStart(sequence ID] u(40)
seq_end[sequence ID] u(40)

ref sequence[sequence_I1D]

c(seq_end - seq_start + 1)

}

seq_count is the number of reference sequences in the raw reference.

sequence_ID is reference sequence identifier. Each sequence_ID is unique and shall correspond to one
sequence_name specified in ISO/IEC 23092-1:2020, 6.5.2.3.3.

16

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

seq_start[sequence_ID] is the coordinate, on the reference sequence identified by sequence_ID, of the
first base present in the ref_sequence[] array.

seq_end[sequence_ID] is the coordinate, on the reference sequence identified by sequence_ID, of the
last base present in the ref_sequence[] array.

ref_sequence[sequence_ID][i] is the ith base in the reference sequence identified by sequence_ID.

7.4 Parameter set

1.4.1 Syntax and semantics

This subclause specifies the parameter set syntax and semantics.

Table 6 — Parameter set syntax

Syntax Type
parameter set() {
parameter_set ID u(8)
parent parameter_ set ID u(8)

encoding parameters()

}

parameter_set_ID is the unique identifier of the parameter set.
parent_parameter_set_ID is the unique identifier of an existing parameter set. Referencing anlexisting
fdarameter set from another parameter set enables the generation of a hierarchy of parameter sets
where the values of the encoding parameters ofieach element override the corresponding valugs of the
fdarent node. If equal to parameter_set_ID, the’parameter set is at the top level in the hierarchy.
gncoding_parameters() are the encodingparameters as specified in subclause 7.4.2 of this doctiment.
1.4.2 Encoding parameters
71.4.2.1 General
The encoding parameters-are configuration parameters used during the decoding process.
Table 7 — Encoding parameters syntax
Syntax Type
bncoding parameters () {
dataset type u(4)
alphabet ID u(8)
—read_tength u(2%)

number of template_segments_minusl u(2)

reserved u(6)

max_au_data unit_size u(29)

pos_40 _bits_flag u(1)

qv_depth u(3)

as_depth u(3)

num_classes u(4)
© ISO/IEC 2020 - All rights reserved 17

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 7 (continued)
Syntax Type
This for loop specifies the
for(j=0; j < num classes; j++) order of data classes for the
entire syntax structure.
class_ID[]] u(4)
for (i=0; 1 < NUM DESCRIPTORS; i++) {
class_specific_dec_cfg flagl[i] u(1)
Jf (class_specific dec cfg flag[i] == 0) { ,.(\
Descriptor configurati T
descriptor configuration (i) specified in Subclausé EE.Z.Z
applied to all classes,/”
else { r\g‘l/
for (3=0; j< num classes ; j++) { n(b\')
Descri rkonfiguration, as
descriptor configuration (i) :pe% la;?iﬁjﬁz‘c.i?i'eiipg;ed
+elass_ID[j].
«J-
} Z O
num [groups AO\ u(16)
for(j=0; j < num groups; J++) RN
Bgroup_ID[]] Q » st(v)
mulffiple alignments_flag ;\(\Q) u(1)
spliced reads_flag Q\'\ u(1)
resqrved ‘\\Q)‘ u(30)
sigrlature_flag xo\‘ u(1)
if (dignature flag != 0){ ’\j“\'
signature_constant_length_flaﬁ‘\\\) u(l)
if (signature_constant_leng‘th_:fiag '= 0){
signature_length f'\@ u(8)
) C”
} .
for|(c = 0; c < nu%%ses; ct++) {
q [v_coding_mode\‘o) u(4)
£ (qv_codingmdde == 1) {
qvps_‘_(l%\ u(1)
if(GyPs_flag)
fi&%arameterisetiqvps (class_ID[c]) See subclause 7.4.2.3.
[1o
qvps_preset_ID u(4)
}
qv_reverse_flag u(1)
}
crps_flag u(1)

18 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 7 (continued)
Syntax Type
if (crps flag)
parameter set crps() See subclause 7.4.2.4.
while (!byte aligned())
nesting zero bit (1)
}

ataset_type specifies the type of data encoded in the dataset. The possible values are: 0 = non-aligned
dontent; 1 = aligned content; 2 = reference.

<]

Iphabet_ID identifies the alphabet of symbols used for data encoded in access units referring|to these
ncoding parameters. shows the alphabets associated to each value of alphabet_ID:-

(0}

et

ead_length specifies the length in bases of sequencing reads. The value Qyindicates the presence
f variable read lengths. Variable read lengths are signalled genomic |record as spegified in
ubclause 10.4.9).

w_O

=

umber_of_template_segments_minus_1 specifies the number ofysegments in each seguenced
emplate. For single read sequencing it is set to 0, for paired-end séquencing it is set to 1. The|variable
umberOfTemplateSegments is set to number_of_template_segments_minus_1 + 1.

=

=

hax_au_data_unit_size is the maximum value permittedte‘the field data_unit_size in the dpta unit,
Fhen data_unit_type is equal to 2, as specified in subclatise’7.2. A value of 0 indicates an ungpecified
maximum data unit size.

<

pos_40_bits_flag is set to 1 when the mapping positions are expressed as 40 bits integers. Otherwise
Il mapping positions are expressed as 32 bits jritegers. In the scope of this document the valyie of the
ariable posSize is set to 32 when pos_40_bits-flag is equal to 0 and set to 40 otherwise.

v_depth specifies the number of quality~values associated to each nucleotide. A value of 0 mgans that
o quality values are encoded. The maximum value shall be 2.

s_depth specifies the number of alignment scores associated to each alignment. A value of D means
that no alignment scores are encoded. The maximum value shall be 2.

um_classes specifies the iumber of data classes encoded in all access units referring to thef current
arameters Set.

ass_ID is one of thedata class identifiers specified in subclause 9.5. For any value of ci greatgr than 0
it shall always be‘elass_ID[ci] > class_ID[ci - 1].

UM_DESCRIRTORS is a constant counting the number of genomic descriptors specified in this
ocumentand it is set to 18.

ass_specific_dec_cfg_flag signals the presence of class-specific decoder configuration for] a given
ese, ID. If set to 0, only one decoder configuration is signalled for all classes. Otherwise, separpte class
spetificdecoderconfigurationsaresignatted:

descriptor_configuration(i) signals the descriptor’s decoder configuration as specified in
subclause 7.4.2.2.

num_groups specifies the number of read groups present in all access units referring to the current
Parameters Set. If num_groups is set to 0, the rgroup descriptor shall not be present in the AUs
referring to this parameter set.

rgroup_ID is the null-terminated string identifier of a read group. The maximum allowed length is 64
characters not including the terminating character.

© ISO/IEC 2020 - All rights reserved 19

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

multiple_alignments_flag is a flag signaling the presence of multiple alignments in the access unit.
When set to 0 no multiple alignments are present.

spliced_reads_flag signals the presence of spliced reads in the access unit. When set to 0 no spliced
reads are present.

reserve

d is set to 0 and reserved for future use.

signature_flag signals the presence of signatures in the access unit. When set to 0 no signatures are

present.

signatu

signatu
flagiss

qv_codi

qvps_flag signals the presence of a parameter_set_qvps(class_ID[c]) element.

re_constant_length_flag signals if all signatures in an access unit have the same constant lengtlll.

re_length specifies the length in bases of signatures when the signature_constant. 'length_
bt to 1.

ng_mode shall be set to 1, all other values are reserved.

qvps_pieset_ID signals the ID of the quality values parameter set preset as specified ip
subclauge 10.4.16.
parametfer_set_qvps(class_ID[c]) is the quality values parameter set as-specified in subclause 10.4.16.
If not prjesent, the parent quality values parameter set identified by parent_parameter_set_ID shall
be used
qv_reverse_flag signals if the decoded qv string shall be reyersed in the decoding process specified ip
subclauge 10.4.16.2.
crps_fldg signals the presence of a parameter_set_crps()-element.
parameter_set_crps() is the computed reference parameter set as specified in subclause 11.3. If nqt
present,| the computed reference parameters _set of the parent parameter set identified by parent_
parameter_set_ID shall be used.
nesting| zero_bit is one bit set to 0.
7.4.2.2 | Descriptor configuration'syntax and semantics
Table 8 — Descriptor configuration syntax
Syntax Type
descrigtor configuba¥ion (desc ID) {
dec [cfg_preset u(8)
if (dec cfg-preset == 0) {
gncoding mode_ ID u(8)
jf(desc ID != 11 && desc ID != 15)
decoder configuration (encoding mode ID) As specified in 12.3.
else if(desc ID == 11 || desc ID == 15){
decoder configuration tokentype (encoding mode ID) Asspecﬂiedian.&S.
}
}
else{
/* reserved for future use */
}
}

dec_cfg_preset shall be set to 0 to signal the presence of a decoder configuration.

20

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

encoding_mode_ID when set to 0 it signals the use of CABAC compression. Other values are reserved.

decoder_configuration(encoding_mode_ID) signals the decoder configuration parameters as specified
in subclause 12.3.

decoder_configuration_tokentype(encoding_mode_ID) signals the decoder configuration parameters
as specified in subclause 12.3.5.

7.4.2.3 Quality values parameter set syntax and semantics

7.4.2.3.1 General

Table 9 — Syntax of the quality values parameter set

Syntax Type

parameter set qvps(class id) {

qv_num_codebooks_total 1(4)

for (b = 0; b < gv_num codebooks total; b++) {

qv_num_codebook _entries[Db] b (8)

for (e = 0; e < gv_num codebook entries[b]; e++) {

qv_recon[b] [e] 1(8)

dv_num_codebooks_total is the number of quality¥value codebooks. When qvps_flag is equaljto 1, the
minimum allowed value is 2 for class_id == Class>I or class_id == Class_HM. Otherwise , the minimum
allowed value for all other classes is 1. For class. id == Class_U, this value shall be set to 1.

qv_num_codebook_entries[b] is the number of qv_recon elements in the quality value cpdebook
lentified by b. The minimum allowed value is 2 and the maximum allowed value is 94.

—

v_recon[b][e] is the quality valde,reconstructed from a quality value index identified by e, ysing the
uality value codebook identified by b.

NolNo]

vNumCodebooksAligned (is)the state variable indicating the number of quality value codebogks used
br aligned reads computed as specified in Table 10.

s Ne)

Table 10 — Computation of qvNumCodebooksAligned

| £ (class i@/== Class I || class id == Class HM) ({
/* For\elasses I and HM, the last codebook is reserved for unaligned data */
gviNumCodebooksAligned = gv_num codebooks total - 1

edse if(class id != Class U) { /* Classes P, N, M*/

gvNumCodebooksAligned = gv_num codebooks total
} else { /* Class U */

gvNumCodebooksAligned = 0

7.4.2.3.2 Quality values parameter set presets

This specification provides three quality values parameters presets, identified by qvps_preset_ID.

© ISO/IEC 2020 - All rights reserved 21

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

7.4.2.3.2.1 Support of all printable ASCII characters

This set of parameters (see Table 11) supports the representation of all printable ASCII characters. It is
identified by qvps_preset_ID equal to 0.

Table 11 — Parameters for the support of all printable ASCII characters

Parameter name Value
qv_num_codebooks_total 1
qv_num_codebook_entries 94

The rec¢nstructed quality values qv_recon[0][i] are derived from quality value indexes i, with.i b€injg
an integper number in the range 0..93, with the following expression:

qv_recon[0][i] =i+ 33

7.4.2.3.2.2 Quantized quality values, offset 33, range 0-41

This set] of parameters (see Table 12) supports the representation of quantized-/quality values in thie
range 0.]41 with an offset equal to 33. It is identified by qvps_preset_ID equal to 1.

Table 12 — Parameters for quantized quality values, offset 33, range 0-41

Parameter name Value
qv_num_codebooks_total 1
gqv_num_codebook_entries 8

Table 13 shows how the reconstructed quality values gi=recon[0][] are derived from the quality valule
indexes,

Table 13 — Values of qv_recon for each value of entry when qvps_ID is equal to 1

qv_recon
33
41
46
51
56
61
66
74

N[O |W N RO -

7.4.2.3.2.3_“Quantized quality values, offset 64, range 0-40

This set of parameters supports the representation of quantized quality values in the range 0..40 with
an offset equal to 64. It is identified by qvps_preset_ID equal to 2.

Table 14 — Parameters for quantized quality values, offset 64, range 0-40

Parameter name Value
qv_num_codebooks_total 1
qv_num_codebook_entries 8

Table 14 shows how the reconstructed quality values qv_recon[0][] are derived from the quality value
indexes.

22 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 15 — Values of qv_recon for each value of i when qvps_preset_ID is equal to 2

qv_recon|[0][i]

64

72

77

Q

N O | U | BRI O -

104

1.4.2.4 Computed Reference parameter set

his subclause specifies the data structure used to carry parameters related to the r
omputation algorithms specified in subclause 11.3.

Table 16 — Syntax of the computed referénce parameter set

Syntax Type
parameter set crps() {
cr_alg ID u(8)
if(cr alg ID == 2 || cralg ID == 3){
cr_pad size u(8)
cr_buf max size u(24)
}
}

< 0

cference

possible

r_alg_ID signals the reference computation algorithm as specified in subclause 11.3.4. The
alues for cr_alg_ID are listed.in Table 17. The value 0 is reserved.
Table 17 — Valuesof cr_alg_ID and corresponding reference computation algorithr
cr_alg_ID algorithm
0 reserved
1 RefTransform
2 Pushln
3 Local Assembly
4 Global Assembly
5..255 reserved

cr_pad_size is the number of bases used for padding in the process specified in subclause 11.3.4.

cr_buf_max_size is the maximum size in bytes of the buffer used in the decoding process as specified

in subclause 11.3.

7.5 Access unit

An access unit (AU) is alogical data structure containing a coded representation of genomic information.
It is the smallest data structure that can be decoded.

©ISO/IEC 2020 - All right

s reserved

23

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

7.5.1 Syntax and semantics

7.5.1.1 General

This subclause specifies the access unit syntax (see Table 18) and semantics.

Table 18 — Access unit syntax

Syntax

Type

access_unit () {

access_unit header ()

access unit header

for (i=0; i<num blocks; i++) {

block[i] ()

block

}

access_unit () {

access_ynit_header() is specified in subclause 7.5.1.2.

num_bl

unit_hedder as specified in subclause 7.5.1.2.

block([i][) is a block as specified in subclause 7.5.1.3.

7.5.1.2

Access unit header

This subclause specifies the access unit header syntax andsemantics.

Table 19 — Access unit header syntax

bcks specifies the number of blocks encoded in the access unit and itis encoded in the accesq_

Syntax Type
access |lunit header () {
accgss_unit_ID u(32)
num [blocks u(8)
pargmeter set ID u(8)
AU_type u(4)
reads_count u(32)
if (JU_type == N_TYRB. M || AU type == M_TYPE AU) {
fm_threshold u(16)
nlm_count u(32)
}
if (qataset"type == 2) {
fef~sequence_ID u(16)
ref_start _position u(posSize)
ref_end position u(posSize)
}
if (AU Type != U TYPE AU)
{
sequence_ID u(16)
AU_start position u(posSize)
AU_end_position u(posSize)

24

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2

020(E)

Table 19 (continued)
Syntax Type
if (multiple_alignments_flag) { Specified in subclause 7.4.2.
extended AU start position u(posSize)
extended AU _end position u(posSize)
}
}
SERCISIN
if (signature_flag != 0) { Specified in sub¢latise 7.4.2.
num_signatures u(16)

for (i=0; i< num signatures; i++) {

if (signature constant length flag == 0) {
signature_length[i] u(8)
}
signature[i] u(signatureSize)

}

while(!byte aligned())

nesting zero bit f(1)

dccess_unit_ID is an unambiguous identifier for.each AU_type, zero-based. If AU_type is n
b U_TYPE_AU, it is encoded with respect to each reference sequence (identified by a specific
equence_ID), i.e., it is reset for the first access’unit aligned on a specific reference sequence.

wn_ct+

=

um_blocks specifies the number of Blocks in the access unit.

arameter_set_ID is a unique identifier of the parameter set to be used to decode the acces
Uhich this access unit header belongs. Decoding of an access unit is unspecified if at least one pa
h the hierarchy of parameter sets referred to by the field parameter_set_ID of the access
y the fields parent_parafnéter_set_ID of the parameter sets in the same hierarchy, as spe
ubclause 7.4.1, set is notavailable.

L o = <

(2N~

ubclause 7.5.2,

ot

eads_count.signals the number of genomic sequencing reads encoded in the access unit.

hm_threshold specifies the maximum number of substitutions a read (of class N or M) shall c(
e caunited by mm_count. If set to 0 the feature of counting substitutions in encoded reads is d

o=

lU_type identifies‘the type of access unit and the class of data carried therein as spe¢

pt equal
value of

5 unit to
rameter
init and
cified in

ified in

ntain to
isabled.

iy eyt oo fiocthaniimahar Afenade anmondadinthn annncc nurabar Af o h e
T Fsyvacyy

Litutions

it cantaing
M CounITop Tttt oI T motT o r Catds TrrCoato Hthre-ateess it coitatih \" s areavyvreg

if the threshold is set to 0.

ref_sequence_ID specifies the identifier of the reference sequence encoded in this access unit.

he
which is equal to or lower than the threshold specified by mm_threshold. mm_count shall be set to 0

ref_start_position specifies the position on the reference sequence of the first base encoded in this

access unit.

ref_end_position specifies the position on the reference sequence of the last nucleotide encoded in this

access unit.

© ISO/IEC 2020 - All rights reserved

25

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

sequence_ID is the identifier of the reference sequence to be used to decode this access unit as specified
in clause 10. It corresponds to a sequence_ID element in Table 5.

AU_start_position is the position of the leftmost mapped base among the first alignments of all
genomic records encoded in the access unit irrespective of the strand.

AU_end_position is the position of the rightmost mapped base among the first alignments of all
genomic records encoded in the access unit irrespective of the strand.

extended_AU_start_position specifies the position of the leftmost mapped base among all alignments
of all geflomic records contained In the access UNIt, Irrespective of the strand.

extend¢d_AU_end_position specifies the position of the rightmost mapped base among all aligniment]
of all gefomic records contained in the access unit, irrespective of the strand.

[72)

-

num_signatures specifies the number of signatures used to index unmapped reads as,specified i
ISO/IEC|23092-1.

signatufe_length specifies the signature length in terms of bases of a variable leggth signature.

signatupe is the unsigned integer representing the signature of the cluster thisaccess unit belongs to,
as specified in ISO/IEC 23092-1. The length in bits of this field, named signatureSize shall be calculatefd
using the signature_length specified in Table 19 as follow:

signatureSize = signature_length * bits_per_symbol

with bits_per_symbol corresponding to BitsPerSymbol(S, apét 1) as specified in Table 34 wit
alphabet_ID as specified in subclause 7.4.2, and with signature_length corresponding either t
signatute_length as specified in subclause 7.4.2 when signature_constant_length_flag (as specified i
subclauge 7.4.2) is equal to 1 or to the signature-specifiesignature_length[i] specified in Table 19 whe
signature_constant_length_flag (specified in subclause\7.4.2) is equal to 0.The j-th base in a signature i
represefited by the u(bits_per_symbol) value computed as follows:

wn = =2 O =

signatutte_base[i][j] = S,jpnabet_pl(signature[i] *>((signature_length - j - 1) * bits_per_symbol))
& ((1 <<,bits_per_symbol) - 1)]
with S, bapee 1p as specified in Tables34-with alphabet_ID as specified in subclause 7.4.2

posSize |s specified in subclause-7:4:2.
7.5.1.3 | Block

7.5.1.3.1 General

This sufclause specifies the block syntax (see Table 20) and semantics.

Table 20 — Block syntax

Syntax Type
block () {
block_header () block header
block payload() block payload
}

block_header is a block header structure as specified in subclause 7.5.1.3.2.

block_payload is a block payload structure as specified in subclause 7.5.1.3.3.

26 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

7.5.1.3.2 Block header

This subclause describes the block header syntax (see Table 21) and semantics.

Table 21 — Block header syntax

Syntax Type
block header () {
reserved u(1)
descriptor_ ID u(7)
reserved u[3)
block payload _size u(29)

}

p—t

eserved bits used to preserve byte alignment.

descriptor_ID signals the descriptor type as specified in Table 24. Its value/shall be unique among all
Hlocks in the access unit.
s

lock_payload_size specifies the size in bytes of the block payloadt

74.5.1.3.3 Block payload

This subclause specifies the syntax (see Table 22) and semantics of the block payload sfructure
ontaining entropy-coded descriptors.

Q

Table 22 — Block payload syntax

Syntax Type
lock payload(descriptor ID) {

if (descriptor ID == 11 || descriptor ID == 15) {
encoded tokentype () As specified in 10.4.20.2.

}

else {

encoded descriptor sequences (descriptor ID) As specified in 12.6.2

b

}
while (!byte al4gned())

nesting_zero _bit ﬂl)

gncoded.fokentype() is a data structure specified in subclause 10.4.20.2 carrying encoded tgkenized
strings.

gncoded_descriptor_sequences(descriptor_ID) is a data structure specified in subclause [12.6.2.2
carrying the encoded genomic descriptors for sequences and quality values speciiied In Clause 8.

nesting_zero_bit is one bit set to 0.

7.5.2 Access unit types

AUs can be of different types according to the nature of the coded data. An access unit contains encoded
genomic records belonging to a single data class as shown in Table 23.

© ISO/IEC 2020 - All rights reserved 27

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 23 — Class of encoded data per access unit type

The blo
corresp
Descripf

AUs of 3
and/or d
8 Des

When d
those re

optional.

Descript

Descript
transfor
and its s

Access unit type Data class
AU type name Value

P_TYPE_AU 1 Class P
N_TYPE_AU 2 Class N
M-FYPEAY 3 Cherssid
I_TYPE_AU 4 Class 1
HM_TYPE_AU 5 Class HM
U_TYPE_AU 6 Class U

rks of descriptors encoded in one access unit as specified in subclause 7.5:Z3 are those
bnding to sequencing reads belonging to one class of data as specifiedin’ subclause 9.5.
ors carried by each access unit type are listed in Table 24.

ny class can be possibly associated with blocks of descriptors representing the read names
uality values of the encoded sequencing reads.

jcriptors

D

htaset_type specified in subclause 7.2 is equal to 0 or 15 the only mandatory descriptors an
quired to represent the sequences of nucleotides, whereas read names and quality values ar

D

ors are the output of the decoding process specified in 10.4.

ors required for the representation of -sequencing reads, quality values, read names an
med reference sequences are shown id.Table 24. Descriptors are specified in subclause 10.
ubclauses.

=

Table 24 — Genomic descriptors

28

descriptor_ID | Genomic¢ descriptor | Number of descriptor| Decoding process
name subsequences
AO : sequencing reads

0 pos 2 10.4.2
1 rcomp 1 10.4.3
2 flags 3 10.4.4
3 mmpos 2 10.4.

4 mmtype 3 10.4.6
5 clips 4 10.4.7
6 ureads 1 10.4.8
7 rlen 1 1049
8 pair 8 10.4.1
9 mscore 1 10.4.11
10 mmap 5 10.4.12
11 msar 2 10.4.13
12 rtype 1 10.4.14
13 rgroup 1 10.4.1

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 24 (continued)
descriptor_ID | Genomic descriptor | Number of descriptor| Decoding process
name subsequences
quality values
14 qv Variable, as specified in|10.4.16
subclause 10.4.16.
read names

15 rname 2 10.4.17

reference sequences _
16 rftp 1 10.4.18
17 rftt 1 10.4.19

Table 25 — Subsequences for descriptor_ID = 0 (pos descripter)

|subsequence_lD Semantics

Type

0 Mapping position of the first alignment.

Signed integer

| Mapping position of additional alignments.

Signed integer:

Table 26 — Subsequences for descriptor_ID =2 (flags descriptor)

[subsequence_ID Semantics Type

0 Read is PCR or optical duplicate. Unsigned integer with value either 0 o1 1.
| Read fails platform/vendor quality chécks. |Unsigned integer with value either 0 off 1.
p Read mapped in proper pair Unsigned integer with value either 0 oy 1.

Table 27 — Subsequences for descriptor_ID = 3 (mmpos descriptor)

pubsequence_lD Semanties

Type

0 Terminator flag

Unsigned integer with value either 0 o1 1.

| Position value

Unsigned integer.

Table 28 — Subsequences for descriptor_ID = 4 (mmtype descriptor)

jsubsequence_ID Semantics Type

0 Symibol type flag Unsigned integer with values either 0, 1 or 2.
| Substitution type Unsigned integer.

P Insertions type Unsigned integer.

Table 29 — Subsequences for descriptor_ID = 5 (clips descriptor)

jsubsequence_ID Semantics Type

0 Record identifier Unsigned integer.

1 Type/Position flag Unsigned integer as specified in subclause 10.4.7.
2 Nucleotides indexes with terminators |Unsigned integer as specified in Table 54.

3 Hard clips length Unsigned integer.

© ISO/IEC 2020 - All rights reserved

29

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 30 — Subsequences for descriptor_ID = 8 (pair descriptor)

subsequence_ID Semantics Type

0 Sequence identifying: Unsigned integer.

— the subsequence carrying the next symbol required for the
decoding process when values range from 0 to 4. Each value i in
the range 0..4 corresponds to subsequence_ID =i+ 1

— R1_unpaired decoding case as specified in 10.4.10 when the
value is equal to 5.

— R2_unpaired decoding case as specified in 10.4.10 when the
value is equal to 6.

1 same_rec decoding case as specified in 10.4.9. Sequence of values Unsigned integer.
containing the segment ordering and the distance between the map-
ping position of read 1 and the mapping position of read 2 on the ref-
erence sequence. Encoded as '(delta << 1) | read1_first', where delta
is comprised between 0 and 32767 and read1_firstis a 1-bit flag.

2 R1_split decoding case as specified in 10.4.10. Unsigned integer.

Sequence of values representing:
For classes P, N, M, |

the position of read 1 on the reference sequence. The maximum
value is 2posSize — 1 where posSize is specified in subelatise 7.4.2.

For class U

the genomic record index of the genomic record-containing read 1 in
the current AU.

3 R2_split decoding case as specified in 10.4:10. Unsigned integer.

For classes P, N, M, I the position of'réad 2 on the reference
sequence. The maximum value is 2P955ize — 1 where posSize is
specified in subclause 7.4.2.

For class U the genomic record index of the genomic record
containing read 2 in the current AU.

4 R1_diff ref seq deceding case as specified in 10.4.10. Unsigned integer.
Sequence of values)representing:

for classes B-N;"M , I the identifier of the reference sequence
to which read 1 is mapped. The maximum value is 216-1.

for class)U the identifier of the AU containing the read 1.

5 R22diff ref_seq decoding case as specified in 10.4.10. Unsigned integer.

for classes P, N, M, I the identifier of the reference sequence
to which read 2 is mapped. The maximum value is 216-1.

for class U the identifier of the AU containing the read 2.

6 R1 diff ref seq decoding case as specified in 10.4.10. Sequence Unsigned integer.
of values representing the position of read 1 on the reference
sequence. The maximum value is is 2P0sSize — 1 where posSize
is specified in subclause 7.4.2.

7 R2_diff_ref_seq decoding case as specified in 10.4.10. Sequence Unsigned integer.
of values representing the position of read 2 on the reference
sequence. The maximum value is is 2PosSize - 1 where posSize
is specified in subclause 7.4.2.

30 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 31 — Subsequences for descriptor_ID = 10 (mmap descriptor)

subsequence_ID Semantics Type

0 Number of alignments of the leftmost and rightmost reads. Unsigned integer

1 Index of right alignments. Unsigned integer

2 Flag signalling the presence of more alignments in other genomic |Boolean flag
records.

B Values representing the identifier of the reference sequence Unsigned integdr

a secondary alignment of the leftmost read is mapped to. The
maximum value is 216-1.

4 Values representing a secondary alignment mapping position Unsigned intege
of the leftmost read on the reference sequence. The maximum
value is is 2posSize — 1 where posSize is specified in subclause 7.4.2«

—

Table 32 — Subsequences for descriptor_ID = 11 and 15 (msar and’rname descriptofs)

[subsequence_ID Semantics Type
J) Output of decode_descriptor_subsequence() for Unsigned integdr
p p q g g
CABAC_METHOD_0 as specified in subclause 10.4¢20.4.5.
| Output of decode_descriptor_subsequence()fer Unsigned integqr
CABAC_METHOD_1 as specified in subclause*0.4.20.4.6.

Table 33 — Subsequences for descriptor_ID = 14 (qv descriptor)

subsequence_ID Semantics Type
{ Quality value'present flag. Boolean flag.
| Quality value codebook identifier. Unsigned integer.
.. (2 + Qualitywalue index used to look up a Unsigned integef.

qv_num_codebooks_total - 1) |reconstructed quality value in the quality
value codebook identified by
b = (subsequence_ID - 2).

Va)

Sequencing reads

2O

.1 General

This clause_specifies the semantics of genomic descriptors used to represent nucleotides spgments
and associatéd alignment information. Each template produced by a sequencing machine or alignment
generated.By an aligner is encoded in a genomic record by means of a subset of the genomic deqcriptors
described in this clause. The genomic descriptors are extracted from a compliant bitstream a¢cording
the'processes described in subclause 12.6 and the genomic templates with the associated alignment
Srration—cs e—reconstructed-fre e omic-descriptors—according e—decoding

processes described in subclause 10.4.

9.2 Supported symbols
The supported alphabets are specified in Table 34.

© ISO/IEC 2020 - All rights reserved 31

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 34 — Identifiers of alphabets supported for sequencing reads representation

alphabet—ID Sathabet 1D Size(salphabet ID) BitspersymbOl(Salphabet lD)
0 So=I[A,C, G, T,N] 5 3
1 ${=[ACGTRYSWKM,B,D,HV,N,-] 16
2..255 reserved
Each alghabet is identified by an alphabet_ID as shown Table 34.
The notption S, apec iplindex] specifies a conversion from a numerical index to an ASCII charactdr
corresppnding to a symbol of the alphabet identified by alphabet_ID, as specified in Table 35:
Table 35 — Conversions from numerical indexes to ASCII characters corresponding to
alphabet symbols
Salphabet plindex] |Sy[index] Sl[lndex]
Salphabet_1p[0] Spl0]="A" S,[0]="A
Salphabet 1p[1] Spll] ="C" S,[1]="c
alphabet lD[Z] SO[Z] =“G" S1[2] ="“G"
alphabet lD[3] S0[3] =“T" S1[3] =T
Salphabet_1p[4] Sol4]="N" S 4 ="R"
alphabet ip[5] N/A S1[5] ="Y"
Salphabet 1p[6] N/A S,[6]="5"
alphabet ID[7] N/A S1[7] =“W
alphabet ID[8] N/A 51[8] ="K
alphabet ip[9] N/A 5:[9]1="M
alphabet 1p[10] N/A S,[10] =
Salphabet 1p[11] N/A S,(11] =“D”
Salphabet_lD[lZ] N/A 1[12] =“H
Salphabet_ID[13] N/A 1[13] ="V
Salphabet_]D[lll'] N/A 51[14'] =“N"
Salphabet 1p[15] N/A S,[15]=""
The notgition Code,,p,pée lD[symbol] specifies the inversion conversion of S, ,e¢ plindex], such that
Codeyppabet ip[Saiphaspeynlindex]] is always equal to index for any valid value of index as specified i
Table 39,
Each alghabet symbol Sym is associated with a complementary symbol Complement(Sym) as specified
in Table[36.
Table 36 — Complementary alphabet symbols
Splindex] So[Complement(index)] S;[index] S;[Complement(index)]
Spl0] ="A Spl3]="T" 51[0] ="A" 54[3]="T"
Soll] = Sol2] = “G” S,[1]=“c” S,[2]1=“G”
Sol2] = Soll] ="C" 51[2]="G" S,[1]="C"
So[31="T"___[Sol0]="A" ,[3]="T" 5,001 = A"
Sol4] = "N" So[4] = “N” S,[4] = “R” S4[5]="Y"
N/A S4[5]=“Y" S1[4] = “R”
N/A S,[6] = “S” Sy[6]="“S”
32 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

(o)

4

Table 36 (continued)

Splindex] So[Complement(index)] S;[index] S;[Complement(index)]
N/A S4[7] =“W” S417] =“W”
N/A S4[8] =“K” S4[9] = “M”
N/A $,[9] =“M” S;[8] =“K”
N/A S4[10] =“B” S4[13] =“Vv”
N/A S4[11] =“D” S4[12] = “H”
N7A& STr2="H ST =D
N/A Sq[13] =“V” S4[10] =“B”
N/A S,[14] =“N”" S,[14] =“N”"
N/A S4[15] =" S4[15] ="

.3 Paired-end reads

ata structure named genomic record where the mapping position of‘0né of the reads is repi
sing the pair descriptor as specified in subclause 10.4.10. The information linking one read to
5 referred to as “pairing information” in this document.

he two reads are not sequenced from the same strand, but-can be aligned to the same str:
equencing device determines which read in the pair is mafrked as read 1, whereas the other on|
ead 2. An example is shown in Figure 4.

READ 1

h case reads are generated in pairs by sequencing devices, each pair cawbe‘encoded as a single logical

resented
its mate

ind. The
e will be

caviad

Figure 4 — Read 1 sequenced from the forward strand and read 2 from the reverse st

ositions of mismgatches with respect to the used reference sequence shall be encoded as off]
he leftmost mapped base of the leftmost read. The rightmost read is considered to be conti
he leftmost. Tlie calculation of the actual position of mismatches on the rightmost read is desq

ubclause10.4.10.

rand

et from
puous to
ribed in

shall be

he pair can also be split into two reads that are encoded separately. In this case, the pair

constructed using both the pairing descriptors and the template name shared by the two rea1ds.

9.4 Reverse-complement reads

The reverse-complement of a read is computed by inverting the order the read bases and replacing each
base B with its complementary base Complement(B) as specified in subclause 9.2. If Read[] is the array of
basesin aread, the array of bases in the corresponding reverse-complement ReverseComplementRead[]
is specified as follows:

ReverseComplementRead[n] = Complement(Read[Size(Read[]) - n - 1]), for nin 0 .. Size(Read[]) - 1.

© ISO/IEC 2020 - All rights reserved

33

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

9.5 Data classes

Six data classes are specified to classify genomic records according to the result of the mapping of the
encoded sequencing reads against one or more reference sequences.

If a template contains more than one read, if both reads are mapped, the genomic record belongs to the
class of the read with the highest class_ID. In case of multiple aligments the genomic record belongs to
the class of the first alignment in the record.

The data classes and their descriptions are specified in Table 37.

Table 37 — Sequence data classes
class_ID Class Identifier Genomic record content
Class_P Only reads perfectly matching to the reference sequence.
Class_N Reads perfectly matching to the reference sequence or containing
mismatches which are unknown bases only.

3 Class_M Reads perfectly matching to the reference sequence or,containing
substitutions or unknown bases, but no insertions, ig\deletions,
no splices and no clipped bases.

4 Class_I Reads perfectly matching to the reference sequerice or containing
substitutions, unknown bases, insertions, deletions, splices or
clipped bases.

5 Class_HM Paired-end reads with only one mapped/read.

6 Class_U Unmapped reads only.

When the syntax specified in this document needs to_use the maximum number of specified dat

classes, this is specified by the constant NUM_CLASSES ='6.

9.6 Aligned data

In the c

ntext of this document, aligned genemic data are genomic segments which require the use ¢

an external or embedded reference genomé\(as specified in subclause 10.6.2.3) to be decoded.

This supclause specifies the types.of descriptors contained in the blocks payload specified i
subclauge 7.5.1.3.3. Each block centains binary coded descriptors of a single type identified by the

descriptjor_ID present in the bloCk;header as specified in subclause 7.5.1.3.2.

Once defoded, each descriptershall be used to initialize one or more output record fields as specified i

Clause 1]3. Table 38 lists the-descriptors used for aligned reads with a brief description and reference t

the corrpsponding cladseé.

Table 38 — Descriptors used to represent aligned sequencing reads

s¥)

n

o=

descriptot_ID descriptor Semantics subclause
0 pos Read mapping position. 10.4.2
1 rcomp Strand information for reads in a template. 10.4.3
2 flags Additional alignment information usually produced by 10.4.4
aligners.
3 mmpos Position of mismatches in reads. 10.4.5
4 mmtype Type of mismatches. 10.4.6
5 clips Information on clipped bases (i.e. Soft clips or hard clips). 10.4.7
6 ureads Unmapped reads encoded verbatim. 10.4.8
7 rlen Read lengths. 10.4.9

34

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 38 (continued)

descriptor_ID descriptor Semantics subclause

8 pair Represents: 10.4.10
1.a The unsigned distance from one segment to the next.
OR

1.b The absolute position on a reference sequence of a
segment in a template.

AND

2 Information signaling if the leftmost mapped read in
the genomic record is read 1.

9 mscore Provides a score per alignment . 10.4.11
10 mmap Used to represent multiple alignments. 10.4.12
11 msar Supports spliced alignments and alternative secondary 10.4.13
alignments which do not preserve the same gontiguity of
mapping of the primary alignment.
13 rgroup Identifier of the read group each genomierecord belongs to. 10.4.15

(o)

.7 Unaligned data

naligned reads belong to class U only. They are encoded)as unmapped reads in aligned datasets.
ome of the descriptors specified for reads aligned to_dm external or internal reference as dpecified
h subclause 9.6 are used to encode unaligned reads, (see Table 39). This is motivated by the fact that
naligned reads are encoded using reference sequences built from the data to be encoded. The reference
sed for mapping is computed according to the procedures described in subclause 11.3.

| vl il il 0 I cnl

Table 39 — Descriptors used to represent raw sequencing reads

descriptor_ID Descriptor Semantics Subclause
0 pos Read mapping position. 10/4.2
1 rcomp Strand information for reads in a template. 1044.3
2 flags Additional alignment 10}4.4
information usually produced by aligners.
3 mmpes Mismatch position. 1044.5
mmtype Type of edit operations: 1044.6
— substitutions;
— deletions;
— insertions.
5 clips String of nucleotides with 1044.7
variable length (e.g. soft clips).
ureads Unmapped reads encoded Verbatimn. 10.4.8
rlen Unsigned integer representing the number of bases in 10.4.9

the read minus one.

© ISO/IEC 2020 - All rights reserved 35

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 39 (continued)

descriptor_ID Descriptor Semantics Subclause

8 pair Represents: 10.4.10
l.a The unsigned distance from one segment to the next.
OR

1.b The absolute position on a computed reference
sequence of a segment in a template.

AND

2 Information signaling if the first read in the genom-
icrecord is read 1.

12 rtype This identifies the subset of descriptors needed to 104.11
decode the read.

13 rgroup Identifier of the read group each genomic record 10.4.15
belongs to.

10 Dec¢oding process

10.1 Ge¢neral

This clause describes the decoding process to reconstruct the’genomic information encoded in
bitstream compliant with this document.

The input to this process is one data unit. The output of this,process can be:
1) arap reference as specified in subclause 7.3.

2) alisft of ISO/IEC 23092 series records as specified in Clause 13.

D

The decpding process is specified such that all*decoders that conform to this document will produd
numeridally identical decoded output as(either ISO/IEC 23092 seriesrecords or raw references.
Any dedoding process that produces identical decoded output ISO/IEC 23092 series records or ray
referendes to those produced by the process described herein conforms to the decoding proceq
requireinents of this document.

n <

10.2 dataset_type=0or 1

10.2.1 [General

The inpyt to the processes described in the following clauses is decoded genomic descriptors generated
as outpyt of the parsing process specified in subclause 11.3.6. The genomic descriptors are contained i
the decqded._symbols data structure specified in this subclause.

-

In the cqntext of the decoding process each decoded symbol is identified by

decoded_symbols[descriptor_ID][descriptor_subsequence_ID][jdescriptor_m' descriptor_subsequence_lD]

Where jgescriptor ID, descriptor_subsequence 1p 1S the index to read the decoded symbols as specified in
subclause 12.3. The valid values of descriptor_ID are specified in Table 24. The values of descriptor_
subsequence_ID are between 0 and the number of descriptor subsequences minus 1 as specified in
Table 24.

At the beginning of the decoding process of one AU all indexes jyescriptor Ib, descriptor_subsequence_ID aI'€
initialized to 0.

36 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

The output of this process is a sequence of output records as specified in clause 13. If cr_alg_ID is
equal to 3 and the rftp and rftt descriptors are present, an additional output of this process is a raw_

reference, ., structure as specified in subclause 7.3.2.

The decoding process of each access unit refers to encoding parameters carried by the parameter set

identified by the parameter_set_ID specified in subclause 7.5.1.2.

If dataset_type is equal to O then only AU of type 6 (CLASS_U) shall be present in the dataset.

0.2.2 References padding

h case of AUs of type P, N, M, [and HM, if the raw reference structure containing the reference
b be used during the decoding process specifies a seq_start that is greater than AU_staft_pos
nd that is less than AU_end_pos, the decoder shall pad the missing portions of reference’seque
N”. This is shown in Figure 5.

2 e+ —

seq_start seq-end
: reference sequence :

|N|N|N|N|A|C|T|A|A|C| G|T|A|A|G|T|A| C|G|G|A|T| C|N|N|N|

equence
br a seq_
hce with

access unit

AU_start_position ~~~~~~~ AU_end_p osition
raw reference
seq_start
seq_end
Decoder

AU_start_position
AU_end_position

Figure 5 — Padding process for a reference sequence

10.2.3 Type 1 AU (ClassP)

=]

ype 1 access units-éncode aligned sequencing reads which perfectly match to the used r
equence.

(%)

—

he decoding-process of one record within a binary decoded access unit of type 1, which
epeated-for all the records within the same access unit, is as follows:

—

1. ‘Seta classld variable equal to the value of AU_type as specified in subclause 7.5.1.2.

cference

shall be

numberOfMappedRecordSegments and unpairedRead as specified in subclause 10.4.10.

Decode the variables numberOfRecordSegments, numberOfAlignedRecordSegments,

3. Compute the arrays softClips[][], softClipSizes[][] and hardClips[][] as specified in subclause 10.4.7.

4. Compute the arrays readLength[], numberOfSplicedSeg[], splicedSegLengthl]
splicedSegMappedLength[][] as specified in subclause 10.4.9.

[T and

5. Decode the output variables specified in subclause 10.4.12 containing the alignment and mapping

information.

6. Decode the pos descriptor as specified in subclause 10.4.2.

© ISO/IEC 2020 - All rights reserved

37

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

7. Decode the output variables specified in subclause 10.4.10 containing pairing and/or splicing
information.

8. Decode the rcomp descriptor as specified in subclause 10.4.3.

9. If num_groups specified in subclause 7.4.2 is greater than 0 decode the rgroup descriptor as
specified in subclause 10.4.15.

10. Decode the readName variable as specified in subclause 10.4.17.

11. Ifas

in stibclause 10.4.11.

A i1 ifiad s laal 2 4.2 + 4] o-d do i1 | ik i L3
_uClJLll DPCLIIICU I SoUupPyLlIiduostl /7.7.4 15 sl Cdlll UIIdIlT U UTCTUUU LUIIT IIISCUI © UTOUT IPLUL ad DlJC\,lllC

12. If multiple_alignments_flag specified in subclause 7.4.2 is 1 decode the msar descriptor a
spegtified in subclause 10.4.13.

13. If py
a.
b.

14. If th
app

crps_flag specified in Table 7 is equal to 1 and cr_alg_ID specified in Table 16 is equal to 2, 3, or ¢

and

spegtified in subclause 10.5.2.

10.2.4

Access Units of type 2 (Class N) are decoded by following the process described for AUs of type

(Class P

by the mmpos descriptor as specified in subclause 10.4.5, and finally decoding the read sequences 4

specifie
Additiox
— the
— the
The deg

represeited by a decodéd*mmpos value in the splicedSequence[][] array obtained as specified i

subclaus

wn

esent, decode the following optional descriptors:

decode the flags descriptor as specified in subclause 10.4.4.

decode the qv descriptor as specified in subclause 10.4.16.

is process is being applied to access units of type 1 (Class P) (i.e;if this process is not beinig
ied to access units of other types as specified in subclauses 40.2.4, 10.2.5 and 10.2.6), or |f

the value of rtype descriptor specified in Table 66 is equal to 1, decode the read sequences as

Type 2 AU (Class N)

o=

in subclause 10.2.3, then applying the infermation on unknown bases (symbol N) carrie

[72)

] in subclause 10.5.2.

al inputs to this process are

hrray splicedSequence[][] specified in subclause 10.5

mismatchOffsets[][] and numMismatches[] arrays specified in subclause 10.4.5

=}

oded splicedSequence[][] array shall be computed by replacing each base at a positio

-

e 10.5.2 with.the symbol ‘N’.

The sub

stitutions-axe applied as specified in Table 40.

Table 40 — Sequence decoding process for class N

n - ' D e
DCTLUUTITg STITP DOCOLTIPUIUIN

processSplSegN (segment, splSeg) {

for(j = 0; 7 < numMismatches[segment]; j++) {

splicedSequence[segment] [splSeqg]

[mismatchOffsets[segment] [j]] = ‘N’

38

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

10.2.5 Type 3 AU (Class M)

Access units of type 3 (Class M) are decoded by following the process described for AUs of type 1
(Class P) in subclause 10.2.3, then applying the information on substitutions obtained by following the
decoding process of mmpos and mmtype descriptors as specified in subclauses 10.4.5 and 10.4.6, and

finally decoding the read sequences as specified in subclause 10.5.2.

Additional inputs to this process are

— the mismatchOffsets[][], numMismatches[] arrays specified in subclause 10.4.5;

+ the mismatches[][] arrays specified in subclauses 10.4.6.

The substitutions are applied as specified in Table 41.

Table 41 — Sequence decoding process for class M

Decoding step

Descriiption

processSplSegM(segment, splSeqg) {

for(j = 0; J < numMismatches|[segment]; j++) {

splicedSequence[segment] [splSeqg]

[mismatchOffsets[segment] [J]] = mismatches|[segmént] []J]

10.2.6 Type 4 AU (ClassI)

sequences as specified in subclause 10.5.2,
Additional inputs to this process are;

-+ the mismatchOffsets[][], numMismatches[] arrays specified in subclause 10.4.5;

+ the mismatches[][] and mismatchTypes[][] arrays specified in subclause 10.4.6;

Access units of type 4 (Class I) are decoded by following the process described for AUs of type
H) in subclause 10.2.3, then applying the edit operations represented by the decoded mmpos, mmtype
and clips descriptors as specified in subclansés 10.4.5, 10.4.6 and 10.4.7, and finally decoding

-+ thevariable seqld set equal to sequence_ID as specified in subclause 7.5.1.2;

+ the arrays’réf_sequence[][] and seq_start[] specified as in subclause 7.3;

+ the mappingPos[0][] array specified in subclause 10.2.3;

Thesubstitutions, insertions and deletions are applied as specified in Table 42.

—+ the softClips[][][]ssoftClipsSizes[][] and hardClips[][] arrays specified in subclause 10.4.7;

Table 42 — Sequence decoding process for mismatches in classes I and HM

1 (Class

the read

Decoding step Description
processSplSegl (segment, splSeqg) {
rlen = splicedSeglength[segment] [splSeqg]
if (splSeg == 0) {
rlen -= softClipSizes[segment] [0]
}
if (splSeg == numberOfSplicedSeg[segment] - 1) {
rlen -= softClipSizes[segment] [1]
}
© ISO/IEC 2020 - All rights reserved 39

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 42 (continued)

Decoding step Description

indelsCount = 0

mmStartIdx = splicedSegMismatchIdx[segment] [splSeqg]

for(j = 0; j < splicedSegMismatchNumber [segment] [splSeg]; j++) {

if (mismatchTypes[segment] [mmStartIdx + j] == 0) { Substitution.

splicedSequence[segment] [splSeqg]
[splicedSegMismatchOffsets|[segment] [splSeg] [j]] =
mismatches[segment] [mmStartIdx + 7]

o\
else if (mismatchTypes[segment] [mmStartIdx + j] == 1) { Insertion. (\(]/\)
for(k = rlen - 1; All symbol‘s]a\ﬁer

k > splicedSegMismatchOffsets|[segment] [splSeg]l [j] ; k--) { the inse, ion are
shif; ight by
o sition. The
(-ﬁﬁ element is
.~ .| therefore lost.
N\

splicedSequence[segment] [splSeqg] [k] =
splicedSequence[segment] [splSeg] [k — 1] (\\
A4
) %)
, N
splicedSequence[segment] [splSeqg] 5\

[splicedSegMismatchOffsets[segment] [splSeg] []]]Q: O
mismatches[segment] [mmStartIdx + Jj]

indelsCount -= 1 \({v
else if (mismatchTypes|[segment] [mmStartIdx + Q@: 2) | Deletion.
-
for (k = splicedSegMismatchOffsets [segment\k@alSeg] 51 + 1; All symbols after
k < rlen; k++) { L\ the deletion are
@ shifted left by one
‘\\Q) position.

)
splicedSequence[segment] [splSe @k - 1] =
splicedSequence [segment] [§E eg] [k]

} ‘_'\0\
splicedSequence [segment] [s&siéeg] [rlen - 1] = A new symbol
ref_ sequence[seqld . shall be copied
[splicedSegMap@ﬁ’os [segment] [splSeq] from the refer-
ence at the end of
- seq_sta séqld] + rlen segment.

+ indelsgount]
indelsCount @—)\T

else { AQV
/* resE%d* */
N
<

Z
7 \ N
prod e%bllps (segment, splSeq) Specified in
Table 43,

}

Information on clipped bases is applied as follows:
Soft clips

The contents of softClips[][] array computed as specified in subclause 10.4.7 are applied as specified in
Table 43.

40 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 43 — Sequence decoding process for soft clips in classes I and HM

Decoding step Description

processClips (segment, splSeqg) {

if (splSeg == 0) {

splicedSequence[segment] [splSeg] = strcat returns the concat-
enation of the two arrays
of ASCII characters passed

strcat (softClips([segment] [0],

splicedSequence [segment] [splSeqg]) as input.
i
if (splSeg == numberOfSplicedSeg[segment] - 1) {
splicedSequence [segment] [splSeg] = strcat returns’thefconcat-

strcat (splicedSequence[segment] [splSeqg],

softClips([segment] [1]) asAnput.

enation(©f the two|arrays
of ASCII'characterf passed

L0

Jard clips

ubclause 10.6.2.

(an)

0.2.7 Type 5 AU (Class HM)

lass HM applies only to paired-end reads. Access units:oftype 5 are decoded as follows:

he hardClips[][] array is used to compute the ecigarString[] and_€cigarLength[] arrays spegcified in

The mapped read is decoded by following the process specified for class | in subclause 10.4.6 and it

is stored as the first record segment in the oufput record specified in Clause 13.

The unmapped read is decoded accordingto the process specified in subclause 10.5.3.

0.2.8 Type 6 AU (Class U)

0.2.8.1 General
ccess units of type 6 (Class®JJ'are decoded as follows:

Set a classld variable.equal to the value of AU_type as specified in subclause 7.5.1.2.

numberOfMappedRecordSegments as specified in subclause 10.4.10.

splicédSegMappingPos[][] as specified in subclause 10.4.9.

Decode the output variables specified in subclause 10.4.12 containing the alignment and
information.

Compute~ the array readLength[], numberOfSplicedSeg[], splicedSegLength[]|

Decode the svariables numberOfRecordSegments, numberOfAlignedRecordSegments and

and

e

mapping

information.

Decode the readName variable as specified in subclause 10.4.17.

If present, decode the following optional descriptors:

a. decode the flags descriptor as specified in subclause 10.4.4;

b. decode the qv descriptor as specified in subclause 10.4.16.

specified in subclause 10.4.15.

© ISO/IEC 2020 - All rights reserved

Decode the output variables specified in subclause 10.4.10 containing pairing and/or splicing

If num_groups specified in subclause 7.4.2 is greater than 0, decode the rgroup descriptor as

41

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

9. Decode the read sequences as specified in subclause 10.5.3.

10.2.8.2 cr_alg ID =2

The “PushIn” computed reference algorithm specified in subclause 11.3.4 is used. In this case the
genomic sequencing reads are decoded as for other classes of data by using the rtype descriptor as
specified in subclause 10.4.14. The rtype descriptor is used to select the class of the next genomic record
to be decoded.

10.2.8.3 cralg ID =2

The “Gldbal Assembly” computed reference algorithm specified in subclause 11.3.6 is used. In this)cas
the gengmic sequencing reads are decoded as for other classes of data by using the rtype deseriptd
as specified in subclause 10.4.14. The rtype descriptor is used to select the class of the pext’genomic
record tp be decoded.

[}

—

10.3 dataset_type =2

10.3.1 [General

The inpyt to this process is either

v

— one|AU of type 1, 2, 3 or 4 and a raw_reference data structurelalready initialized by a previou
decpding process;

or
— an AU of type 6.

The output of this process is a raw_reference, ¢ Structure as specified in subclause 7.3.2. The arraly

out
ref_sequence,,[] identifies the ref_sequence field of raw_reference -

Subclause 7.4.2 specifies that all AUs referringto a parameter set having dataset_type set to 2 contai
an encofded reference genome or portions:-thereof. According to the value of AU_type specified i
subclauge 7.5.1.2 the decoding process is’as specified in subclauses 10.3.2, 10.3.3, 10.3.4, 10.3.5 an
10.3.6 fdr classes P, N, M, I and U.

[@ e Jaye)

The elements of the raw_reference syntax specified in subclause 7.3.2 shall be set as follows:

output

seq_count is set to the number of different values of ref_sequence_ID, specified in subclause 7.5.1.2,
found inlthe headers of the'AUs with dataset_type equal to 2 referring to the same parameter set.

For eacH value of refisequence_ID the following applies:
— seqpence_ID.ih the raw_reference syntax is set to ref_sequence_ID.

— seq|startshall be set to the value of ref_start_position specified in subclause 7.5.1.2.

— seg_end shall be set to the value of ref_end_position speciiied 1n subclause /.5.1.2.

The decoding process of each access unit refers to encoding parameters carried by the parameter set
identified by the parameter_set_ID specified in subclause 7.5.1.2.

The ref_sequence element specified in subclause 7.3.2 is initialised with the output ref_sequence

output
of the decoding processes specified in subclauses 10.3.2 to 10.3.6.

10.3.2 Type 1 AU

Type 1 access units used to encode a reference sequence carry portions of the reference sequence which
perfectly match to the reference sequence identified by sequence_ID, specified in subclause 7.5.1.2,
used for compression.

42 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2

The decoding process of a binary decoded access unit of type 1 is as follows:

1.
2.
3.

Set an array of ASCII characters outBuf[] equal to the empty array.

Decode the value readLength[0] as specified in subclause 10.4.9.

Decode one pos descriptor as specified in subclause 10.4.2 and set p, equal to mappingPos
specified in subclause 10.4.2.

A sequence of nucleotides outSequence is computed as follows:

1

I
S

020(E)

[0][0] as

a. The position pRef, in the reference sequence identified by sequence_ID as spegified in

subclause 7.3 is computed as follows:
pRef,, = p,, - seq_start[sequence_ID]
where seq_start[sequence_ID] is specified in subclause 7.3;
b. outSequence = ref_sequence[sequence_ID][pRef,, pRef,+ readLength|0])
where ref_sequence[sequence_ID][] is specified as in subclause 7.3

The decoded sequence outSequence is concatenated with all pfeyiously decoded sequence
AU and stored in a buffer outBuf computed as

outBuf = strcat(outBuf, outSequence)
where strcat returns the concatenation of the two axrays of ASCII characters passed as inp
If more genomic records are present, then go baek'to step 1 else go to step 7.

The buffer outBuf containing the concaténation of all output sequences is stored in
sequence,,,, array of the raw_reference,,, structure produced as output of this
process:

ref_sequence [ref_sequence_ID] =

output

outBuf[0, seq_end ref_sequence_ID] - seq_start ref_sequence_ID]],

output[output[

where

seq_start,.,,c and.seq_end,,,,. correspond respectively to the seq_start and seq_end fiel

raw_reference,ggy¢/structure, and where the following condition shall always be met:

Size(outBuf) > seq_end ref_sequence_ID] - seq_start ref_sequence_ID].

output[output[

0.3.3 Type 2 AU

h caseyof AU of type 2 the sequence obtained at step 3 of subclause 10.3.2 is modified by appl
ubstitutions of symbol “N” according to the process described in subclause 10.2.4.

s in this

ut.

the ref_
ecoding

s of the

ying the

The decoding process continues then with step 5 of subclause 10.3.2.

10.3.4 Type 3 AU

In case of AU of type 3 the sequence obtained at step 3 of subclause 10.3.2 is modified by applying the
substitutions according to the process described in subclause 10.2.5.

The decoding process continues then with step 5 of subclause 10.3.2.

© ISO/IEC 2020 - All rights reserved

43

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

10.3.5 Type 4 AU

In case of AU of type 4 the sequence obtained at step 3 of subclause 10.3.2 is modified by applying
substitutions, insertions, deletions and soft clips according to the process described in subclause 10.2.6.

The decoding process continues then with step 5 of subclause 10.3.2.

10.3.6 Type 6 AU

Inan AU of type 6 encoding a reference sequence, only ureads descriptors are always present, optionally
associated to rlen descriptors providing the length of each encoded segment.

The decpding process is as follows:
1. Setan array of ASCII characters outBuf[] equal to the empty array.

2. Decpde the value readLength[0] as specified in subclause 10.4.9.

3. Decpde readLength[0] bases with decodeUreads(readLength[0]) as specified in subclause 10.4.B
and|set outSequence to decodedUreads.

4. The|decoded sequence outSequence is concatenated with all previously“decoded outSequence i
this|AU and stored in a buffer outBuf computed as

=)

outBuf = strcat(outBuf, outSequence)
whdre strcat returns the concatenation of the two arrays of ASCII characters passed as input.
5. If mpre genomic records are present, then go back to step'2 else go to step 6.

6. The| buffer outBuf containing the concatenation\of all output sequences is stored in the ref_
seqyience, ., array of the raw_reference, ., @;structure produced as output of this decoding
progess, according to the process specified at-point 7 of subclause 10.3.2.

10.4 Genomic descriptors

10.4.1 [General

The inppits to this process aresdescriptor subsequences generated at output of the parsing proceg
specifiedl in subclause 12.6. Each’descriptor subsequence consists of a collection of symbols stored i
the decqded_symbols datastructure specified in subclause 12.6.2.2.

-

For a givyen descriptordD;-SubsequenceN identifies the array decoded_symbols[descriptor_ID][N].

The inpiit to the decoding process of a descriptor sequence identified by descriptor_ID are K descriptd
subsequlences subsequence0 .. subsequenceK-1, with K equal to the number of descriptor subsequencg
as specified in;Table 24.

wn =

The valfieS)of subsequenceN are read by means of indexes jyy Where M = descriptor ID and N
descriptor_subsequence_ID.

Additional inputs are state variables computed during the decoding process described in this clause or
other subclauses.

Some state variables listed among the outputs of the decoding processes described in this subclause
shall be computed even if the corresponding descriptor is not present in the access unit. The listed
inputs of each subclause are not always required; the decoding process described in each subclause
specifies which inputs are required and which outputs are generated.

44 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

10.4.2 pos

ISO/IEC 23092-2:2

020(E)

The input to this process (see Table 44) is the array decoded_symbols[descriptor_ID][0] array
specified in subclause 12.6.2.2 when descriptor_ID is equal to 0 and the current value of jj,, the
variable previousMappingPos0 produced by the previous iteration of this same process, and the array
numberOfSegmentMappings[] calculated as specified in subclause 10.4.12.

The output of this process is an array mappingPos[][0] and the variable previousMappingPos0.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N

(

.e. subsequenceN = decoded_symbols[O][N]).

Table 44 — Decoding process of the pos descriptor

Decoding step

Description

[£(3p0 > 0) {

mappingPos[0] [0] =

previousMappingPos0 + subsequenceO[J, o]

Else{

if (AU_type == 6) {

Unmapped content using co
reference

mputed

mappingPos[0] [0] subsequenceO[ij]

} else {

mappingPos[0] [0] =

AU_start_position + subsequence0[], 4]

AU_start_position is specif
subclause 7.5.1.2.

edin

)

reviousMappingPos0 = mappingPos[0] [0}

For (1 = 1; 1 < numberOfSegmentMapp™gs[0]; i++)

{

numberOfSegmentMapping
specified in subclause 10.4.1

5[0] is
2.

mappingPos[1] [0] =
mappingPos[1i-1] [0] +Subsequencel [§0,1]

30, 1++

0,0++

0.4.3 rcomp

he inputst6 this process are:

is-equal to 1 and the current value of j; ;

- therarray decoded_symbols[descriptor_ID][0] specified in subclause 12.6.2.2 when descr

ptor_ID

The output of this process is the array reverseComp[][][].

the array splitMate as specified in subclause 10.4.10;

the array numberOfSplicedSeg][] specified in subclause 10.4.9.

the array numberOfSegmentMappings[] calculated as specified in subclause 10.4.12;

the variable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.

S

ubsequenceN = decoded_symbols[1][N]).

© ISO/IEC 2020 - All rights reserved

45

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Each decoded rcomp descriptor conveys information about the strandedness of each segment of an
alignment.

When no splices are present in the genomic record, each bit of a decoded rcomp descriptor is a flag
indicating if the read is on the forward (bit set to 0) or reverse (bit set to 1) strand. Table 45 specifies
the computation of reverseComp[][][] values.

Table 45 — Determination of the reverseComp values

Decoding step

for(i 4 0; 1 < numberOfMappedRecordSegments; i++) {

for(j = 0; j < numberOfSegmentMappings([i]; Jj++) {
if (splitMate[j][1i] == 0) {
if(j == 0) |

for(k = 0; k < numberOfSplicedSeg[i]; k++)

reverseComp[k] [J] [1] = subsequenceO[jl,0++]

} else {

reverseComp[0] [J] [1] = subsequencelO[jl,0++]

}

When splices are present each decoded rcomp descriptor consists in a flag conveying informatio
about the strandedness of each spliced segment of an alignméent. It is set to 0 when the spliced segmer]
is on thg forward strand and it is set to 1 when the spliced Segment is on the reverse strand.

—+ =

10.4.4 flags

NS

t to this process is the decoded_symbals[descriptor_ID] array specified in subclause 12.6.2.
when déscriptor_ID is equal to 2 and descriptor_subsequence_ID are equal to 0, 1 and 2 as specified i
Table 2§ and the current values of j, , j, ;. a0d J, , as defined in subclause 10.4.

—

The output of this process is the variable decodedFlags.

In this description, subsequenceN.js the subsequence identified by descriptor_subsequence_ID = N (i.¢.
subsequlenceN = decoded_symbols[2][N]).

The flag syntax elementcarries additional alignment information usually produced by aligners a4
specifiefl in Table 26.

[72)

The flags value shall-be calculated according to the process specified in Table 46.

Table 46 — Decoding process of the flags descriptor

Decoding step Description
decodedFlags = 0
decodedFlags [= subsequence0[j, o] << 0
decodedFlags |= subsequencel[jal] << 1
decodedFlags |= subsequence2[jz2] << 2
Jo,0tFs o0t Jo,0tF

46 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

10.4.5 mmpos

The inputs to this process are:

]

two subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause 12.6.2.2 when descriptor_ID is equal to 3 and descriptor_subsequence_ID are equal to 0

and 1 as specified in Table 27;

the current values of j; ;. and j; ; as defined in subclause 10.4;

he output of this process are:

+1 1 Fa¥eu W4 10 1C + 11 L L I 11 40 4 40
LI HTUIIDCT UT MIdPDPTURCLUTUSCHILITIILS VAl TdDIC SPCULIICU TIT SUDLIdUSTE 1U.F. 1U,

the classld variable specified in subclause 10.2.3;

the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclausé [10.4.9;

the softClipSizes[][] array specified in subclause 10.4.7.

the array mismatchOffsets[][]containing offsets of the mismatchés’in the sequencing
read pair;

the array numMismatches[] containing the number of elemeiits'in the array mismatchOffs

read or

ets[1[1;

the array splicedSegMismatchOffsets[][][] containing the offsets of mismatches within each spliced

segment;

the array splicedSegMismatchldx[][] containing the positions, within the mismatchOf
mismatchTypes[][] and mismatches[][] arraysZcomputed as specified in subclause 10.4.

Fsets[][],
b, of the

mismatches of each spliced segment;

the array splicedSegMismatchNumber[}f] containing the number of mismatches for each spliced

segment.

Table 47 — Determination of the offset of mismatches

h this description, subsequenceN isthe subsequence identified by descriptor_subsequence_ID|= N (i.e.
ubsequenceN = decoded_symbols[3][N]).

he overall decoding process. for the output variables specified in this subclause is specified in Table 47:

Decoding step Description
ecodeMmpos () As specified in Table 48.
| £ (classId. = Class I || classId == Class HM) {
mismatshoffsetCorrectionByType () As specified in Table 50.
ecodeSplicedSegMismatchOffsets () As specified in Table 49.

The mismatch offsets for each aligned segment shall be computed as specified in Table 48.

© ISO/IEC 2020 - All rights reserved

47

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 48 — Determination of the offset of mismatches within genomic segments

Decoding step Description
decodeMmpos () {
for(i = 0; i < numberOfMappedRecordSegments; i++) {
previousOffset = 0
Jj—=_0
for(k = 0; k < numberOfSplicedSeg[i]; k ++) { nQ
splicedSegMismatchNumber[i] [k] = 0 AQV
splicedSegMismatchIdx[i] [k] = jJ q’ ,V
- - v
while (subsequence0[Jj; o++] == 0) { Loop on subsequence tila
terminator 1 is fou
NS
mismatchOffsets[i][j] = (]/b
subsequencel[j; ;] + previousOffset C,
| ’, R R =
previousOffset = mismatchOffsets[i] []] \\Q/
. . A crs
previousOffset += 1 Ad]ace@lsmatch positions are
stri incremental to prevent

ové(la ping mismatches.
E)@eptions to this requirement
re specified in Table 50.

splicedSegMismatchNumber [i] [k]++ N Q 7
J3, 1t It &\}\\ Increment read and write pointers.
N
} ,\Q)
Q0
rfumMismatches[i] = j . ‘®
) N
} \O

[om

\L‘
The mapping from splice mismatch indtﬁcto genomic segment mismatch indexes shall be compute
as specified in Table 49.

Table 49 — Determin(g®$of the offset of mismatches within spliced segments
)]

O Decoding step
decodeEplicedSegMisma;@fsets() {
for{i = 0; i < n@@rOfAlignedRecordSegments; i+4) |
QY
spliceng&@rtOffset =0
dplice ndOffset = splicedSegStartOffset +
sp i.cedSeglength[1] [0] — softClipSizes[i][0]
=0
=

2 P E 1o PR 1 .
Tor{te— U7 K TTUonocroropLIceuoeyg [L1, K 1T/ 1

for(j = 0; 7 < splicedSegMismatchNumber([i] [k]; Jj++) {

splicedSegMismatchOffsets[i][k][]j] =
mismatchOffsets[i] [1] - splicedSegStartOffset

1++

48 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 49 (continued)
Decoding step
if(k < numberOfSplicedSeg[i] - 1) {

splicedSegStartOffset = splicedSegEndOffset

splicedSegEndOffset = splicedSegStartOffset +
splicedSeglength[i] [k + 1]

10.4.6 mmtype

The inputs to this process are:

three subsequences decoded_symbols[descriptor_ID][descriptor_subsequénce_ID] as spe
subclause 12.6.2.2 when descriptor_ID is equal to 4 and descriptor_subsequence_ID are eq
1 and 2 as specified in Table 28. The decoding process specified in.sitbclause 12.6.2.3 for d
symbols[4][1] shall be performed after the decoding process specified in Table 51;

the array with the number of mismatches numMismatches[]fand the offset array mismatch
[] calculated for the current genomic record as specifiedin subclause 10.4.5;

the arrays splicedSegMismatchNumber[][] and spliéedSegMismatchOffsets[][][] as spe
subclause 10.4.5 the current values of j, ¢, j4 1 and jg); as defined in subclause 10.4;

the array S,jpaber ipl] as specified in subclause 9.2, for the value of alphabet_ID spe
subclause 9.2; i

the arrays mappingPos[][] and splicedSegMappingPos[][] as specified in subclauses 10

cified in
ual to 0,
ecoded_

Dffsets[]

rified in

rified in

4.2 and

10.4.10;

the classld variable specified inssubclause 10.2.3;

the numberOfMappedRecordSegments variable specified in subclause 10.4.10;

the variable seqld set equal to sequence_ID as specified in subclause 7.5.1.2. If crps_flag 3
in Table 7 is equal to-¥’and cr_alg_ID specified in Table 16 is equal to 2, 3 or 4, seqld is not

the variable seqStart equal to 0 if crps_flag specified in Table 7 is equal to 1 and cr_alg_ID {
in Table 16/s7equal to 2, 3 or 4, else seqStart is set equal to seq_start[seqld] with seq_s{
specifieddnsubclause 7.3;

the afray splicedSegMappedLength[][] computed as specified in subclause 10.4.9.

Theutputs of this process are arrays containing values identifying the type of edit oper3

pecified
ised;

pecified
fart[] as

tions to

he‘performed on the sequencing read or read pair computed as specified in subclause 10.4.

P0 when

classld, specified in subclause 10.2.3, 1s equal to Class_M, Class_I or Class_HM:

the modified mismatchOffsets[][] array;

the array mismatchTypes[][] contains values for the type of mismatch. 0 signals substitutions, 1

signals insertions and 2 signals deletions;

the array mismatches[][] contains the symbols to be used for substitutions and insertions;

the array substMappingOffsets[][] containing the offsets of the mismatches within the reference

sequence the segment is mapped to;

the modified splicedSegMappedLength[][] array.

© ISO/IEC 2020 - All rights reserved

49

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[4][N]).

If classld is equal either to Class_I or to Class_HM, the output mismatchOffsets[][] array specified in
subclause 10.4.5 shall be modified, before any possible use, according to the decoding process specified
in Table 50.

Table 50 — Updating mismatchOffsets[][] array based on mismatch types

Decoding step Description

mismatdhOffsetCorrectionByType () {
k =134,0

for{i = 0; i < numberOfMappedRecordSegments; i++) {

rfumOfDeletions = 0
flor(j = 0; J < numMismatches([i]; j++) {
mismatchOffsets[i] [j] -= numOfDeletions Deletions canfoceur at the same
position of/the next mismatch.
Therefore; the extra +1 offset to
preventoverlapping mismatches
as speeified in Table 90, does not|
apply to deletions.
if (subsequencel[k] == 2) { Deletion.

numOfDeletions += 1

k++

}

jom

The arrays substMappingOffsets[] and splicedSegMappedLength[][] shall be, respectively, calculate
and modified following the process described in‘Table 51.

Table 51 — Determination of the substMappingOffsets[] arrays.

Decoding step Description
k = 34,0
for(i 4 0; i < numberOfMappedRecordSegments; i++) {
1 =10
subdtMappingOffsegtsfi] = {} Empty array.
if (jumberOfSpli¢edSeg([i] == 1) { Case of no splices.
nappedMmpos’ = mappingPos[0] [i] - segStart
grevieusOffset = 0
flox(5.= 0; J < numMismatches([i]; j++) {
—rappodidnp +=
mismatchOffsets[i] [j] - previousOffset

previousOffset = mismatchOffsets[i][]]

50 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

Table 51 (continued)

ISO/IEC 23092-2:2020(E)

Decoding step Description
if (subsequencel[k] == 0) { Substitution.
substMappingOffsets([i] [1] = mappedMmpos
1++
} else if (subsequencel[k] == 1) { Insertion.

mappedMmpos -= 1

Insertions increase mmpos
descriptor value but, since they

do not represent an a 1 base
on the reference se , they
shall not increase@m ped
position, as spegifiéd in Table 90.
. __ R VvV
} else if (subsequence0l[k] =) Deletion. Oq/
mappedMmpos += 1 Deletiop%¬ increas¢ mmpos
descr{% value but, singe they
re nt an actual baseon the
ence sequence, they[shall
C\hcrease the mapped position, as
C~—|specified in Table 90.
) « N
k++ (\/ O
) Q)
} else { \\Y Case of splices.
previousOffset = 0 QQ >
previousSpliceEndOffset = 0 Q)
for(s = 0; s < numberOfSplicedSeg| 1{\s++ {
mappedMmpos = spllcedSegMappl@ s[i][s] -
seqStart A
previousOffset = 0 \O
for(j = 0; j < spllced@hsmatchNumber[l] [s];
I+ | (‘\
mappedMmpos +=
splicedSegM:s matchOffsets [i1[s]1[3] -
previoy. set
previoﬁ set =
sp(&. dSegMismatchOffsets[i] [s][]]
if equencel[k] == 0) { Substitution.
AoéabstMappingOffsets[i] [1] = mappedMmpos
1++
A} . .
:Q } else if (subsequenceO[k] == 1) { Insertion.
&?} mappedMmpos -= 1 Insertions increase mmpjos
% descriptor value but, sinde they
donot represent an actu 1 base
on the reference sequence, they
shall not increase the mapped
osition, as specified in Table 90.
p p
splicedSegMappedLength[i] [s] -= 1

} else if (subsequenceO[k] == 2)

{

Deletion.

mappedMmpos += 1

Deletions do not increase mmpos
descriptor value but, since they
represent an actual base on the
reference sequence, they shall
increase the mapped position, as

specified in Table 90.

© ISO/IEC 2020 - All rights reserved

51

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 51 (continued)

Decoding step

Description

splicedSegMappedLength[i] [s] += 1

}

The rem
describd
in Table
decodin

in Table|51.

aining output of mmtype descriptor decoding process shall be calculated following theprocegs
d in Table 52, after having decoded subsequencel according to the decoding process)specifie
124 using, if required by the said decoding process specified in Table 124 and by following the
b process specified in subclause 12.6.2.3, the array substMappingOffsets|] decoded as specifie

Table 52 — Determination of the mismatchTypes[] and mismatchés[] arrays

d

d

Decoding step Description
for(s 4 0; s < numberOfMappedRecordSegments; s++) {
j =10
whille (7 < numMismatches[s]) {

If (Size (subsequencel[]) > 0) {

mismatchTypes[s] [j] = subsequenceO[j4,0]

else {

mismatchTypes[s][j] = O

Default to substitution if
subsequence0 is empty.

Jf (mismatchTypes[s] []j] == 0) Substitution.
mismatches[s] [J] = S,iphabet nlSubsequencel], ;1]
Jg, 1t
else if (mismatchTypes[slJ} == 1) { Insertion.
mismatches[s] [J] = S{¥\.per rplSubsequence2[j, ,]]
Jg, 0t
else if (mismatchllypes[s][j] == 2) { Deletion.

/* nothing needs to be done */

The value of mismatches|[j] is
undefined, as it is not relevant
for any decoding process.

To, ot STH

10.4.7 clips

The inputs to this process are:

52

four subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in

subclause 12.6.2.2 when descriptor_ID is equal to 5;

the variable currentRecordCount is the number of processed genomic records in the current AU and
itis initialized to O at the beginning of current AU decoding process;

the current values of js , js 1, j5 » and js 3 as defined in subclause 10.4;

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— the array S,jphaper ipl] as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 7.4.2;

— the value Size(S,j,papec_p) as specified in subclause 9.2, for the value of alphabet_ID specified in
subclause 7.4.2;)

— the variable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

— the classld variable specified in subclause 10.2.3.

Tl £ i) il PR-p - I 1 1D £ O+o 2 Y - Tollo 20
qI11c 1UuIl DUUDCLIUCAILCD dl T IUCTIIUITICTU IJy DUUDCLIUCIILCD_IU ITUIIT U TU J ddS D}JCLIIICU 1 1dVUIC 4 J.

—

he output of this process is an array softClips[][][], an array softClipSizes[][] and an array, lrardClips[]
[as specified in Table 54.

—

he decoding process of the clips descriptor is provided in Table 54 where:

- subsequenceN is the subsequence identified by descriptor_subsequence_ID’="N;
+ subsequenceO0[js o] represents the next genomic record containing clipped bases;
+ subsequencel[js ;] represent the type and position of clipped bases;

—+ softClips, softClipSizes, and hardClips are the output of this decoding process:

— softClips[0][0] and softClips[1][0] contain strings of.characters representing soft clips preceding
the first mapped base of the leftmost read and rightmost read respectively,

— softClips[0][1] and softClips[1][1] contain strings of characters representing soft clips fpllowing
the last mapped base of the leftmost read and rightmost read respectively,

— softClipSizes[i][j] contain the number.of charcters in the strings in softClips[i][j] respdctively,

— hardClips[0][0] and hardClips[1][0]-contain the number of hard clips preceding the firstjmapped
base of the leftmost read and rightmost read respectively,

— hardClips[0][1] and hard€lips[1][1] contain the number of hard clips following the lastjmapped
base of the leftmost read‘and rightmost read respectively;

—+ the semantics of subsequencel are as shown in Table 53.

Table 53 — Values and semantics for subsequencel

subsequencel values semantics

0 Soft clips before the start of leftmost read. Shall not be
used if 4 is present for the same genomic record.

1 Soft clips after the end of leftmost read Shall not be
used if 5 is present for the same genomic record.

2 Soft clips before the start of rightmost read. Shall not
bC L{DCd lf (J ib lJl CbCllt fUl thC o2dlIlIT SCllUlllib I'CCUlL d.

3 Soft clips after the end of rightmost read. Shall not be
used if 7 is present for the same genomic record.

4 Hard clips before the start of leftmost read. Shall not

be used if 0 is present for the same genomic record.

© ISO/IEC 2020 - All rights reserved 53

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 53 (continued)

subsequencel values semantics
5 Hard clips after the end of leftmost read. Shall not be
used if 1 is present for the same genomic record.
6 Hard clips before start of rightmost read. Shall not be
used if 2 is present for the same genomic record.
7 Hard clips after end of rightmost read. Shall not be
used if 3 is present for the same genomic record.
8 End-of-clips terminator. Q
For a ddcoded genomic record each value of subsequencel as specified in Table 53 shall not sed
more than once. (]/
4

Qv

Table 54 — Decoding process of the clips descriptor 09

Decoding process r _bk!;cription
for(i § 0; 1 < numberOfMappedRecordSegments; i++) { \Qy
for{j = 0; 3 < 2; J++) { ,\\\"
JoftClips[i][j] = N, mpty string.
doftclipsizes(i][j] = 0 A
HardClips[i][J] = O /\Q N
} Q
) N
if (claqsId == Class I || classId == Class HM) { ‘S\\)’
if(]s,0 < Size(subsequence0) . \Q‘O
§& currentRecordCount == subsequenceO[j5,Q&)
gnd = 0 :\‘Q)
qdo{ r\Q
if (subsequencel[jg 1] < 3){ \L\V Soft clips.
=0 RS

segmentIdx = subsequenc‘ej?‘[j5,1] >> 1
leftRightIdx = subgebuéncel [j; ;] & 1

o o

softClips| éﬁéntldx] [leftRightIdx] [j] =

Saiphaben) 1o [SUbsequence2 [Js,,]]

Js, 2tk %\ Increment pointer for
?) subsequence2.
TS
AR
@«)ﬂe (subsequence2[js ,] != Size (S, ignaper 10)) Continue reading symbols
?\ of clipped bases until the
& end-of-soft-clips terminatof
% is reached.
Js,ott Increment pointer for
subsequence?2.
softClipSizes[segmentIdx] [leftRightIdx] = J Store soft Clips size.
}
else if (subsequencelljs ;1 < 7){ Hard clips.
segmentIdx = (subsequencel [j5,1] - 4) >> 1
leftRightIdx = (subsequencel[j5,l] - 4) & 1
hardClips[segmentIdx] [leftRightIdx] = Store the number of hard
subsequence3[Jg ;] clips.

54 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

Table 54 (continued)

ISO/IEC 23092-2:2020(E)

Decoding process

Description

Js,3tt Increment pointer for
subsequence3.
}
else if (subsequencel[js ;] == 8){ End-of-clips terminator.
end = 1
}
Js, 1t Increment pointer for
subsequencel-
} while(end == 0) Continue decoding foft

and hard clips until|the
end oficlips termindtor is
detected.

j5,0++

Increment pointer for
subsequenceO.

}

currentRecordCount++

10.4.8 ureads

—

he inputs to this process (see Table 55) are:

descriptor_ID is equal to 6;

+ the current value of jg o;

subclause 7.4.2.

The output of this process is a string decodedUreads.

Table)55 — Decoding process of the ureads descriptor

-+ the array decoded_symbols[descriptor_ID][0] structure as specified in subclause 12.6.2.2 when

—+ the array S, napee ipll as specifiediin subclause 9.2, for the value of alphabet_ID spefified in

Decoding process

Description

ecodeUreads (length) {

decodedUreads’ = “”

Empty string.

for(j =077 < length; Jj++) {

delcodedUreads = strcat (decodedUreads,

Salphabetim[decoded_symbols [6][0] [j6,01]

strcat returns the concatenatiqn of the
two arrays of ASCII charactersfpassed
as input.

j6, ott

10.4.9 rlen

The rlen descriptor is present when read_length is equal to 0 in the parameter set or when there are

multiple alignments with splices.

The inputs to this process are:

— the array decoded_symbols[descriptor_ID][0] as specified in subclause 12.6.2.2 when descriptor_

ID is equal to 7;

© ISO/IEC 2020 - All rights reserved

55

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— the value read_length as specified in subclause 7.4.2;
— the variable classld computed in subclause 10.2.3;

— the variables numberOfRecordSegments and numberOfAlignedRecordSegments computed as
specified in subclause 10.4.10;

— if classld is equal to Class_I or Class_HM, the array hardClips[][] computed as specified in
subclause 10.4.7;

— the pptieet

— the poftClipSizes[][] array specified in subclause 10.4.7;
— the furrent value of j; .

The outputs of this process are:

— the prray readLength([];

— the prray numberOfSplicedSeg[];

— the prray splicedSegLength[][];

— the prray splicedSegMappedLength[][].

=

The decpding process of the rlen descriptor is specified in Table-56/1n this description, subsequence
is the qubsequence identified by descriptor_subsequence_ID. = N (i.e. subsequenceN = decoded_
symbolg[7][N]).

Table 56 — Decoding process of the rlen descriptor

Decoding step Description
if (read length == 0){
for{i = 0; i < numberOfRecordSegmentss i++) {
feadlLength[i] = subsequenceO[j%O++] + 1
}
telse(
for{i = 0; i < numberOfRecordSegments; i++) {
Jf (classId == ClagsT) {
readLength [i4)= read length

- hardClips[i][0] - hardClips[i][1]

dlse if{(&lassId == Class HM && i == 0){
readLength[i] = read length
- hardClips[0][0] - hardClips[0][1]
else {

readLength[i] = read length

}

for(i = 0; 1 < numberOfRecordSegments; i++) {

numberOfSplicedSeg[i] =1

splicedSegLength[i] [0] = readLength[i]

splicedSegMappedLength[i] [0] = readLength[i]

56 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 56 (continued)
Decoding step Description
}
if (spliced reads flag &&
(classId == Class I || classId == Class HM)) {

for(i = 0; 1 < numberOfAlignedRecordSegments; i++) {

remaininglen = readLength[i]

3 =0

do{
splicelen = subsequenceO[j%O++]
remaininglen -= splicelen
splicedSeglength[i] [j] = splicelen
splicedSegMappedLength[i] [j] = splicelen
j++

} while(remainingLen > 0)

numberOfSplicedSeg[i] = j

splicedSegMappedLength[i] [0] -=
softClipSizes[1][0]

splicedSegMappedLength[i] [j-1] -=
softClipSizes[i] [1]

10.4.10pair
Tlable 57 lists the possible decoding ¢ases for the pair descriptor with the associated descriptiop for the
flrst alignment and class U.
Table 57 — Specificatiomof the decoding cases for the pair descriptor for primary alignments
and class U
Decoding case Description
ClassesP,N, M, I | Class HM ClassU
ame_rec Read 1 and read 2 are encoded in the same genomic record.
R1_split Read 1 in pair is on the same N/A Read 1 paired with rpate in
reference sequence but coded the same AU.
separately.
R2Z-split Read 2 in pair is on the same N/A Read 2 paired with rpate in
Teference sequence but toded the same AY:
separately.
R1_diff ref _seq Read 1 is on a different reference |N/A Read 1 paired with mate in a
sequence. different AU.
R2_diff_ref_seq Read 2 is on a different reference |N/A Read 2 paired with mate in a
sequence. different AU.
R1_unpaired Read 1 is unpaired. N/A Read 1 unpaired.
R2_unpaired Read 2 is unpaired. N/A Read 2 unpaired.

Table 58 lists the possible decoding cases for the pair descriptor with the associated description for
alignments after the first one.

© ISO/IEC 2020 - All rights reserved 57

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

When the two ends of a paired-end read are coded in two different genomic records, they are part of a
split alignment.

Table 58 — Specification of the decoding cases for the pair descriptor for alignments after the

first one
. Description
Decoding case
ClassesP,N, M, I
same_rec_short Read 1 and read 2 are encoded in the same genomic record and the absolute
pairing distance is smaller than or equal to 32767.
same_rec_long Read 1 and read 2 are encoded in the same genomic record and the absolute
pairing distance is greater than 32767.
R2_diff_ref_seq Read 2 is on a different reference sequence.
Table 59 lists the possible decoding cases for the pair descriptor with the associated(description fdr
spliced feads.

The inpits to this process are:

Tal

ble 59 — Specification of the decoding cases for the pair descriptor.for spliced reads

Description
Classes I, HM

Decoding case

same_rec_short The next splice is in the same genomic record.as current splice, and the splic-

ing distance is smaller than or equal to 65535,

same_rec_long The next splice is in the same genomic record as current splice, and the splic-

ing distance is greater than 65535.

SP

lice_diff ref seq |The nextsplice is on a different referénce sequence than the current splice.

the

eigh
ins

value of numberOfTemplateSegments as-specified in subclause 7.4.2;

jom

t subsequences decoded_symbols|{descriptor_ID][descriptor_subsequence_ID] as specifie
lbclause 12.6.2.2 when descriptor_ID is equal to 8. The description of each subsequence i

[72)

proy
the
the
the
ase
the

the

Fided in Table 30;

current values of jg o, jg 1.Jg 2, Jg 3 Jg 4 J8,50 I8 620d jg 73

hrray mappingPos[][0])computed as specified subclause 10.4.2;

rlassld variable §pecified in subclause 10.2.3;

ld variable‘set to sequence_ID as specified in subclause 7.5.1.2;

hrray alignPtr[][] specified in subclause 10.4.12;

variable numberOfAlignments and the array numberOfSegmentAlignments[] specified i

—

sub

[lause 10.4.12;

the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclause 10.4.9;

the crps_flagvalue specified in subclause 7.4.2 and the cr_alg_ID value specified in subclause 7.4.2.4;

The outputs of this process are:

— avariable numberOfRecordSegments calculated as follows:

58

if numberOfTemplateSegments is equal to 1 then numberOfRecordSegments is set to 1,

else if classld is equal to Class_HM as specified in Table 37 then numberOfRecordSegments is
setto 2,

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— elseif subsequence0[;g o] is equal to 0 then numberOfRecordSegments is set to 2,
— else numberOfRecordSegments is set to 1;

a variable numberOfAlignedRecordSegments calculated as follows:

— if classld is equal to Class_HM as specified in Table 37 then numberOfAlignedRecordSegments

issetto1,

— elseifclassldis equal to Class_U as specified in Table 37 then numberOfAlignedRecordSegments

H AL ral
I55CtL LU U,

— else numberOfAlignedRecordSegments is set to the value of numberOfRecordSegments;

a variable numberOfMappedRecordSegments calculated as follows:

— ifclassld is equal to Class_U as specified in Table 37, and crps_flag is not-equal to 0 and
ID is equal to 2 or 4 as specified in subclause 7.4.2, then numberOfMdppedRecordSeg
set to the value of numberOfRecordSegments,

— elsenumberOfMappedRecordSegments is set to the value of nuimnberOfAlignedRecordS¢
a variable unpairedRead calculated as follows:
— if classld is equal to Class_HM as specified in Table 37 then unpairedRead is set to 0,

— else if numberOfTemplateSegments is equal to X or’subsequence0[jg o] is equal to 5 g
unpairedRead is setto 1,

— else unpairedRead is set to 0;

one flag read1First, whose value follows the'same semantics of read_1_first output syntax
specified in subclause 13.2.8;

the arrays splitMate[][i] for i from>1 to numberOfTemplateSegments, where the value
element follows the same semantics of split_alignment output syntax element spe
subclause 13.2.23;

the arrays splicedSegMappingPos[i][] for i from 0 to numberOfRecordSegments.

Vhen classld is equal to(Class_P, Class_N, Class_M or Class_I, additional output of this process i

the arrays mappingPos|[][i] for i from 1 to numberOfTemplateSegments;

the arrays mmateSeqld[][i] for i from 1 to numberOfTemplateSegments.

Vhen classldis equal to Class_U, additional output of this process is:

the arrays pairingMate[i] from 1 to numberOfTemplateSegments. A -1 value in an array el
used as reserved value;

4

| cr_alg_
ments is

gments,

r 6 then

element

of each
rified in

2]

pment is

In the following descriptions of the decoding process subsequenceN indicates the subsequence
identified by descriptor_subsequence_ID equal to N.

The decoding process of the pair descriptor is carried out by applying the decoding processes specified
in Table 60, Table 61, and Table 62, in this exact order.

The decoding process of the pair descriptor for the first alignment and for class U is specified in
Table 60.

© ISO/IEC 2020 - All rights reserved

59

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 60 — Decoding process of the pair descriptor subsequences for the first alignment in the

record or class U

Decoding step Description
splitMate[0][0] = 0
readlFirst =1
if (classId == Class HM) {
readlFirst = (subsequencel([jg ;++] & 0x0001) 2 O 1 same_rec - in records of cl
HM, the paired segmen%‘ag
always in the same recoprd.
\4
spliltMate[0] [1] = 0 9\
} else |{ O(\l/
for{i = 1; i < numberOfTemplateSegments; i++) { O\QJ
If (subsequencel[jg o] == 0){ same_r;_c(l/J
splitMate[0][i] = 0O </U
: ;\vl
if (classId != Class U O\
|| (crps_flag != 0 && %
(cr _alg ID == || cr alg ID == 4))) { g(\\
readlFirst = (subsequencel[Jjg ;] & 0x0001) ? O :/lo\
delta = subsequencel[jg ;] >> 1 O 0 < delta < 32767
mappingPos[0] [1] = mappingPos[0][0] + delt‘a\Y N
if (classId != Class U) { &0\\
mateSeqId[0] [1] = seqgld .\Q)\
lelse { \\\
pairingMate[i] = -1) ‘Q‘
) N
Jg, 1t xO
} else { ‘(-\,L“
readlFirst = 1 (',\\
pairingMate[i] = -1 ‘\’,v
N
! N
\J
Q
dlse if (subsequenﬁc@[’jg,o] == 1){ R1_split
splitMate[0] LN E 1
realeirst(%fd
if(clas&%\.& Class U) |
ma@l‘q@lPos[O] [1] = subsequence2[jg ;] Absolute mapping position of|
read 1 on the same reference
«?‘ sequence. The maximum
% value is 2PosSize — 1 where
o s e s
PUDUILC 10 DPCLIIICU 11T
subclause 7.4.2.
mateSeqId[0] [1] = seqld
} else {
pairingMate[i] = -1
}
j8,2++
}
else if (subsequencel[Jjg o] == 2){ R2_split
splitMate[0] [1] =1
readlFirst = 1
60 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

Table 60 (continued)

ISO/IEC 23092-2:2020(E)

Decoding step

Description

if (classId != Class U) {

mappingPos[0] [1] =

subsequence3[Jjg, 5]

Absolute mapping position
of the read 2 on the same
reference sequence. The
maximum value is 2posSize — |
where posSize is specified in
subclause 7.4.2.

&

mateSeqId[0] [1] = seqgld ,\Q
} else { Adl/
pairingMate[i] = -1 (\".
} q/V
Jg,3tt ('\(J.>V
} (\(bv
else if (subsequenceO[jslo] == 3){ l@;_ﬁiff_ref_seq
splitMate[0][i] = 1 N\
readlFirst = 0 ,_O\
if (classId != CLASS U) { N\
mateSeqId[0][i] = subsequence4[]g,] O\ Identifier of the refer¢nce

sequence to which regd 1 is
mapped.

mappingPos[0] [1] =

\"QQ)

subsequence6 [Jg, 4 \

Absolute mapping pogition
of read 1 on the referg¢nce

sequence identified by
mateSeqld[0][i]. The

AL

@ maximum value is 2PgsSize — |
A‘\Q) where posSize is specjified in
~ subclause 7.4.2.
lelse{ o

pairingMate[1i]‘*\Cﬂ‘l
)

}

Jg,atts Je,6ttr (N

} e

else if (subs,e\q&a’nceo Jg,0] == 4){

R2_diff_ref_seq

[
splitMateled [i] = 1

readl@s{ =1

if 4fgssId = CLASS_U) {

?SEteSqud[O] [1]1 = subsequenceS[j8,5]

o

Identifier of the refer¢nce
sequence to which read 2 is
mapped.

mappingPos[0] [1] = subsequence7[jg, ;]

é\‘

Absolute mapping pogition of
the read 2 on the reference

sequence identified by
mateSeqld[0][i]. The
maximum value is 2PosSize — 1
where posSize is specified

in subclause 7.4.2.

telse(
pairingMate[i] = -1
}
g, 5t Jg, 7+,
}
else if (subsequenceO[jg o] == 5){ R1_unpaired

© ISO/IEC 2020 - All rights reserved

61

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 60 (continued)
Decoding step Description
splitMate[0] [1] = 2
readlFirst = 1
if (classId == CLASS U) {
pairingMate[i] = -1
}
}
dlse if (subsequenceO[jS,o] == 0) { R2_unpaired A(\
splitMate[0] [i] = 2 Qv
readlFirst = 0 no‘.l/v
if (classId == CLASS U) { s
pairingMate[i] = -1 (\Q)V
) a57
Naid
Js, 0"t R\
) O
; N

N\
The decpding process of the pair descriptor for the alignments after Qe@rst one is specified in Table 61.

Tabl¢ 61 — Decoding process of the pair descriptor sub§%ences for the alignments in the
record after the first on

Decoding step \Qw Description

for(i 4 1; 1 < numberOfSegmentAlignments([0] 1*@

splitMaterij[o] = o \\Qf

-~

| 0
if((clgssId == Class P || classId == C s N

|| ¢qlass ID == Class M | classIe) Class 1)
&& !ungairedRead) { N ¢

for{j = 1; j < numberOfTenﬁ%ﬁ‘eSegments; JH++) |

dqurrAlignIdx = 0 C)V

flor(i = 1; 1 < nun;k@OfAlignments; i++) {

alignldx = aligabtr[i][j]

if(alignId{\‘gcurrAlignIdx) {
currAQg'nIdx = alignIdx

1{<§ﬁ>‘sequenceo[jg ol == 0){ same_rec_short
X “splitMatelalignIdx][j] = 0
(‘:&‘ delta = subsequencel[jg ;] >> 1; 0 < delta< 32767
H(subsegreneet Sy T——6x066+) read-signbit
delta = - delta

mappingPos[alignIdx] [j] =

mappingPos[alignPtr[i] [0]] [0]

+ delta
mateSeqld[alignIdx] [j] = seqgld
Jg, 11+
}
else 1if (subsequenceO[jBIO] == 2){ same_rec_long

splitMate[alignIdx][j] = O

62 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

Table 61 (continued)

ISO/IEC 23092-2:2020(E)

Decoding step

Description

mappingPos[alignIdx] [j] =

subsequence3[Jg, ;]

For classes P, N, M, I

Absolute mapping position

of read 2 on the same
reference sequence. The
maximum value is
2possize _ 1 where posSiz

snecifiedin subclaus
p W

eis
4.2.

splitMate[alignIdx][j] = 1

mateSeqgld[alignIdx] [j] = seqgld (ét)
g, 3+t nQV
} a Y
else if (subsequence0[Jg o] == 4){ R2_diff_re;q¥qv
N

O

mateSeqgld[alignIdx] [j] =

subsequence5[Jg, 5]

Iden{ilje% of the referend
s 6:11)3nce to which read
ped.

[¢)

P is

mappingPos[alignIdx] [j] =

subsequence7 [Jjg 4]

150r classesP,N, M, I

Absolute mapping positi
read 2 on the reference

bn of
equence

Q identified by subsequenge5[jg s].
QO The maximum value is. -
\\ 213055_12_e - 1 where posSizg is
(28 specified in subclause 7.4.2.
Jg, s+, Jg, 77t ‘.\Q)\
) Y
else {) j&‘
/* other subsequenceO[jg,gﬁcgalues */ reserved
) N
Js,0tt O
) &N
} \’ .
} (\V‘

C)V

—]

he decoding proc@g the pair descriptor for spliced reads is specified in Table 62.

Table@— Decoding process of the pair descriptor subsequences for spliced read

[72)

Decoding step

S
Q'

Description

fOor ; 1 < number a e ecor egments; 1++
For (i 0; i berOfMappedR dSegments; i++) {

mappingPos[0] [1]

,:égiicedSegMappingPos[i][O] =

<
if (classId == Class I || classId == Class HM) {
for(i = 0; 1 < numberOfAlignedRecordSegments;
i++) {
for(j = 1; 7 < numberOfSplicedSeg[i]; j++) {

prevSpliceMappingEnd =
splicedSegMappingPos[i][] - 1]
+ splicedSegLength{i] [j - 1]

if(subsequenceO[j&O] == 0) {

same_rec_short

delta =

subsequencel[jg ;] >> 1

0 < delta < 32767

© ISO/IEC 2020 - All rights reserved

63

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 62 (continued)

Decoding step Description
if (subsequencel [jg, ;] & 0x0001) read sign bit
delta = - delta

splicedSegMappingPos[i] [J] =
prevSpliceMappingEnd + delta

Jg, 1t

¥

else if (subsequencell[jg o] == 2){ same_rec_long
splicedSegMappingPos[i] [j] = Absolute mapping positien

of the splice on the same
reference sequence’as

the previous splice. The
maximum yahie is 2posSize — 1
where posSize is specified in
subclausel7.4.2.

subsequence3[j&3}

g g+t
}
else {
/* other subsequence0O[jg o] values */ reserved
}
j8, O++
}
}
10.4.11mscore
The ms¢ore descriptor provides a score perlsegment in each alignment. Some information on how tp
use the lnscore descriptor to express themapping quality is provided in Annex B.
The inputs to this process are:
— the decoded_symbols[descripter_ID] array specified in 1 12.6.2.2 when descriptor_ID is
equfpl to 9;
— the furrent value of jgp;
— the yalue of syntax‘element as_depth specified in subclause 7.4.2;
— the prray nuinberOfSegmentAlignments[] calculated as specified in subclause 10.4.12;
— the pariablé numberOfAlignedRecordSegments calculated as specified in subclause 10.4.10;
h— the 1 ra_y op}itl\v{atc adS DPCL;f;Cd ill oub\,}auoc 10.4.19-

The output of this process is the three-dimensional mappingScores[][][]array.

The decoding process of the mscore descriptor is specified in Table 63. In this description,
subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN =
decoded_symbols[9][N]).

64

© ISO/IEC 2020 - All rights reserve

d

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 63 — Decoding process for the mscore descriptor

Decoding step

Description

for(i = 0; i < as_depth; i++) {

for(j = 0; j < numberOfAlignedRecordSegments; j++) {

for(k = 0; k < numberOfSegmentAlignments([j]; k++) {

if (splitMate[k] [j] == 0) {

mappingScores[k] [J] [1] = subsequencel[jg o++];

10.4.12mmap

[

04.12.1 General

escriptor.

_ Q.o

he inputs to this process are:

computed in subclause 10.4.10;

provided in Table 31;
T the currentvalues of jy¢ ¢, j104 1102 10,3 J10,4

—+ the classld variable specified in subclause 10.2.3;

—+ the value of multiple_alignments_flag specified in subclause 7.4.2;

—

he outputs of this’process are:

-+ the variable numberOfAlignments containing the total number of alignments;

alignments;

he mmap descriptor is used to signal on how many positions the'read or the leftmost read pf a pair
as been aligned. A genomic record containing multiple alignments is associated with on¢ mmap

-+ the variables unpairedRead, numberOfAlignedRecordSegments and numberOfRecordSpgments

—+ the subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as spegified in
subclause 12.6.2.2 when descriptor_ID is equal to 10. The description of each subsequence is

— the crps_flag valuespecified in subclause 7.4.2 and the cr_alg_ID value specified in subclausg 7.4.2 4.

4 thexarray numberOfSegmentAlignments[] containing the total number of segmentspecific

— the array numberOUiAlignmentsPairs| | containing the number of alignments of the rightmost read

associated to each alignment of the leftmost read;

— the bi-dimensional array alignPtr[][] containing unsigned integer values representing, for each

alignment, the indexes of the corresponding segment-specific alignments;
— the variable moreAlignments;
— the variable moreAlignmentsNextPos;

— the variable moreAlignmentsNextSeqld;

© ISO/IEC 2020 - All rights reserved

65

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

the variable numberOfSegmentMappings[] calculated as follows:

ifclassldisequalto Class_Uasspecifiedin Table 37,and crps_flagisnotequalto 0 and cr_alg_IDis

equalto 2,3 or4 asspecified in subclause 7.4.2, then the elements numberOfSegmentMappings[i]

are set 1 for all values of i from 0 to numberOfRecordSegments - 1,

In the following clauses, subsequence(

subclause 12.6.2.2.

is the array decoded_symbols[10][0]

else numberOfSegmentMappings[] is set equal to numberOfSegmentAlignments].

specified in

The decpding process shown in Table 64 applies.

Table 64 — Decoding process of mmap

N
. Q(L
(]/.

Decoding step

FaY

y4
Descrj@b’n

if (clagsId != Class U) {

if

nultiple alignment flag == 0) {

D
v

3

umberOfSegmentAlignments[0] 1

er of alignments of

Total @/
the }e&nost read.

} else {

oo
N

umberOfSegmentAlignments[0]

subsequence0 [] 10, ot+]

\S

}

v

} else |{ O\)‘
numijerOfSegmentAlignments[0] = 0 \\‘
} $\\)
moreAlijgnments = 0 K %]
if (unpgiredRead || classId == Class HM) { Q\'\
numijerOfAlignments = numberOfSegmentAlign:Q@\%s[O]
for{i = 0; i < numberOfAlignments; i++)r\"{*\‘
dlignPtr[i] [0] = 1 N1
} “O
N3
} else|if (classId == Class U) { U
if (qumberOfRecordSegments > 1\ N
. k‘
rumberOfSegmentAllgnmen@}l] =0
numijerOfAlignments = OA
} else |{ (;\U

0

erOfSegmentAli@uﬁnts [1]

T 4
k=[o, i=0 <)
while (i < num@;SOfSegmentAlignments[O]) {
jf(mult@a‘_alignments_flag == 0) {
nuvggrOfAlignmentsPairs[i] =1 numberOfAlignmentsPairs[i] is
the number of alignments of the
% rightmost read associated to
the ith alignments of the
leftmost read.
} else {
numberOfAlignmentsPairs([i] = subsequencel [j10,0++]
}
jJ =0
while (j < numberOfAlignmentsPairs[i]) {
if(k !'= 0){ Skip this for first alignment.
ptr = sequencel [Jj, ;++]
} else {
66 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 64 (continued)
Decoding step Description

ptr = 0
}
alignPtr([k][1l] =

numberOfSegmentAlignments[1] - ptr
alignPtr([k] [0] = 1
if(ptr == 0)

numberOfSegmentAlignments [1]++

j++, k++

i++

}
numberOfAlignments = k

| £ (multiple alignments flag == More alignments on andther

reference sequence.
&& classId != Class U

&& subsequenceZ[jlm2++]){

moreAlignments = 1

moreAlignmentsNextSeqId = Identifier of the referenge
sequence an additional
alignment of read 1 is

mapped to in case of myltiple
alignments.

subsequence3[jqg, 3++]

moreAlignmentsNextPos = Absolute mapping positjon
of an additional alignmgnt
of read 1 on the referenge

sequence identified by
moreAlignmentsNextSeqld.

subsequence4[jlm4++]

10.4.12.2 Multiple alignments on different sequences

It can happen that the alignment process finds alternative mappings to another reference sequence
than the one where thefirst mapping is positioned.

Hor read pairs that/are uniquely aligned, the mmap descriptor shall be used to represent the pbsolute
read positions)when there is for example a chimeric alignment with the mate on another chromosome
(more alignmrents on another reference sequence case in Table 64). The mmap descriptor shall be used
tp signal\the reference and the position of the next record containing further alignments for the same
template: The last record (e.g. the third if alternative mappings are coded in three differerlt access
units).shall contain the reference and position of the first record.

10.4.13msar

The msar (multiple segments alignment record) descriptor supports spliced reads and alternative
alignments that contain indels or soft clips in case of class I data. It shall be present in a compliant
bitstream when multiple_alignments_flag specified in subclause 7.4.2 is set to 1.

msar is intended to convey information related to secondary aligments on:
— amapped segment length;

— adifferent mapping contiguity (i.e. e-cigar string) for additional alignment and/or spliced reads.

© ISO/IEC 2020 - All rights reserved 67

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Each msar descriptor is an array of ASCII characters following the syntax specified in subclause 10.6.

The syntax, semantics and decoding process for msar descriptors are those for the tokentype
descriptors specified in subclause 10.4.20.

The output of the decoding process of the msar descriptor is the array decodedStrings[] specified in
subclause 10.4.20.5, when descriptor_ID is equal to 12.

Table 65 shows how the array of strings decodedMsar[][] is computed using the following additional

input:
— the prray numberOfSegmentAlignments[] calculated as specified in subclause 10.4.12;
— the pariable numberOfAlignedRecordSegments calculated as specified in subclause 10.4.10;
— the prray splitMate as specified in subclause 10.4.10.
For each genomic record the number encoded msar descriptors is equal to (numberQfAlignments - 1) [*
numberPfRecordSegments.
Table 65 — Computation of decodedMsar
Decoding step Description
k =0
for(i 4 0; 1 < numberOfAlignedRecordSegments; i++) {
decqdedMsar[] [1] = {} Empty array.
for(j = 0;
] < numberOfSegmentAlignments[i]-1; J++) {
If (splitMate[j] [1] == 0) {
decodedMsar[j] [1] = decodedStrings [k#%+]
}
10.4.14type
10.4.14{1 General
The rtype descriptor is used to signal the subset of descriptors used to decode one unmapped reafd
(class HM and class U) or réad pair (Class U) in a genomic record as shown in Table 66.
The rtype descriptor-also enables mixing reference-based and reference-less compression in the sa
dataset.[In this scendrio rtype = 0 signals reference-based encoded records, while rtype > 0 sign'{E
the set ¢f descriptors to be used for reference-less compression (in this case descriptors refer to t
computdd refefence, when needed).
The inp11t te this process is the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.p

when destriptor-iDisequatto 2 amdthecurrent vatue of 15 -

The output of this process is the decoded_symbols[descriptor_ID] array itself used by the decoder to
select the appropriate descriptors for further decoding the genomic record.

68

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 66 — Semantics of the rtype descriptor

rtype

cr_alg_ID

type of encoded reads

description

not used

Aligned reads with reference
based compression only.

The entire dataset is encoded using reference based
compression for mapped reads.

Aligned reads with both
reference-based compression

The dataset contains both read (pairs) encoded
using reference based compression and reference

and reference-less compression.

Tess compression. I he decoding process tor)this
Record uses the external or embedded reference
according to the Class of the AU as spécified in
subclause 10.2.

2,4

Unmapped reads only.

1 = the decoding process is obtainied by applying
the decoding process specifiéd)in subclausg 10.2.3,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.]1),
msar (subclause 10.4{13) and rgroup
(subclause 10.4.15) descriptors.

2 = the decoding.process is obtained by applying
the decoding\process specified in subclause 10.2.4,
but withoutapplying the steps specific to clips
(subclause™10.4.7), mscore (subclause 10.4.11),
msat (subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.

3= the decoding process is obtained by app|ying
the decoding process specified in subclause 10.2.5,
but without applying the steps specific to mscore
(subclause 10.4.11), msar (subclause 10.4.18) and
rgroup (subclause 10.4.15) descriptors.

4 =the decoding process is obtained by applying
the decoding process specified in subclauseg 10.2.6,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.]1),
msar (subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.

Unmapped reads or aligned
with reference less
compression only.

1 = apply the decoding process specified in
subclause 10.2.3.

2 = apply the decoding process specified in
subclause 10.2.4.

3 = apply the decoding process specified in
subclause 10.2.5.

4 = apply the decoding process specified in
subclause 10.2.6.

5 = apply the decoding process specified in

subclause 10.2.8.

6 = apply the decoding process specified in
subclause 10.2.7.

Unmapped reads only.

The decoding process is specified in
subclause 10.2.8.

Unmapped reads.

The decoding process is specified in

subclause 10.2.8 where the U reads representing
the reference sequence are used for compression
but do not generate output records as specified in
subclause 11.3.6.

© ISO/IEC 2020 - All rights reserved

69

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

In case of class HM, the mapped read is decoded by following the process for the mapped read of class
HM specified in subclause 10.2, and the unmapped read is decoded following the decoding process
specified in this subclause.

10.4.14.2 PushiIn

When class U data are compressed using the “PushIn” computed reference algorithm specified
in subclause 11.3.4, the decoding process shall follow the one described for classes P, N, M, I in
subclauses 10.2.3 to 10.2.6 (for rtype values 1 to 4 respectively), or by ureads as described in
subclauge—168-218 (1 t_lec cqual to 5) The process tobefoHowedisindicated lu_y the-deser iptux 1t_y1.1c S

specifiefl in subclause 10.4.14.

Table 67 provides a description on the use of the pos and pair descriptors in this decoding process.

Table 67 — Semantics of the pos and pair descriptors for the Pushln algorithm

descyiptor semantics

pos Matching position of the read on the PushIn computed reference, with coordinate as
described in subclause 11.3.4.

pair Used only for paired end reads. It associates a decoded read with\its mate.

10.4.15fgroup

The rgroup descriptor identifies the read group the genomic record’belongs to.

=}

The inppt to this process (see Table 68) is the decoded_symbols[descriptor_ID] array specified i
subclauge 12.6.2.2 when descriptor_ID is equal to 13 and the current value of j; 3 .

The output of this process is the variable readGrouplds

Table 68 — Determination of the readGroupld value

Decoding step Description

rdeadGroupId = subsequence0l[J;§ gF+]

10.4.16Qqv

10.4.16{1 General
The qv descriptor carrjesinformation to reconstruct the quality values.

The progess for decoding quality values at a genomic position can be summarized informatively in thie
followinjg steps:

1. Deteérmine the quality value indexes at the genomic position.

2 D t ¥Rt tlha A olabyy o1 e ganaralo o orbl o
. e TIIIITIC LIIC l/lblClllL)’ vd TS 5\/11\.}1111\, lJUDlLlUll-

3. Use the quality value codebook identifier to select the quality value codebook for the genomic
position.

4. Decode the quality value indexes by lookup in the quality value codebook.

10.4.16.2 Decoding process of the quality values of a genomic record

The inputs to this process are:

— the qv_depth value specified in subclause 7.4.2;

70 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— the qv_reverse_flag value specified in subclause 7.4.2;
— the numberOfRecordSegments value computed in subclause 10.4.10;
— the current value of jy, o;

— the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 14;

— the qvCodebookIndexesLoadFlag set to 1 at the beginning of each AU decoding process;

P

—+ the reverseComp array computed as specified in subclause 10.4.3.

The outputs of this process are the quality values of each nucleotide for each segmenf&the current
genomic record and the value of qvCodebookIndexesLoadFlag. ‘v

Ih this description, subsequenceN is the subsequence identified by descriptor_s@bquence_ID =N (i.e.
sjubsequenceN = decoded_symbols[14][N]). q:b

The decoding process for one genomic record is specified in Table 69: Q/C)
N

Table 69 — Decoding process of the quality valuesan genomic record

Decoding step) 6\ Description
ecode _quality values () { {-«
if (gvCodebookIndexesLoadFlag == 1) { QV
decode gv codebook indexes () \§\) As Specified in
R Table 70.
gvCodebookIndexesLoadFlag = 0 " \d
) K\
for (tSeg = 0; tSeg < Q\

numberOfRecordSegments; tSe«Q@) {
for(gs = 0; gs < qv_dept}}.\&qurH {
if (31,5 < Size (subgetence0[])) f
quresentFlag =’\s{1bsequence0 [314,0]
. N\
Jag,0tt ,-&
} else { ("\J
q Prem?ﬁ_ag 1
v -
N
) -\‘%
if (g{@esentﬂag == 1) ({

Q}écode_qu () As specified

in
~ Table 71.
é\/ qvString = " Empty strinfg.
&\?\‘ len = 0
%‘ for (i=0; i < numberOfSplicedSeg[tSeg]; i++) {
revComp = reverseComp[i] [0] [tSeq]
gvSplice =

qualityValues[tSeq] [gs] [len, len+splicedSeglLength[tSeg] [1]-1]

if (gv_reverse flag && revComp) {

gvString = strcat (gvString,

reverseStr (qvSplice))

}

else{

gvString = strcat(gqvString, gvSplice)

© ISO/IEC 2020 - All rights reserved 71

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 69 (continued)
Decoding step Description
}
qualityValues[tSeq] [gs] = gvString

} else {

qualityValues[tSeg] [gs] Empty string.

}

reverse$tr(str) returns the reverse of the input string str where the nth element of the reversed string
reversedStr is computed as

revgrsedStr[n] = str[Size(str[]) - n - 1], for nin O .. Size(str[]) - 1.

10.4.16{3Decoding processes of quality value codebook indexes and quality‘values of a segment

The inpyts to these processes are:

[72)

— the decoded_symbols[descriptor_ID] array specified in subclause 42.6.2.2 when descriptor_ID i
equgl to 14;

— the gv_num_codebooks_total and qvNumCodebooksAligned values specified in subclause 7.4.2.9;
— the purrent values of j,, ; for the qvCodebooklds subsequence;

— the purrent values of j,4 y,, with N ranging from 0\to"qv_num_codebooks_total - 1 for the qv_num_
codebooks_total subsequences for quality valuedndexes;

[72)

— the humBases variable equal to number of fiucleotide of the segment for which the quality valug
shall be decoded;

— the [basePos array containing the mapping positions relative to the AU_start_position of each
nuclotide in the segment for which'quality values shall be decoded, as specified in subclause 10.4.2;

— the flassld variable specified in/subclause 10.2.3;

— the yalue tSeg identifying the segment within the ISO/IEC 23092 series record for which the qualitly
valyes shall be decoded;

— the yalue gs identifying the gsth quality value string for the tSegth segment within the ISO/IEC 2309p
serips record far-which the quality values shall be decoded.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.¢.
subsequeneeN = decoded_symbols[14][N]).

The out >
nucleotide in the segment for which the quality values shall be decoded.

In the case that qvNumCodebooksAligned is larger than 1, the value of subsequencel shall be used
to identify the quality value codebook for a genomic position of each aligned base. This quality value
codebook is used to reconstruct all quality values at that genomic position. Multiple quality value
codebooks can be used in one access unit. The variable qvCodeBooklds contains the indexes of the
quality value codebooks associated to a given mapping position relative to AU_start_position as
specified in subclause 9.6. The decoding process of qvCodeBooklIds variable is specified in Table 70.

72 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 70 — Decoding of quality value codebook indexes

Decoding step Description
decode gv codebook indexes () {
if (gvNumCodebooksAligned > 1) {

pos = 0
for(j;s.; = 0; Jjy4.7 < Size(subsequencell]); Ji, (+t+) |
gvCodeBookIds[pos] = subsequencel [j14,1] The values quodeBook [pOS]
shall be in the range
(qvNumCodebooks ned|- 1).
pos++ ‘v

AL
"
J n(b
Cy
The decoding process of the quality values is specified in Table 71. O\\Q/

Table 71 — Decoding process of qua{\t\y values

Decoding step /.\<< Description
ecode_qgvs () { QV
for (baseIdx = 0; baselIdx < numBases; baseId’Xf\% ‘{
f((classId == CLASS I || classId == C é‘gJ_HM) Classes I and HM contaip

6 ¢ tsalignedipasetan)) (XE the referénce sequence,for

. ®$ which the last quality values

K\ codebook identifier resgrved

\O for unaligned data shallfbe
\L‘ used, as specified in
RS subclause 7.4.2.3.

gvCodeBookId = qv_nlsm)_‘codebooks_total -1
} else if(classId aﬁCLAssiU) {

gvCodeBookId O\ For records belonging t
Class U, only one codebdok
O ’ shall be used, as specifi¢d in
RN subclause 7.4.2.3.

} else @'n{@x‘fNumCodebooksAligned > 1) |
BookId = gvCodeBookIds[basePos[baseldx]]

q
) gAXe |
é\évCodeBookId =0
% quodeBookSubSeq = gvCodeBookId + 2 See subcl 74223
j = jl4,gvCodeBookSubSeq
j14,gvCodeBookSubSeqg++

gvIndex =

decoded symbols[14] [gvCodeBookSubSeq] []]

qualityValues[tSeq] [gs] [baseldx] =

gv_recon[gvCodeBookId] [gvIndex]

© ISO/IEC 2020 - All rights reserved 73

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

isAligned(baseldx) returns 1 if the nucleotide at baseldx is aligned to the reference sequence,
otherwise 0. This means that isAligned(baseldx) returns 0 for every nucleotide corresponding to a soft
clip or to an insertion, or for nucleotides in the second segment of a genomic record in class HM.

Subclause 10.4.2 specifies how to calculate the absolute mapping position of the leftmost mapped
base in each read, and thus every quality value, in a read. Figure 6 shows how quality value codebook
identifiers relate to sequencing reads, quality values, reconstructed quality values, and genomic
positions. The top third of the figure shows how nucleotides of four reads, including quality values, are
mapped to genomic positions. The center of the figure shows how each genomic position is associated
to a quality value codebook According to the corresponding quality value index the reconstructe

quality Yalue is derived using the associated quality value codebook. The reconstructed quality value
are showyn in the bottom third of the figure.

[77)

j genomic position
T T T T T T >
AlGCTTTTCATTCTGACTGCA
—F[@CDFFFFHHHHHEJIJIJIJIIJJ
AGCTTTTCATTCTGACTGCAGCG
M+ |2 4 % > @ 4 A
GCITITCATTCTGACTGCAACGGGCA (original) quality value
I DDCDDDCDDDDDC/DCDDDBDDDDEE
H EH E B B B B B B B B B B B B BB HE B N = = = =
i TTTTCATTCTGACTGCAACGGGCAARA
:23>>:::CDCDC>@Q :@>2<59¢C>4 <
FIIIFIIIFIIIFIIIIIINNIINNO iy vatue codebook
8|5536222222222422222222227{N8 identifiers
=<
=)| =T O T T O 0 T)
l»)|-55 ! 133331 3J3J3;3TJa! 11 reconstructed quality
|0 0330303333 JJ3J0JJJTJITITTIRYFPJIJITJT values
»52 1 JJJJJJIJJJIJITITIITJIITITRNYJIJIB<6

gv_coding_mode ==

Figuire 6 — Relationship between sequencing reads, quality values, reconstructed quality
values and genomic positions

10.4.17rname

Sequending read identifiers are encoded as a sequence of rname descriptors (descriptor_ID equal to 15).
Each rname descriptor is composed by tokens which have a type and possibly one or more parameters.

The syntax, semantics~dnd decoding process for rname descriptors are those for the tokentyp
descriptors specified invsubclause 10.4.20. The output of the decoding process of the rname descriptg
for a ith pecord in.the-access unit is the string variable readName equal to decodedStrings][i], using t
array degcodedStrings|] is specified in subclause 10.4.20.5. If rname descriptor is not present, readNa

“un

is set to [the empty string “”.

(]

—

An exanjple of read identifiers tokenization is provided in Annex A.

10.4.18rftp
The rftp descriptor

— shall be present only in access units of type 3 (class M) when cr_alg_ID specified in subclause 7.4.2
is set to 1;

— may be present when cr_alg_ID specified in subclause 7.4.2 is set to 3.

It shall not be present in any other case.

74 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

The inputs to this process are:

— the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 16 and the current value of j;¢ o;

— the value AU_start_position as specified in subclause 7.5.1.2;

— the value seq_start as specified in subclause 7.3.2.

The output of this process is an array refTransfPos[] containing the positions of the transformations to
Liod s pa | do £, s o 1 1 44 .2 2 T1 pa | pa £ f 3
C a})}}ucu U dAdUtlUiUUCTU IAdvw IUTICITCIICLT dS D}JCLIIICU IIIouvliduosts 11.J.J. 1IT1ICT ucx,ut,uus }Jl ULCTSS I r r tp 1S

specified in Table 72 for an entire access unit.

Ih this description, subsequenceN is the subsequence identified by descriptor_subsequencd_ID = N
(I.e. subsequenceN = decoded_symbols[16][N]).

Table 72 — Decoding process of the rftp descriptor

Decoding step Description

refTransfPos[0] = subsequencel[jiq o++] + Positionof the first reference
transformation in the current

AU start position - seq start o
- - - refZsequence as specified in
Subclause 7.3.2.
For (1 = 1; i < Size(subsequence0); i++){
refTransfPos[i1i] = refTransfPos[i - 1] +

subsequence0[] 4 gt+]

10.4.19rftt

The rftt descriptor

- shall be present only in access units of type 3 (class M) when cr_alg_ID specified in subclatise 7.4.2
issetto 1;

— may be present when cr_alg ‘ID specified in subclause 7.4.2 is set to 3.

If shall not be present inany’other case.

—

he inputs to this preeess are:

- the decodedssymbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is
equal to 17

+ the cligrent value of j;; .

TheAutput of this process is one array refTransfSubs[]containing the type of transformations to be
applied to a decoded raw reference as specified in subclause 11.3.3. |n

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[17][N]).

The output of the rftt descriptor decoding process shall be calculated following the process described in
Table 73, after having decoded subsequence0 according to the decoding process specified in Table 124
using, if required by the said decoding process specified in Table 124 and by following the decoding
process specified in subclause 12.6.2.3, the array refTransfPos[] decoded as specified in Table 72.

© ISO/IEC 2020 - All rights reserved 75

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 73 — Decoding process of the rftt descriptor

Decoding step Description
for(i = 0; 1 < Size(subsequence0); i++) {
refTransfSubs[i] = S, napet 1plSubsequencel[j 4 o++]]
}

10.4.20tokentype descriptors

10.4.20

The msar and rname share the same syntax, semantics and the decoding process specified)in' thi

subclaus
identifie
decodin
tokenty
— stri
— digi
— sing

Both a 1
respect
identifie

A tokenitype descriptor can take the values listed in the table below. The tokentype descriptors cap

possibly]

1 General

= n

e for the generic tokentype descriptor. The tokentype descriptor is not a genomic descriptg
d by a descriptor_ID, but a simple alias for rname and msar in the syntax, sémantics and
b process specified in this subclause.

pe descriptors can be of three types:
ngs,

LS,

le characters.

ead identifier and an e-cigar string are represented as set of differences and matches with
to one of the previously decoded reads identifiers or‘e-cigar strings, respectively. The firs
r coded in an access unit always starts with a DIFF teken followed by the value 0.

(s

be followed by one or more parameters.

Table 74 — The tokentype values and related semantics.

tokentlype Token Parameters Semantics
value name
0 DUP unsigned integer Indicates that the current descriptor is an exact
DISTANGEranging from |duplicate of the descriptor DISTANCE records ago, with
0 to 232:1 “1” being the previously decoded descriptor and
counting backwards in the list of previously decoded
descriptors. The value of DISTANCE shall always refer
to a descriptor coded in the current access unit. If a DUP
token is found no further tokens are required to decode
the descriptor. DUP can only occur at the first token
position.
1 DIEF unsigned integer Indicates which descriptor this token is being compared|
DISTANCE ranging from aDgifganst, usulally 1" to ln}?l(iflte thekpreva? descriptor.
0 to 232-1 can only occur at the first token position.
The first descriptor of a coded access units always starts
with “DIFF 0”.
2 STRING st(v) This is an arbitrary run of ASCII characters (as specified
in ISO/IEC 10646) and need not be purely alphabetical.
STRING is always null-terminated.
3 CHAR c(1) ASCII character as specified in ISO/IEC 10646.
4 DIGITS unsigned integer ranging |Numerical value no more than 9 digits long and not
from 0 to 232-1 starting with a leading zero.
5 DELTA unsigned integer ranging |Numerical delta to a previous DIGITS value, between 0
from 0 to 28-1 and 255.
76 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 74 (continued)
tokentype Token Parameters Semantics
value name
6 DIGITSO an 8-bitlength and a Fixed-width numerical value no more than 8 digits long,
32-bit unsigned integer |possibly starting with a leading zero.
7 DELTAO 8-bit unsigned integer Numerical delta to a previous DIGITSO value. The same
fixed length is assumed.
8 MATCH none The next token value is identical to the token at the same

. H 4=l | e 4=l | | R [|
PUSTLIUVITTIT UHIT UTSLIIPLUL LIIT LU TTIIL y Uttuutu

descriptor is compared against (regardless of-tokgn type).
D DZLEN unsigned integer Used internally by DIGITSO to code length,
DISTANCE ranging
from 0 to 28-1
10 END none Marker indicating the terminatien-of the currenf
tokentype descriptor sequencé.
10.4.20.2 Decoding process
The input to this process is the block payload (as specified in subclause-7.5.1.3.3) for descriptor_ID equal
tp 11 or descriptor_ID equal to 15, which corresponds to the msar aitd rname descriptors respectively.
The encoded_tokentype() structure of this block payload jintérnally contains a list of compressed
representation of tokentype descriptor sequences.
The output of this process is the list of decompressed:representation of these tokentype ddscriptor
sequences, which serve as input to the assembly process(specified in subclause 10.4.20.5) to recpnstruct
the msar descriptors or read identifiers respectively.
10.4.20.3 Syntax and semantics
The syntax of encoded_tokentype() is specified in Table 75.
Table'75'— Syntax of encoded_tokentype()
Syntax Type
encoded tokentypeh {

num output_descriptors u(32)

num_tokentype sequences u(16)

for (iC=70; i < num tokentype sequences; i++) {

encoded tokentype sequence (i)
¢
3

num_ output_descriptors specifies the number of descriptors (msar or read identifiers) encod¢d in the

durrent block payload.

num_tokentype_sequences specifies the number of tokentype descriptor sequences in the
block payload.

current

encoded_tokentype_sequence(i) specifies the data structure containing the byte-aligned compressed

representation of the ith tokentype descriptor sequence. Its syntax is specified in Table 76.

© ISO/IEC 2020 - All rights reserved

77

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 76 — Syntax of encoded_tokentype_sequence()

Syntax Type
encoded tokentype sequence (i) {
type_ID u(4)
method_ID u(4)
if (method TD == 0) {
ref type ID u(16)
COP (1)
}
else {
num_output_symbols U760
decode tokentype sequence (i, method ID,
num_output symbols)
}
}

type_ID
a state v
increme
variable
Table 77

specifies the type of the ith tokentype descriptor sequence. This process internally maintain
ariable typeNum, which is initialized with -1 for every bleck payload of the descriptor and i
nted for every tokentype descriptor sequence with type ID = 0. The current values of staf
typeNum and type_ID are then used to generate a “mapped” value of type_ID as specified i

- ®© »n »n

Table 77 — Computation of mappedTypeld

if (typd

typd

mapped]]

_ID == 0)

Num++

ypeld = (typeNum<<4) | (type ID_& O0xf)

Every decoded tokentype descriptor- for which ref type_ID is equal to a previously calculate

jom

mapped|lypeld shall be identical tothe previously decoded tokentype descriptor.
method| ID specifies the compression method (among those listed in Table 78) used for the if?
tokentylpe descriptor sequence.
Table 78 — Description of compression methods for the tokentype descriptor sequence
methdd_ID Description
0 COP The current tokentype descriptor sequence is an exact duplicate
of a previously decoded tokentype descriptor sequence for which
mappedTypeld is equal to the current ref_type_ID as specified in
subclause 104204 2
1 CAT The null coding, ideal for small data. Its syntax is specified in
subclause 10.4.20.4.3.
2 RLE Run length coding, ideal for long list of repeated symbols. Its syntax is
specified in subclause 10.4.20.4.4.
3 CABAC_METHOD_0 |The CABAC method 0 as specified in subclause 10.4.20.4.5. The signaling
of its configuration parameters are specified in subclause 12.3.5.
78 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 78 (continued)

method_ID Description

4 CABAC_METHOD_1 |The CABAC method 0 as specified in subclause 10.4.20.4.5. The signaling
of its configuration parameters are specified in
subclause 12.3.5.

5 X4 A recursive decorrelation method to split a tokentype_sequence into
four equisized interleaved subsequences (wWhenever size is divisible
by 4), each of them being coded with one of the above methods except
method ID 0x0. Its syntax is specified in subclause 10.4.20.4.7

J)x6 . Oxf reserved

ef type_ID is the mappedTypeld of a previously decoded tokentype descriptor sequence ¢f which
ayload of current tokentype descriptor sequence is an exact duplicate.

- -

um_output_symbols signals the number of symbols to be reconstructed (fvom the compressed
ayload of the ith tokentype descriptor sequence.

ecode_tokentype_sequence(i, method_ID, numOutputSymbols) specifies the syntax for decoding the
h tokentype descriptor sequence (of size numOutputSymbols) using.thé decoding method ipdicated
y method_ID. Its syntax is specified in Table 79.

o = Q. = o=

Table 79 — Syntax of decode_tokentype_sequence()

Syntax

ecode tokentype sequence (i, methodID, numOutputSymbols) {
if (methodID == 1)
CAT (i, numOutputSymbols)
else if (methodID == 2)
RLE (i, numOutputSymbols)

else if (methodID == 3)

CABAC METHOD 0(i, numOutputSymbols)
else i1f (methodID == 4)

CABAC METHOD 1 (i, numOutputSymbols)
else 1f (methodID == 59

X4 (i, numOutputSynbols)

else

/* reserved foZ~future use */

10.4.20.4 Decoding process for compressed tokens

10.4.20:4.1 General

Thenput to this process is the data structure encoded tokentvne seaquence() snecifving the byte-
r r - J L — 1 J r J [=]

aligned compressed representation of the ith tokentype descriptor sequence, which is decoded with
one of the compression methods listed in Table 78 and specified in this subclause.

The output of this process is the decompressed representation of the ith tokentype descriptor sequence.

10.4.204.2 COP

The input to this process is ref _type_ID, which shall be equal to a previously computed variable
mappedTypeld of a previously decoded tokentype descriptor sequence as specified in Table 77.

The output of this process is a tokentype descriptor sequence, obtained by copying the already decoded
reference tokentype descriptor sequence uniquely identified by ref_type_ID.

© ISO/IEC 2020 - All rights reserved 79

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

10.4.20.4.3 CAT

This subclause specifies the decoding process for the method CAT (see Table 80). The output of this
process is a reconstructed tokentype descriptor sequence of size numOQutputSymbols.

Table 80 — Decoding process for the method CAT

Decoding process Type
CAT (1, numOutputSymbols) {
for (=0 <mumoTtputSymbotss T
decoded_tokens[i] []] u(8)

}

decodedl_tokens[i][j] specifies the jth token in the ith decompressed tokentype descriptor sequence.

10.4.20{4.4 RLE

wn

This suljclause specifies the decoding process for the method RLE (see Table 81). The output of thi
process|is a reconstructed tokentype descriptor sequence of size numOQOutputSymbols.

Table 81 — Decoding process for the method RLE

Decoding process Type
RLE (1, |numOutputSymbols) {
for{i=0; j< numOutputSymbols ;) {
fmp_value u(8)
Jf (tmp value == rle guard tokentype) {
rle_len u7(v)
if(rle len == 0)
decoded_tokens[i][j++] = rd€ guard tokentype
else {
tmp_value u(8)
for (r=0; r< rle len\; r++) {
decoded tokefisyfi] [j++] = tmp value
}
}
else
decoded_tdkens[i] [J++] = tmp value
}
}

rle_guardCtokentype specifies the guard value signalled in decoder configuration for sequences qf
tokenty] i 5)-

decoded_tokens[i][j] specifies the jth token in the ith decompressed tokentype descriptor sequence.

10.4.20.4.5 CABAC_METHOD_0

This subclause specifies the decoding process for the method CABAC_METHOD_0 used to decompress a
tokentype descriptor sequence (see Table 82). The output of this process is a reconstructed tokentype
descriptor sequence.

80 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:

Table 82 — Decoding process for the method CABAC_METHOD_0

2020(E)

Decoding process Type

CABAC METHOD 0 (i, numOutputSymbols) {

decoded symbols[descriptor ID][0] = decode descriptor
subsequence (descriptor ID, 0, numOutputSymbols, remainingPayloadSize)

As specified in
subclause 12.6.2.2.

decoded token[i][] = decoded symbols[descriptor ID][0][]

}

— =+

lentified by descriptor_ID. For the CABAC_METHOD_0, the descriptor_ID is equal to 11 ok 15.

(%)

ubsequence(descriptor_ID, 0, numOQOutputSymbols).

—

emainingPayloadSize is the number of bytes remaining in the current block payload.

([@N

10.4.20.4.6 CABAC_METHOD_1

o

Table 83 — Decoding process for the-method CABAC_METHOD_1

ecode_descriptor—subsequencetdescriptor—1D; 8; momOutputSymbots; Tenmmaimimg Paytoad Size s pecifies
he decoding process for the 0th descriptor subsequence (of size numOutputSymbols) of the'dgscriptor

decoded_symbols[descriptor_ID][0][] specifies the list of symbols decoded by .decode_degcriptor_

ecoded_tokens[i] specifies the list of tokens in the ith decompressed tokéntype descriptor seqjience.

his subclause specifies the decoding process for the method EABAC_METHOD_1 (see Table B3). The
utput of this process is a reconstructed tokentype descriptor sequence of size numOutputSymbols.

Decoding process Typle

ABAC_METHOD_l(i, numOutputSymbols) {

decoded symbols[descriptor ID][1] =decode descriptor
ubsequence (descriptor ID, 1, numOutputSymbols, remainingPayloadSize)

As specifie
subclause 12.6.2.2.

1 in

decoded token[i][] = decoded_ sywmbols[descriptor ID][1][]

decode_descriptor_subsequence(descriptor_ID, 1, numOutputSymbols, remainingPayloadSize)

— =+

lentified by descriptor_ID..For the CABAC_METHOD_1, the descriptor_ID is equal to 11 or 15.

(oW

ecoded_symbols[descriptor_ID][1][] specifies the list of symbols decoded by decode_de
ubsequence(descriptor_ID, 1, numOutputSymbols).

(%)

—

emainingPayloadSize is the number of bytes remaining in the current block payload.

o

ecoded_ tokens[i][] specifies the list of tokens in the ith decompressed tokentype descriptor s

10.4.20.4.7 X4

$pecifies
he decoding process for theslst descriptor subsequence (of size numOutputSymbols) of the d¢scriptor

scriptor_

bquence.

This subclause specifies the decoding process for the method X4, which is be used to decompress a
tokentype descriptor sequence (see Table 84). The output of this process is a reconstructed tokentype

descriptor sequence of size numOutputSymbols.

© ISO/IEC 2020 - All rights reserved

81

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 84 — Decoding process for the method X4

Decoding process Type
X4 (i, numOutputSymbols) {
x4 method IDs u(16)
for (s=0; s<4; s++) {
methodID = (x4 method IDs >>(12 - (s*4))) & 0xf
decoded tokens x4[s][] = decode tokentype sequence (s, methodID, |Asspecifiedin

subclause 10.4.26.3.

numOutputSymbols/4)

/* Multiplexing of interleaved subsequences */

for(j=0, j< numOutputSymbols ; j += 4) {

flor (s=0, s<4; s++) {

decoded tokens[i][j+s] = decoded tokens x4([s][]j>>2]

od_IDs specifies the four compression methods (among/those listed in Table 78 excef
method]ID = 0) used to decompress the four interleaved subsequences, where the method_ID for the s}
subsequlence can be derived as method_ID = (x4_method_IDs >>(12 - (s*4))) & Oxf.

5 o+

decode_tokentype_sequence(s, method_ID, numOutputSymbols/4) decodes the sth interleaved
subsequence (of size numOutputSymbols/4) as a tokentype descriptor sequence using the decodinjg
method f[indicated by method_ID.

decoded_tokens_x4[s][j] specifies the jth byte tokenin the sth decompressed interleaved subsequence.
decoded_tokens][i][j] specifies the jth byte tokén in the ith decompressed tokentype descriptor sequencg.
10.4.20{5 Assembly of tokens
The input to this process (see Table*85) is the bi-dimensional array decoded_tokens[][], which is thie

decompftessed representation of encoded_tokentype() specified in subclause 10.4.20.3, containing a ligt
of num_tokentype_sequences decompressed tokentype descriptor sequences.

The output of this process is the data structure decodedStrings[] containing a list of either msa
descriptiors (when deseriptor_ID is equal to 11) or read identifiers (when descriptor_ID is equal to 15
as strings.

—

R

82 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 85 — Decoding process of tokentype descriptors into strings representing either msar
descriptors or read identifiers

Decoding process

cIdx = 0
refIdx = 0
decodedStrings[] = {“"}

o {
t =20
tokType = get tok type(decoded tokens[t<<4])

distance = get tok int(decoded tokens[t<<4 | tokType])

refIdx = cIdx - distance
if (tokType == 0) /* Token: DUP */

strcpy (decodedStrings [cIdx], decodedStrings [reflIdx])
else { /* Token: DIFF */

for (t=1; t< num tokentype sequences; t++) {

tokType = get tok type (decoded tokens[t<<4])
if (tokType == 10) /* Token: END */

break
tokStr = extract tok value (decoded tokens),\tokType, t, reflIdx)

strcat (decodedStrings[cIdx], tokStr)

}
while (cIdx < num output descriptors && . strlen(decodedStrings[cIdx++]) > 0)

num_output_descriptors specifies the number of descriptors (msar or read identifiers) encodg¢d in the
durrent block payload. It is specified in 10:4.20.3.

et_tok_type(decoded_tokens[]) pops and returns one byte from data structure decoded_tokeps]].

et_tok_int(decoded_tokens[])'pops four bytes from data structure decoded_tokens|[| and [decodes
them as a 32-bit integer as specified in subclause 6.2.

strepy (dst, src) specifies'the string copying operation from the source string to the destination string.
sfrcat(dst, src) speeifies the string concatenation operation of source string to the destination $tring.
sitrlen(str) returns the length of the input string.

tract_tekyvalue() pops and returns token value based on its type (as listed in Table 74) and the co-
lpcatedtokens in the reference descriptor (msar or read identifier). The syntax of extract_tok_value() is
esctibed in Table 86.

© ISO/IEC 2020 - All rights reserved 83

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 86 — Decoding process associated to a call to extract_tok_value()

Decoding process

extract tok value(decoded tokens[][], tokType, t, refldx) ({
tokIdx = (t << 4) | tokType
if (tokType == 2) /* Token: STRING */
tmp str = get tok string(decoded tokens[tokIdx])
else if (tokType == 3) /* Token: CHAR */
tmp str = get tok char(decoded tokens[tokIdx])
else if (tokType == 4) /* Token: DIGITS */
tmp str = get tok digits(decoded tokens[tokIdx])
else if (tokType == 5) /* Token: DELTA */
tmp str = get tok delta(decoded tokens[tokIdx], refldx)
else if (tokType == 6) /* Token: DIGITSO */
tmp str = get tok digitsO (decoded tokens[tokIdx])
else if (tokType == 7) /* Token: DELTAOQ0 */
tmp str = get tok deltal(decoded tokens[tokIdx], refIdx)
else if (tokType == 8) /* Token: MATCH */

tmp str = get tok match(refldx)

return tmp str

}

get_tok |string(decoded_tokens[]) pops and returns a null terminated string from data structure
decoded_tokens|] as described for token STRING in Table.74.

get_tok Jchar(decoded_tokens|[]) pops and returns.ene ASCII character from data structure decoded_
tokens|[| as described for token CHAR in Table 74.

get_tok |digits(decoded_tokens[]) pops fourtbytes from data structure decoded_tokens[], decodé
them as|a 32-bit integer as specified insubclause 6.2, as described for token DIGITS in Table 74, an
returns p string with the big-endian decimal representation of said integer.

= wn

get_tok |delta(decoded_tokens|],(refldx) pops a one byte delta value from data structure encoded_
tokens|[|| as described for token DELTA in Table 74, sums said delta value and the digit value of the
co-located DIGITS token in the)reference descriptor (msar or read identifier) identified by refldx, and
returns p string with the big-endian decimal representation of the result of said sum.

-

get_tok |digitsO(decoded’ tokens|[]) pops a one byte length value as DZLEN token_and a four bytes valu¢
decoded as a 32-bitiiniteger as specified in subclause 6.2, as described for token DIGITSO in Table 74, and
returns p string With the big-endian zero-padded fixed-width decimal representation of said integer.

get_tok |delta@(decoded_tokens|], refldx) pops a one byte delta value from data structure decoded_
tokens| || @s described for token DELTA in Table 74, sums said delta value and the digit value of t
co-located DIGITSU token In the reierence descriptor (msar or read identiiier) identiiied by reildx, and
returns. a string with the big-endian zero-padded fixed-width decimal representation of the result of
said sum.

get_tok_match(refldx) returns the token value of the co-located token in the reference descriptor (msar
or read identifier) identified by refldx as described for token MATCH in Table 74.

84 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

10.5 sequence

10.5.1 General

This subclause specifies how sequences of nucleotides are computed by a conformant decoder. For
class HM, the mapped read is computed as specified in subclause 10.5.2 while the unmapped read as
specified in subclause 10.5.3.

The inputs to this process are the variables numberOfRecordSegments and
mha Q agman fiad in ca 10410

The output of this process is the array splicedSequence[i][] (with 0 <i < numberOfRecordSegmients).

10.5.2 Aligned reads (Classes P, N, M, I, HM)
Additional input to this process are:

-+ the array mappingPos[0][] is computed as specified in subclause 10.2.3;

-+ the arrays numberOfSplicedSeg[], and splicedSegLength[][].\"Computed as specified in
subclause 10.4.9;

—+ the array splicedSegMappingPos[][] computed as specified in'subclause 10.4.10;

-+ the array softClipSizes[][] computed as specified in subclause 10.4.7;

<+ thevariable classld is computed as specified in subclause 10.2.3;

-+ The variable seqld set equal to sequence_ID.asspecified in subclause 7.5.1.2;

—+ The arrays ref_sequence[][] and seq_start|] as specified in subclause 7.3.

]

F crps_flag specified in Table 7 is equal to T and cr_alg_ID specified in Table 16 to is equal to 2, 3 or 4,
h the decoding process specified in Table87, seqld is set equal to 0, ref_sequence[seqld][] is set|equal to
efBuf[] specified in subclauses 11,3@,°11.3.5, 11.3.6, respectively, and seq_start[seqld] is set equal to 0.

— -

The decoding process specified-in"Table 87 shall be applied:

Table 87——~Decoding process of sequence[] array for aligned reads

Decoding step Description

For (1 = 0; i < mumberOfMappedRecordSegments; i++) {

for(j = 0,4) < numberOfSplicedSeg[i]; Jj++) {

pRefiss\ splicedSegMappingPos[i] [j] -
seq_staxrklseqld]

mappedLength = splicedSeglLength[i] []]
if(classId == Class I || classId == Class HM) {

1T (] == U) 1

mappedLength -= softClipSizes[i][0]

}
if(j == numberOfSplicedSeg[i] - 1) {

mappedLength -= softClipSizes[i][1]

}

splicedSequence[il [j] =

ref sequence[seqld] [pRef,

pRef + mappedLength - 1]

© ISO/IEC 2020 - All rights reserved 85

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 87 (continued)

Decoding step Description

if (classId == Class N) {

processSplSegN (i, J) Specified in subclause 10.2.4.
} else if (classId == Class M) {

processSplSegM(i, j) Specified in subclause 10.2.5.
} else if(classId == Class I

—etesstet C-ars-s—HM—
processSplSegl (i, j) Specified in subclause 10¢2:6!
}
}

10.5.3 Unmapped reads (Class HM, U)

The decpding process specified in Tables 88 and 89 shall be applied:

Table 88 — Decoding process of sequence[] array for unmapped reads

Decoding step Description
for (i 4 numberOfAlignedRecordSegments;
i < |numberOfRecordSegments; i++) {
if (qrps flag == 0){
decodeUreads (splicedSegLength[1] [0]) Specified in subclause 10.4.8.
qprlicedSequence[1] [0] = decodedUreads decodedUreads as specified in|

subclause 10.4.8.

telgqe if (crps flag == 1 && cr _alg ID == 2){

decode |according to the process specifiedn subclause 11.3.4

Jelde if (crps_flag == 1 && cr alg.Ibi== 4){

decode |according to the process spdcified in subclause 11.3.6

}

Table 89 — Sequence decoding processes corresponding to crps_flag and cr_alg_ID

crps, flag cr_alg_ID sequence decoded as
specified in subclause

— 10.4.8

10.6 e-cigar

10.6.1 Syntax

This subclause specifies an extended CIGAR (E-CIGAR) syntax for strings to be computed from
sequences and related mismatches, indels, clipped bases and information on multiple alignments and
spliced reads.

Alignments are described as a sequence of consecutive edit operations between the reference sequence
and a sequence mapped onto the reference sequence.

86 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Edit operations might involve skipping or replacing part of the sequence of either reference or read;
due to this reason one has to keep track of a pointer R to the current position within the reference,
and a pointer r to the current position within the read. They are both set to 0 at the beginning of the
alignment process, the 0 of the reference being the position of the match.

Edit operations specified in this document are listed in Table 90.

Table 90 — Syntax of the ISO/IEC 23092 series E-CIGAR string

ncrement pointersto-reference R
by n positions{ splice consensus
bserved on'the reverse strand
reverse splice in the read).

A reverse splice of n bases.

Operation Semantics E-CIGAR Equivalent SAM CIGAR
representation representation
ncrement both pointer-to- n matching bases n= nM in older versiohs
Teference R and pointer-to-read (not equivalent),
by n positions (match). . .
ynp () = in recent versiofs
Replace nucleotide in the read substitution of character b |b Mdn elder version§,
yith base b from the reference, (b is presentin the read and) .
. ; x1in recent versiohs
Increment pointer-to-reference R |notin the reference) where (not equivalent)
ind pointer-to-read r by 1. b is one of the symbols of q
the alphabets defined in
subclause 9.2.
ncrement pointer-to-read r by n n bases are inserted in the |n+ nl
positions (insert from the read). read (not present in the
reference)
ncrement pointer-to-reference R |n bases are deleted in the n- nD
by n positions (deletion of sequence |read (but present in the
b in the read). reference).
ncrement pointer-to-read rbyn |n soft clips (n) ns
positions (insertion in the read).
[an only occur at beginning or end
fread.
{ard trim. Can only occur at n hard clips [n] nH
beginning or end of read.
ncrement pointer-to-reference R At undirected splice of n n* nN
by n positions, splice consensus bases.
bserved (splice in the read).
ncrement pointer-to-referencé R | A forward splice of n bases. [n/ Not existing.
by n positions, splice consensus
bserved on the forwaftd strand
forward splice in theTead).
n%

Not existing.

The“general framework is illustrated in Table 91 shows an example of alignment with s¢ft clips,
del€tions and substitutions. T
© ISO/IEC 2020 - All rights reserved 87

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 91 — Example of e-cigar string

0000000000111111111122222222223333333 Position in the reference
0123456789012345678901234567890123456

ACAGATATATCAGAGACCATACAGGAACATAACAGAC Reference

AAAGATCTAT+++++++++++CAGGTACATA Read
0000004Q000 1111111111 Position in the read
0123454789 0123456789

E-CIGAH=(2) 4=C3=11+4=T5=

10.6.2 Pecoding process for the first alignment

10.6.2.1 General

The inpits to this process are:

— readLength[] array computed as specified in subclause 10.2.3;

— the flassld variable specified in subclause 10.2.3;

— the humberOfAlignedRecordSegments variable specified‘in subclause 10.4.10.

For class$ld equal to Class_N, Class_M, Class_I, and Class_HM:

— the mismatchOffsets[][] array computed as spgcified in subclause 10.4.5;

— the humMismatches[] array computed as;specified in subclause 10.4.5.

oW

If cr_alg ID specified in subclause 11.3 i§ set to 1, for classld equal to Class_M mismatchOffsets[][] an
numMismatches|[] are pre-processed,as per subclause 10.6.4 prior to being decoded as specified in thij
subclauge.

[72)

For class$ld equal to Class_M, Class_I, and Class_HM:

— the mismatches[][] artays computed as specified in subclause 10.4.6.

If cr_alg_ID specified,in/subclause 11.3 is set to 1, for classld equal to Class_M mismatches[][] is pre
process¢d as per subélause 10.6.4 prior to being decoded as specified in this subclause.

For clas$ld equal:ito Class_I and Class_HM:

— the mismatchTypes[] array computed as per subclause 10.4.6;

— the softClips[][][] arrays, the softClipSizes[][] array, and the hardClips[][] array computed as
specified in subclause 10.4.7.

The output of this process is the array of strings ecigarString[], and the array of the corresponding
string lengths ecigarLength[].

In this subclause, the decoding process uses strings, where strings are sequences of a given length
of universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in
ISO/IEC 10646 of a given length.

In this subclause the following strings operators are defined:

88 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

returns a string of length | created by copying the first | characters from array a,
where a is a one-dimensional array of characters

arraytostr(a, 1)

strtoc(s) returns all characters in string s in a sequence compliant with c(n) data type
specified in subclause 6.3, where n corresponds to the length of string s

L returns a string composed by the characters between the quotes

inttostr(i) returns a string containing the base-10 representation of the integer

sftrcat(sl, .., sN) returns the concatenation of the strings from s1 to sN. If any of the inputstrings s1

through sN is a single character, it is considered a string of length 1

(%)

trlen(s) returns the length of string s

10.6.2.2 Decoding process without spliced reads

=

drocess of e-cigar strings is specified in Table 92.

Vhen the spliced_reads_flag syntax element specified in subclause 7.4.27is equal to 0, the d

ecoding

Table 92 — Decoding process for the e-cigar strings of a genontic record without spliced reads

Decoding step Descriptjon
For (s = 0; s < numberOfAlignedRecordSegments; s++) 4
if (classId == Class_P){ Class P.
mmOffsets = {} Empty array.
mms = {} Empty array.
mmTypes = {} Empty array.

decodeECigarMismatches (classId,\\feadlLength[s],

0, mmOffsets, mms, mmTypes)

As specified in
Table 93.

ecigar = decodedEcigar

decodedEcigarj

computed as specified

in Table 93.
}
else if(classId ==,Class N) { Class N.
mms = {} Empty array.
mmTypes = ¥ Empty array.

decodeBCihgarMismatches (classId, readLength[s],

As specified in

numMismatches[s], mismatchOffsets[s], mms, mmTypes) Table 93.
edigar = decodedEcigar decodedEcigar]
computed as specified
in Table 93.
}
else if (classId == Class M) { Class M.
mnTypes = {} Empty array.
decodeECigarMismatches (classId, readLength[s], As specified in
numMismatches([s], mismatchOffsets(s], Table 3.
mismatches[s], mmTypes)
ecigar = decodedEcigar decodedEcigar

computed as specified

in Table 93.

© ISO/IEC 2020 - All rights reserved

89

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 92 (continued)

Decoding step Description

}
else if (classId == Class I || classId == Class HM) { Classes I or HM.

leftSoftClips =
arraytostr (softClips[s] [0][],
softClipSizes([s] [0])

fightSoftClips =

arraytostr (softClips([s][1][], Q
softClipSizes([s][1]) n'(.]’
JeftHardClips = hardClips[s] [0] v
o 12
BfightHardClips = hardClips([s][1] AQ
nappedLength = readLengthls] J
— strlen(leftSoftClips) - strlen(rightSoftClips) 4 C)
decodeECigarMismatches (classId, mappedLength, \\%S specified in
| | O" | Table 93,
numMismatches[s], mismatchOffsets[s], \%
mismatches[s], mismatchTypes([s]) (%\
dcigar = decodedEcigar Q decodedEcigar
QQ computed as specified
in Table 93.
N
{f (strlen(leftSoftClips) != 0) { QO
ecigar = strcat(\"Q@ Soft clips are present
)) before the leftmost
Y (', inttostr(strlen (leftSoftCllsz&\, Y, mapped base
ecigar) A\
xO
dlse if (leftHardClips !'= 0) { . C\)J‘\
‘\\ -
ecigar = strcat(C)\ Hard clips are present

. e before the leftmost
Iy, lnttostr(left@Cllps), i,

mapped base.
ecigar) ,.O
\J
[aX
if (strlen(rightS ips) != 0) {
EHt |
ecigar = s A (ecigar, Soft clips are present
(Y, ﬁostr (strlen(rightSoftClips)), ’)') after the rlghtmOSt
_ mapped base.
A
Y
dls rightHardClips != 0) {
x = |
Cacigar = strcat (ecigar, Hard clips are present

alrter the rightmost

‘[, inttostr (rightHardClips) 1)
! g psly mapped base.

}

ecigarString[s] = strtoc(ecigar)

ecigarlLength[s] = strlen(ecigar)

90 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 93 — Decoding process for the mismatches within one e-cigar string

Decoding step Description

decodeECigarMismatches (classId, len,

mmNumber, mmOffsets, mms, mmTypes) {

ecigar = “” Empty string.
if (classId == Class_P) { Class P.
ecigar = strcat(inttostr(len), ‘=')
! [aN
else if(classId == Class N) { Class N. (\(1/\')
previousOffset =0 ,*(DJ
i=0 q}l/
while (1 < mmNumber) { \(bv
delta = mmOffsets[i] - previousOffset q‘t
ya
previousOffset = mmOffsets[i] + 1 /Q "
if (delta == 0){ AN\
ecigar = strcat(ecigar, ‘N’) C))
} else { \N¥
FaN
ecigar = strcat(ecigar, inttostr(delta), Q——’\f
ecigar = strcat(ecigar, ‘N’) O\)‘
A
J D
i++ b\
&
) o
delta = len - previousOffset QJ&
if (delta > 0) { K\
ecigar = strcat(ecigar, i\Qostr(delta), ‘="
5
} (\\‘()
) @)
else if(classId == Cla\;&g_M){ Class M.
previousOffset ;@
S o
while (i < {@ﬁ{nber){
delt?\(‘—s?anffsets[i] - previousOffset
pr@gusOffset = mmOffsets[i] + 1
S
\OYTdelt == 0) {
N/ - - :
‘S ecigar = strcat(ecigar, mms[i]))
(;"\‘ } else {
< P RN RN S o I NS 2ot oo (A1 o N_ 7\
Tt ToTre v Ty LTiftcc RS ASE S T 7
ecigar = strcat(ecigar, mms[i])
}
i++
}
delta = len - previousOffset

if (delta > 0) {

ecigar = strcat(ecigar, inttostr(delta), ‘=')

© ISO/IEC 2020 - All rights reserved 91

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 93 (continued)

Decoding step Description
else if(classId == Class I || classId == Class HM)) { Classes I or HM.
previousOffset = 0
i=0

while (i < mmNumber)

{

count = 0
detta—mmoffsetstT—— previousoffset —
previousOffset = mmOffsets[i] r\q>)
if (delta > 0) { >
ecigar = strcat(ecigar, inttostr(delta), ‘=') (\:Al/
delta = 0 OV
: n(.’-)Q
if (mmTypes[i] == 0) { I@s{itution.
ecigar = strcat(ecigar, mms[i])) A\\\\//
previousOffset = mmOffsets[i] + 1 C\U\
i++ ‘&\J
) ¢
else if (mmTypes[i] == 1) { OQ\ Insertion.
while (i < mmNumber \\‘
&& mmTypes[i] == 1 Q:\o
&& mmOffsets[i] - previousOffset \\'Q
== 0 Q&
previousOffset = mmOffsets[iﬂ\rvl
count++, i++ \1\0
) R
ecigar = strcat(eciga]f,UBttostr(count))
ecigar = strcat (eci Y+7)
))
else if (mmTypes [(hl,\éé) | Deletion.
while (1 < @nber
&& es[i] == 2
& mOffsets[i] - previousOffset
AQ == 0) {
xv) previousOffset = mmOffsets[i]
%\ count++, 1i++
}
ecigar = strcat(ecigar, inttostr (count))

ecigar = strcat(ecigar, ‘-')

92

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

Table 93 (continued)

ISO/IEC 23092-2:2020(E)

Decoding step Description
delta = len - previousOffset
if(delta > 0) {
ecigar = strcat(ecigar, tostr(delta), ‘=')

}

UucCOUCULCLIyal = <©CUCLydLl

10.6.2.3 Decoding process with spliced reads

wn_<

trings are decoded as follows.

Additional input to this process are:

1

or classld equal to Class_N, Class_M, Class_I, and Class_HM:

as specified in subclause 10.4.9;

[] arrays computed as specified in subclause 10.4.5;

=

he decoding process is specified in Table 94.

+ the array splicedSegMappingPos[][] computed.&s specified in subclause 10.4.10;

—+ the array reverseComp[][][] computed as.specified in subclause 10.4.3

Vhen the spliced_reads_flag syntax element specified in subclause 7.4.2 is €qual to 1, the e-cigar

—+ thenumberOfSplicedSeg[], splicedSegMappedLength[][] andSplicedSegLength[][] arrays computed

—+ thesplicedSegMismatchOffsets[][][], splicedSegMismatchNumber[][] and splicedSegMismdtchldx]]

Table 94 — Decoding process for'the e-cigar strings of a genomic record with spliced rjeads.

Decoding step Description
For (s = 0; s < numberOfAlignedRecordSegments; s++) {
if (classId == Clasf P) { Class P.
mmOffsets =_{} Empty aryay.
mms = {} Empty aryay.
mnType 5 {} Empty aryay.

decodeECigarMismatches (classId, readLength[s],

@, mmOffsets, mms, mmTypes)

As specifigd in
Table 93.

ecigar = decodedEcigar

decodedEfigar
computed|as

Sna

speeifieddn

Table 93.
}
else if(classId == Class N) { Class N.
mms = {} Empty array.
mmTypes = {} Empty array.

decodeECigarMismatches (classId, readLength[s],

numMismatches[s], mismatchOffsets[s], mms, mmTypes)

As specified in

Table 93.

© ISO/IEC 2020 - All rights reserved

93

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 94 (continued)

Decoding step

Description

ecigar = decodedEcigar

decodedEcigar
computed as
specified in

Table 93.
}
else if(classId == Class M) { Class M.
fmTypes = (] Emptyarray.
decodeECigarMismatches (classId, readLength[s], ASSpecﬁkxkga>J
. . Table 93.
numMismatches[s], mismatchOffsets[s], .
mismatches[s], mmTypes) Af]/’
dcigar = decodedEcigar de ‘baEdgar
uted as
(ispecified in
() |Table 93.
) NZ
elsq if (classId == Class I || classId == Class_ HM) { (’O\ Classes I or HM.
JeftSoftClips = g\\J
arraytostr (softClips([s]([0][], ()
softClipSizes([s] [0]) ,42
fightSoftClips = Q\)
arraytostr (softClips([s][1]11[], \\
softClipSizes[s][1]) O
JeftHardClips = hardClips|[s] [0] \pgb
dightHardClips = hardClips([s][1] W
. A\WZ4 g .
gcigar = :\Q Empty string.
flor(i = 0; 1 < numberOfSplicedSeg[sL< ++) {
length = splicedSegLength[s][{]xéJ
if(1 == 0) { O
length -= softClipSize&&ﬁ[O]
! PN
if (i == (numberOfSplidpdsegls] - 1)) {
length -= softcigﬁgizes[s][l]
) ~O°
if(i > 0) { a7
7
splice et = splicedSegMappingPos[s] [i]
- licedSegMappingPos[s] [1i - 1]
‘;; splicedSegMappedLength([s] [i — 1]
/(%t\igar = strcat (ecigar, inttostr(spliceOffset))
(2?\ if (reverseComp([i] [s] [0] == 0) {

ecigar = strcat(ecigar, “/”)

Forward splice.

} else if(reverseComp[i][s][0] == 1)

wo

ecigar = strcat(ecigar, $7)

Reverse splice.

} else if(reverseComp[i][s][0]

== 2)

*u)

ecigar = strcat(ecigar,

Undirected splice.

} else {

/* reserved */

94

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 94 (continued)
Decoding step Description
mmStartIdx = splicedSegMismatchIdx([s] [1]
mmEndIdx = mmStartIdx + splicedSegMismatchNumber[s][i] - 1
decodeECigarMismatches (classId, length, As specified in
Table 93.
splicedSegMismatchNumber([s] [i],
splicedSegMismatchOffsets([s] [i],
mismatches[s] [mmStartIdx, mmEndIdx],
MiSMatCNlypes [S] [motarcldx, mmEnaldx])
ecigar = strcat(ecigar, decodedEcigar) decodedE:igar
computed|as
specified In
Table 93.
}
if (strlen(leftSoftClips) != 0) {
ecigar = strcat(Soft clips pre
(', inttostr(strlen(leftSoftClips)), ')’, present b¢fore
ecigar) the leftmqst
mapped bpse.
}
else if (leftHardClips != 0) {
ecigar = strcat(Hard clipq are
‘[', inttostr(leftHardClips), ’'1', present be¢fore
) the leftmqst
ecigar)
mapped bpse.
}
if(strlen(rightSoftClips) != 0) {
ecigar = strcat (ecigar, Soft clips are
‘(', inttostr(strlen(rightSoftClips)), ’)’) present affter
the rightnjost
mapped bpse.
}
else if (rightHardClips+!= 0) {
ecigar = strcdt(écigar, Hard clipg are
‘[', intftostr (rightHardClips), '17) present aixer
the rightmost
mapped bpse.
}
}
ecigarS¥ring[s] = strtoc(ecigar)
ecigarlength[s] = strlen(ecigar)

0.6.3 Decoding process for other alignments

For all alignments other than the first one, the e-cigar strings are decoded as specified in
subclause 10.4.13.

10.6.4 Reference transformation

When cr_alg_ID specified in subclause 11.3 is set to 1, for records belonging to class Class_M, the input
arrays mismatchOffsets[][], mismatches[][], and numMismatches[] specified in subclauses 10.4.5 and
10.4.6 shall be pre-processed according to the process described in Table 95 prior to being decoded as
specified in subclause 10.6.2.

© ISO/IEC 2020 - All rights reserved 95

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Additional input to the process is:

— the array mappingPos[][] computed as specified in subclauses 10.4.2 and 10.4.10;

— thereadLen[] array computed as specified in subclause 10.4.9;

— the array refSequence equal to ref_sequence[i] specified in subclause 7.4.2 where i is equal to ref_

sequence_ID as specified in subclause 7.5.1;

— the array refTransfOrigSymbols computed in subclause 11.3.3;

— the yariables numberOfRecordSegments computed as specified in subclause 10.4.10.

The oufput of the process are the modified arrays mismatchOffsets[][], mismatches[]]};” an

numMismatches[].

Table 95 — Pre-processing process when cr_alg_ID is equal to 1

jom

Processing step Description
for(s § 0; s < numberOfRecordSegments; s++) {
mPoq = mappingPos[0][s] - seq_start
newMismatchOffsets[] = {} Empty arrays.
newMismatches[] = {}
i=|0, 3 =0, k=20

while (i < Size(refTransfPos) &&

JefTransfPos[1] < mPos) i++

Search for the transforma-
tions in the leftmost read
range.

whille (i < Size(refTransfPos) &&

fefTransfPos[i] < mPos + readLength[s].){

1f(j 2 numMismatches([s] ||
refTransfPos[i1] - mPos <

mismatchOffsets[s] [J]) {

One ref transformation found
before the next mismatch
position.

newMismatchOffsets[k] =

mismatchOffsets[s][J]) {

refTransfPos[i] -,Pos
newMismatches[k] =(refSequence[refTransfPos[i]] Read the base in the ref
sequence.
i++, k++
dlse if (refT™ansfPos[i] - mPos == One substitution in the read

found at the same place as th¢
reference transformation.

#f (mismatches([s] [j] !=

refTransfOrigSymbols[i]) {

Store it only if different from
the original reference.

newMismatchOffsets[k] = mismatchOffsets([s] []]

newMismatches[k] = mismatches[s] []]

k++

}

it+, 4+

} else {

while (j < numMismatches[s] &&
refTransfPos[i] - mPos >

mismatchOffsets[s][j]) {

Copy all mismatches until
the next reference
transformation.

96

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 95 (continued)

Processing step Description

newMismatchOffsets[k] =

mismatchOffsets[s] []]

newMismatches[k] = mismatches[s][]]

k++, j++

}

while (j < numMismatches([s]) { Copy the remaining
mismatches|if any.

newMismatchOffsets[k] = mismatchOffsets[s][]]

newMismatches[k] = mismatches([s] []]

kt++, 4+

}

mismatchOffsets[s] = newMismatchOffsets

numMismatches[s] = k

mismatches[s] = newMismatches

11 Representation of reference sequences

The reference sequence is usually part of an available reference genome (split into chromosomes and
ther sequences), but can in principle have any origin. With respect to a bitstream compliant with
50/1EC 23092-1, the following types of reference sequences are supported:

— O

+ External Reference: the reference sequence is coded as an independent resource either Ipcally or
remotely and shall be retrieved.foenable the decoding of the bitstream.

+ Embedded Reference: the reference sequence is coded within the bitstream as dataset.

-+ Computed Reference: the reference sequence can be computed using the information contained in
the sequencing reads.¢oded in the bitstream.

p—

h the scope of this<deeument embedded and computed references are referred to as internal references.

11.1 External-reference

=

he reference used for compression is not included in the bitstream. A mechanism for] unique
lentifieation is specified in ISO/IEC 23092-1.

—

4 X 1 1.1 . | £
L 1.4 LCINIDCUUCU ITICICIICT

The reference is stored in the bitstream as dataset as specified in ISO/IEC 23092-1.
11.3 Computed reference

11.3.1 General
A computed reference is used:

— to improve compression efficiency by modifying an available external reference before decoding
sequence data, or

© ISO/IEC 2020 - All rights reserved 97

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— to encode aligned sequencing reads without using the reference sequences used for alignment, or
— to encode raw (unmapped) reads.

In case of aligned reads it can be beneficial to support encoding and decoding without requiring access
to the reference sequences used for alignment.

This approach uses the sequencing reads to be encoded to build a local consensus assembly to perform
reference-based encoding. In this case all reads shall be encoded using class U descriptors, but the
classification in P, N, M, I and HM classes shall be preserved.

When spquencing reads are encoded using a computed reference, the rtype descriptor Currentlly
specifiefl in subclause 10.4.11 shall be used as specified in Table 96 to:

1. sigral the set of descriptors needed to decode the current record,

2. signal the type of reference (embedded reference or computed reference) needed@ fo decode the
curfent record.

11.3.2 Bupported Algorithms

Table 96 specifies the supported reference computation algorithmster_alg ID is specified i
subclauge 11.3.

=}

Table 96 — Supported reference computation algorithms

cr_alg ID Name Description

0 reserved

RefTransform To improve comptression efficiency, an available external
reference is medified before decoding sequence data. This
algorithm applies only to aligned data as described in
subclause 11.3.3.

2 PushIn The reference is created by simple concatenation of already
decdded reads, with padding. This is described in
$ubclause 11.3.4.

3 Local assembly The reference is created by performing a local assembly. This
algorithm applies only to aligned data as described in
subclause 11.3.5.

4 Global assemBly, The reference used to perform reference based decoding is
encoded in each AU as sequence of ureads descriptors. This is
described in subclause 11.3.6.

5..255 reserved

11.3.3 Reference transformation

The input to'this process is the ref_sequence[seqld] array specified in subclause 7.4.2, with seqld equs
to ref_stMWMMMMM]

computed as speEified in subclauses 10.4.18 and 10.4.19 respectively.

—

The output of this process is the modified ref sequence[seqld] array computed by applying the
decoding process shown in Table 97 and a refTransfOrigSymbols[] array containing the substituted
symbols in the original reference.

98 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 97 — Reference transformation process

Transformation step Description
len = Size(refTransfPos][])
refTransfOrigSymbols[] = {} Empty array.
for (i = 0; i < len; 1i++){
refTransfOrigSymbols[i] = Save the symhbol in the reference before
ref sequence[seqld] [refTransfPos[i]] transformation.
ref_sequence[seqId] [refTransfPos[i]] = Substitution.

refTransSubs[i]

When cr_alg_ID is equal to 1 the decoder shall first apply the reference transformation desdribed in
Tlable 97 to the raw reference structure received as input and then use it for,réference-based decoding
as specified in subclause 10.2.

11.3.4 Pushin

11.3.4.1 General

The reference is created by pushing into a reference bufferrefBuf[] of size crBufSize, i.e. concaflenating,
dlready decoded reads. In this subclause reads are spgcified as the sequences computed as dutput of

— e

1

ecoded reads, each composed by a sequence af.symbols from one of the alphabets as spe
ubclause 9.2.

revious one. The computed reference 6btained in this way is padded at its beginning and its e

1.3.4.2 Process for the constriiction of the reference
he inputs to this process are:

- the buffer refBuf[] of size crBufSize specified in subclause 11.3.4.3 which contains crBufNu

- cr_buf_max_size-as specified in subclause 7.4.2.4;

- cr_pad_sizé.as specified in subclause 7.4.2.4;

as specified in subclause 7.5.1.2;

1.3,4.3 Initialization of the reference

he process described in Table 66 for cr_alg_ID equal to 2. The reference is built from crBufNymReads

cified in

decoded read is pushed in front of the~¢computed reference buffer only if it is different from the

nd.

mReads;

- signature_flag, num_signatures, signature_length[] and signature|[] fields in the access unit header

At the start of the decoding process of an AU set crBufSize equal to 2*cr_pad_size and crBufNumReads

e

qual to 0.

If signature_flag is equal to 1 and num_signatures is bigger than 0:

1.

crBufNumReads by 1 and increment crBufSize by signature_length[0];

for each remaining signature, if (crBufSize + 2* cr_pad_size + the size of the previous sign

insert the contents of signature[0] to the refBuf[] (at position cr_pad_size), increment

ature) is

greater than cr_buf max_size, oldest signatures are pushed out of the buffer refBuf[] and crBufSize

decremented of the length in nucleotides of each pushed out signature until (crBufSize

+ 2% cr_

pad_size + the size of the current signature) is smaller than or equal to cr_buf max_size. Push the

© ISO/IEC 2020 - All rights reserved

99

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

current signature in front of the previous signature and increment crBufSize with the length in
nucleotides of the current signature.

11.3.4.4 Update of the reference
The output of this process is the updated buffer refBuf[] and the updated variable crBufSize.

This process is skipped when the last decoded read perfectly matches the previously pushed read into
the refBuf[] in the sense that all the following conditions are all satisfied:

— rtype value of the last decoded read is smaller or equal to 2
— crBiifNumReads is greater than 0

— lengths of both reads are equal

This prdcess consists of the following steps:

1. If (qrBufSize + the size of the last decoded read) is greater than cr_buf_max §ize, oldest reads ar
pulled out of the buffer refBuf[] and crBufSize decremented of the lengthidn nucleotides of eac
pushed out read until (crBufSize + the size of the last decoded read) is“smaller than or equal t
cr_buf _max_size. Decrement crBufNumReads by the number of reads.pushed out of the refBuf[].

oS = ®

2. If r¢ads are present in the buffer, the whole buffer, except the leftmost cr_pad_size positions, i
pushed back until the leftmost base of the oldest read is at cr_pad. size position.

[72)

3. Thellast decoded read, decoded as described in Table 66 for cr_alg_ID equal to 2, is pushed in the
refBuf[] after the last decoded read already in the refBuff], crBufNumReads is incremented by [l
and|crBufSize is incremented of the length in nucleotidés of the pushed in read.

4. cr_pad_size rightmost remaining positions of refBuf[] are padded with the rightmost base of thie
newly inserted read.

5. cr_pad_size leftmost positions of refBuf[]are padded with the leftmost base of the oldest read
remining in refBuf[].

(i

The leftost position in the buffer shall have position 0; by consequence the leftmost base of the oldes
read shdll have position cr_pad_size.

The output of the computation process described above is a reference sequence contained in thie
array rdfBuf[] which shall be*used to decode the next genomic records contained in the current AJ
corresppnding to values of ¥type not equal to 5 as specified in subclause 10.4.14.

The refBuf[] shall be deleted at the end of the decoding process of each AU.

[om

If the relverseCompf][][] flag (as specified in subclause 10.4.3) corresponding o the last decoded rea
is 1, output the-xead as reverse-complemented as specified in subclause 9.4 after that this has bee
pushed fo the\computed reference.

=}

11.3.5 Local assembly

11.3.5.1 General

The reference is created by computing a local sliding consensus reference sequence. This can be seen as
equivalent to performing a local assembly. A local assembly is created by collecting all bases mapping to
a unique genomic position and by deriving the consensus base at that position through a majority vote.
In this subclause reads are specified as the sequences computed as output of the process described in
subclause 10.5.2 This algorithm applies only to aligned data as described in subclause 11.3.5.2.

An array crBuf[][] is built during the decoding process. A number of already decoded reads may be
needed and are stored in the array crBuf[][]. The number of decoded reads stored in the array crBuf[]

100 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

[] is stored in the variable crBufNumReads. The current size in bytes of the array crBuf[][] is stored in
the variable crBufSize.

If the optional rftp and rftt descriptors are present, an additional output of this decoding process
is a raw_referenceg.,,, structure (specified in subclause 7.3.2) containing the computed Local
Assembly reference specific to current Access Unit, as specified in point 6 of subclause 11.3.5.3 and in
subclause 11.3.5.4.

11.3.5.2 Process for adding a decoded aligned read to the list crBuf

The inputs to this process is an array crBuf[][] which contains crBufNumReads reads of size|in bytes
gqual to crBufSize.The output of this process is the updated array crBuf[][] and the updated vyariables
drBufNumReads and crBufSize.

—

his process consists of the following steps:

1. If the variable crBufSize plus the length in bases of the already decoded ‘aligned read iq greater
than cr_buf_max_size, the oldest reads are removed from the array crBuf[][] until crBuf$ize plus
the size of the already decoded aligned read is smaller than or equalde cr_buf max_size.

4. Thelast decoded read is added to the array crBuf[][] as newestread.

11.3.5.3 Process for the construction of the reference

—

he input to this process is an array crBuf[][] containingratleast one aligned read and the position on
he reference sequence of each nucleotide.

—

The output of this process is an array refBuf[] containing a sequence of consensus symbols.

vl

or each position covered by aligned reads in the array crBuf[][], the consensus symbol is ddrived as
bllows:

-

1. Collect all bases mapping to the current position.
4. Count the occurrences of eachsymbol.

3. Iftwo symbols s; s; (with.i'< j indexes of one of the alphabets specified in subclause 9.2) have the
same maximum numbgeitof occurrences, then select s; as consensus symbol.

4. Otherwise, select the-symbol with the maximum number of occurrences as consensus sympbol.
5. Append the consehsus symbol to the array refBuf[].

. If the optienal rftp and rftt descriptors are present, copyrefBuf[] into ref_sequence, ., [seqld][]
in a rawgreference, ., structure (specified in subclause 7.3.2) according to the mapping gosition.

—

he result of the decoding process described above is a reference sequence contained in the array
efBUf]] which shall be used to decode the genomic records contained in the current AU corresponding
b values of rtype not equal to 0 or 5 as specified in subclause 10.4.14.

—

(el

11.3.5.4 Decoding process for rftp and rftt

When cr_alg_ID is equal to 3, if the optional descriptors rftp and rftt are present in the bitstream, they
shall be used to reconstruct the original reference used for sequence alignment for the records in current
Access Unit. The decoder shall apply a transformation to the reference sequence ref_sequence ¢
[seqld][] constructed according to the process described in subclause 11.3.5.3 by replacing the symbols
present in the reference sequence ref_sequence,,[seqld][] at the absolute position represented by
each rftp; descriptor with the symbols conveyed by each corresponding rftt; descriptor.

© ISO/IEC 2020 - All rights reserved 101

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

11.3.6 Global assembly

When cr_alg_ID is equal to 4, the the reference sequence and the genomic records are decodedas
follows for each AU of type 6 (Class U) or of type 5 (class HM):

1. An array refBuf[] is set equal to the empty array.

Decode one rtype descriptor as specified in subclause 10.4.14.

If the value of the decoded rtype descriptor is equal to 5 then go to step 4 else go to step 8.

bde one rlen descriptor as specified in subclause 10.4.9.

bde the ureads descriptor with decodeUreads(rlen) as specified in subclause 10.4.8, whére rlep
e value from rlen descriptor decoded at previous step 4.

ratenate the array refBuf[Jwith the output of step 5.
o step 2.

bde the next sequence as specified in subclause 10.4.14 according to-the value of the rtyp
riptor decoded at step 2.

[}

—

each sequence decoded at the previous step whose reverseCompl[][][] flag (as specified i
clause 10.4.3) is 1, replace the sequence with its reverse-complement sequence as specified i

-

2.

3

4. Dec

5. Dec
is th

6. Con

7. Got

8. Dec
des

9. For
sub
sub¢

10. If m

The resylt of the decoding process specified above is 1).a’reference sequence contained in the arraly

refBuf[]
equal to

12 Blgck payload parsing process

12.1 G¢

This clayise describes the parsing process of encoded_descriptor_sequences and encoded_tokentyp

carried

The input to this process istthe’block payload.

The out
decoded

A graph

clause 9.4, and set the reverseComp[][][] flag to O.

pre rtype descriptors are present go to step 2.

[

and 2) the genomic records contained in the cticrent AU corresponding to values of rtype nc
5 (as specified in subclause 10.4.14) and decoded using the reference sequence in refBuf][].

pneral

™

by a block payload as spécified in subclause 7.5.1.3.3.

puts of this process are decoded symbols of all descriptor subsequences populated into thie
_symbols[][{[}-data structure, as specified in subclause 12.6.2.

cal representation of the parsing process is show in Figure 7 and Figure 8.

102

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

/ \ Descriptor / \
Subsequence
. Decoded
Descriptor Symbol
= Subsequence >
Decoder
Decoded Decoded
Symbol .
Split on Genomic
i Descriptor
Block Payload boundaries of Geno-mlc
Deserintor Descriptor (el
F Decoder
Subsequences
Descriptor
Subsequence
. Decoded
Descriptor Seco ¢
ymbol
m=p-| Subsequence o
Decoder
Decoded
\ / Symbol)
Figure 7 — Block payload parsing process
e D ====)
(_R oo 1__ -
! 1
1 LUTs
g Decoding I~ __
CABAC Transformed
Subsymbol| "=----- Subsequence
Decoder Inverse Merge EESiotee
. Subsyimbol Subsymbol Decoded Symbol >
ortion of the Transform Subsymbols
S
Subsymbol, Symbol
escriptor) — Qescriptor
ubsequence . Spl;t on Inverse |Jubsequence
— oundaries . Subsequence
of Transformed Trangforr;
Subsequences —— e (e
/_V_\ i 1. -
J 1
1 LUTs
-': Decoding :h -
1 h Transformed
SU%I'S\B:;%O] Semmm e ‘ Subsequence
Subsymbol Subsymboll Subsymbol, Decoded Symbol
Transform Subsymbol.
Transformed| Decoded Transformed|
Subsymbol Subsymbol| Symbol
. J — \ J
= = Present only when lut_transformis used.
Figure 8 — Decoding process for descriptor subsequences

12.2 Inverse binarizations

12.2.1 General

The process of inverse binarization converts the decoded binary symbols (binVals) into a non-binary-

valued symbol (symVal). The following subclauses describe the decoding process for the different
binarizations adopted in this document.

The following variables are specified:

— binVal is the binary value returned by the decoded_bit().

© ISO/IEC 2020 - All rights reserved

103

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— symVal is the non-binary reconstructed value yielded by the inverse binarization process. In this
subclause, it is also referred as decodedCabacSubsym.

— cmax is the largest possible binarized value. Larger values are truncated.

Annex C

provides examples of inverse binarizations.

12.2.2 Binary (BI)

The inputs to this process are bits from the block payload.

The out]

The par
symVal.

but of this process is the variable symVal.

hmeter cLength computed in subclause 12.3.6.2 indicates the length in bits of the/binarized
The decoding process is described in Table 98.

Table 98 — BI decoding process

symVal |= 0
for (i40; i<cLength; i++) {
symfal = (symVal<<l) | decode bit()
}
12.2.3 [runcated unary (TU)

The inpuits to this process are bits from the block payload.

The out]

The par

Table 99.

but of this process is the variable symVal.

hmeter cmax indicates the maximum valuéZof symVal. The decoding process is described ip

Table 99— TU decoding process

symVald
while (4

symy

0;
ymVal < cmax && decoderbit () == 1) |

al++

12.2.4

12.2.4.1

Exponential golomb (EG)

General

The inp

tsfo this process are bits from the block payload.

The output of this process Is the variable symval.

The decoding process is described in Table 100.

104

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2

Table 100 — EG decoding process

020(E)

leadingZeroBits= -1
for(b = 0; !b; leadingZeroBits++)

b = decode bit ()

symVal = 0
for(i = 0; i1 < leadingZeroBits; i++)
symVal = (symVal << 1) + decode bit ()

ymVal += 2leadingZeroBits - 1

12.2.4.2 Signed exponential golomb (SEG) binarization

—

ubclause 12.2.4.1.

(%)

—]

he output of this process is the variable symVal.

1. Perform the Exponential Golomb decoding process specified in subglause 12.2.4.1.

4. Ifthe output of step 1 is not equal to 0, decode a one-bit sign flag:

12.2.5 Ifthe output of step 2 is 1, symVal= -1*symValTruncated exponential golomb (TEQ

The inputs to this process are bits from the block payload.

o

he output of this process is the variable symVal.

Truncated exponential golomb is a concatenatieh of a truncated unary binarization (with cmax
max_teg signalled in subclause 12.3.3.2) ahd‘an exponential golomb binarization. The parsing
br these syntax elements are processed as follows:

(@)

-

1. Perform the truncated unary deegding process with cmax equal to cmax_teg (see 12.2.3).
7. Ifthe output of step 1 is equalto cmax_teg:

a. Perform the exponential golomb decoding process specified in subclause 12.2.4.

v

ymVal is equal to the.sum of step 1 and step 2a.

12.2.6 Signed truncated exponential golomb (STEG)
The inputs to this process are bits from the block payload.

The output’of this process is the variable symVal.

he input to this process is the output of an exponential golomb binarizdtion as spegified in

N

equal to
process

th cmax

igned truncated exponential golomb is a concatenation of a truncated unary binarization (w

binary binarization (lag). The decoding process for these syntax elements is as follows:
1. Perform the truncated unary decoding process with cmax equal to cmax_teg (see 12.2.3).
2. Ifthe output of step 1 is equal to cmax_teg:

a. Perform the exponential golomb decoding process specified in subclause 12.2.4.

3. Ifthe sum of the outputs of step 1 and step 2 is not equal to 0:

a. Decode a one-bit sign flag.

© ISO/IEC 2020 - All rights reserved

d a 1-bit

105

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

symVal is equal to the sum of the output values of step 1 and step 2a. If the output of step 3a is 1,
symVal= -1*symVal.

12.2.7 Split unit-wise truncated unary (SUTU)
The inputs to this process are bits from the block payload and:

— split_unit_size specified in subclause 12.3.3.2;

— output symbol size specified in subclause 12.3.2.

where split_unit_size < output_symbol_size.

The output of this process is the variable symVal.

The SUTU binary string is a concatenation of n TU binarizations (subclause 12.2.3), ‘where n
Ceil(output_symbol_size / split_unit_size).

The decpding process for SUTU binarization is described in Table 101

Table 101 — SUTU decoding process

symVal=0
for (ig0; i<output_ symbol_ size; i+=split_unit_size) {
unifval = 0

o)

cmay = (1 == 0 && (output symbol size % split unigt,size) != 0) ?

1<<(output symbol size % split unit size))-l

1<<split unit size)-1

whille (unitVal < cmax && decode bit() == 1)
ynitval++
symfal = (symVal<<split unit size) ¢ \unitval

12.2.8 PBigned split unit-wise truncated unary (SSUTU)
The inpits to this process are-hits from the block payload and:

— split_unit_size specifiedin subclause 12.3.3.2,

— output_symbol_size specified in subclause 12.3.2,

where split_unitisize < (output_symbol_size-1) and output_symbol_size has one bit reserved for the sigm.

The outputefthis process is the variable symVal.

1. The SUTU binarization produces the absolute value of symVal (of size output_symbol_size-1).
2. Ifthe output of step 1 is not equal to 0, decode a one-bit sign flag.

If the output of step 2 is 1, symVal= -1*symVal.

106 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

12.2.9 Double truncated unary (DTU)

The inputs to this process (see Table 102) are bits from the block payload and:
— cmax_dtu, split_unit_size (specified in 12.3.3.2),

— output_symbol_size (specified in 12.3.2),

where Log2(cmax_dtu) < split_unit_size and split_unit_size < output_symbol_size.

The r\nfpnf ofthis process isthe variahle cym\/a]

he DTU binary string is a concatenation of two binarizations, a TU binarization (subclause 1-22.3) and
SUTU binarization (subclause 12.2.7). The parameter cmax_dtu is used for the TU bifiarizatjon with
max equal to cmax_dtu, and the parameters split_unit_size and output_symbol_size|are used for the
UTU binarization (where cmax is computed internally).

Lo O

Table 102 — DTU decoding process

kymVal = decode cabac TU(cmax dtu)
| f (symVal 2 cmax_dtu) {

symVal += decode cabac SUTU(split unit size, output symbol size)

decode_cabac_TU() specifies the decoding process specifiedin subclause 12.2.3.

decode_cabac_SUTU() specifies the decoding process«pecified in subclause 12.2.7.

12.2.10Signed double truncated unary (SDTU)

—

he inputs to this process are bits from the block payload and:

- cmax_dtu and split_unit_size specified in subclause 12.3.3.2,

— output_symbol_size specifiedin'subclause 12.3.2,

<

Fhere Log2(cmax_dtu) < splithunit_size, split_unit_size < (output_symbol_size-1) and output_symbol_
sfize has one bit reserved for the sign.

|

he output of this process is the variable symVal.

—

he SDTU bin string is an extension of the DTU binarization with sign of symVal coded as a flag. It is
dbtained as follews:

1. The DTU binarization produces the absolute value of symVal (of size output_symbol_size-1).

4. Ifthe output of step 1 is not equal to 0, decode a one-bit sign flag.

[Ethe output of step 2 is equal to 1 then symVal is setto -1 * symVal

12.3 Decoder configuration

This subclause provides syntax and semantics to convey information related to the decoder
configuration in the parameter set specified in subclause 7.4.

12.3.1 Sequences and quality values

The decoder configuration syntax is specified in Table 103.

© ISO/IEC 2020 - All rights reserved 107

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 103 — Decoder configuration syntax

Syntax Type

decoder configuration (encodingModelID) {

if (encodingModeID == 0){ /* CABAC */

num_descriptor_ subsequence_cfgs minusl u(8)

for(i = 0;

i £ num descriptor subsequence cfgs minusl;

i++) {

descriptor_subsequence_ID u(10)
transformSubsegCounter = 1
transform subseq parameters () As specified i 12.3.4,
for (j = 0; j < transformSubsegCounter ; Jj++) {

transform ID_ subsym u(3)

support values () As specified in 12.3.2.

cabac_binarization() As specified in 12.3.3]

} el

se if (encodingModeID 2 1) {

/*

eserved for future use */

}

num_de
descripf]

subsequjences for each genomic descriptor are specifiéd in Table 24.

descrip
configul
minus 1

subsequence_ID shall be used more than once.

transfor]
specifie

transfo
in in sul
support
subsequl

cabac_b
transfor

scriptor_subsequence_cfgs_minus1 plus 1 specifies the number of subsequences the genomic
or for which configurations are being signalled in this syntax. The number of descriptg

—

for_subsequence_ID identifies the descriptor subsequence to which the current decodd
ation is applied. Its value is comprised between 0 and the number of descriptor subsequence
as specified in Table 24. Withinthe same descriptor_configuration(), no value of descriptor_

wn =

[72)

m_subseq_parameters() §ignals the parsing of parameters for transformed subsequences. It i
1 in subclause 12.3.4.

'm_ID_subsym specifies the subsymbol transform to be applied. Allowed values are specified

clause 12.3.4.

[values() spécifies a set of configuration parameters used to parse the transformefd
ence. It is specified in subclause 12.3.2.

narization() specifies information about the binarization used for the CABAC decoding of thie
nied 'subsequence. It is specified in subclause 12.3.3.

108

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

12.3.2 Support values

Table 104 — Support values data structure

Syntax Type
support values () {
output_symbol_size u(6)
coding_subsym size u(6)
[coding_order ut3)
if (coding subsym size < output symbol size && coding order > 0) {
if (transform ID subsym == 1)
share_subsym_lut_flag u(1)
share_subsym prv_flag u(1)
}

utput_symbol_size signals the size in bits of each transformed “symbol of the tran|
ubsequence to be output by the decoding process. For unsignedcbinarizations the minium

N O 0 O

. For signed values one bit is used for the sign.

o

omic unit of coding. The value of coding_subsym_size" shall be a factor (exact divisor) of
mbol_size. It yields X = output_symbol_size / coding_subsym_size atomic subsymb
hese X transformed subsymbols shall be independently decoded with CABAC, go through su
transformations (if any) to yield decoded subsymbols, which shall be combined to output a tran

sformed
value of

utput_symbol_size is 1, while for signed binarizations the minimum value of output_symbadl_size is

oding_subsym_size signals the size in bits of the transformed subsymbol, which serv¢ as the

output_
ol slots.
bsymbol
sformed

sfymbol (of size output_symbol_size). If LUTs suibsymbol transformation (subclause 12.3.4) is ysed, the

aximum allowed value for coding_subsym_size is 8. For signed values, one bit is used for th¢

ding_order signals the number of previously decoded symbols internally maintained
ariables and is used to decode the-néxt subsymbol. The maximum allowed value is 2.

are_subsym_lut_flag if set-to"1 only one look-up-table is signalled (subclause 12.6.2.!

P Sign.

Qs state

b) to be

shared among all transformed subsymbols to perform inverse LUT subsymbol transfg
(pubclause 12.6.2.8). Othetwise, for each transformed subsymbol their own look-up-table is s
nd used for inverse LUT-subsymbol transformation. The default value is 1.

are_subsym_prvflagifsetto 0 aseparate copy of the the previously decoded subsymbols (p
n subclause 12.6.2.2) is maintained to decode transformed subsymbol for each subsym
(Qtherwise, asingle copy of previously decoded subsymbols is circularly shared to decode tran|
ubsymbols\atall subsymbol slots. The default value is 1.

—

w

12.3:37€CABAC binarizations

rmation
ignalled

'vValues
bol slot.
sformed

2.3.5.1 General

Table 105 — CABAC binarization data structure

Syntax Type
cabac _binarization() {
binarization ID u(5)
bypass_flag u(1)
cabac _binarization parameters (binarization ID) 12.3.3.2
if (!bypass flag) {

© ISO/IEC 2020 - All rights reserved

109

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 105 (continued)

Syntax Type

cabac_context parameters () 12.3.3.3

}

binarization_ID indicates the binarization method to be used for CABAC decoding. The list of
binarizations is shown in Table 106. The signed binarizations identified by binarization_ID = {3, 5, 7, 9}

- = oo o . o

bypass|flag if equal to 1, all bins of the binarization are decoded using the CABAC bypass modeclticapn
only be et to 1 with coding_order equal to 0.

Table 106 — Values of binarization_ID and associated binarizations

binarization_ID Type of binarization

0 Binary coding as specified in subclause 12.2.2.

Truncated unary as specified in subclause 12.2.3.
Exponential golomb as specified in subclause 12.2.4.

Signed exponential golomb as specified in subclause. 12.2.4.2.

Truncated exponential golomb as specified in Subclause 12.2.5.

Signed truncated exponential golomb as sp€cified in subclause 12.2.6.
Split unit-wise truncated unary as specitieéd in subclause 12.2.7.
Signed split unit-wise truncated unagy as specified in subclause 12.2.8.

Double truncated unary as specified in subclause in 12.2.9.

O |0 |N ||| |wWw [N |-

Signed double truncated unary-as specified in subclause in 12.2.10.

10..31 Reserved for future use.

12.3.3.21 CABAC binarizations parameters

The cahac_binarization_parameters data structure contains the binarization parameters for the
transforjmed subsequence. binarization_ID is specified in subclause 12.3.3.

Table’107 — CABAC binarization parameters

Syntax Type

cabac_binarizatfion parameters(binarization ID) ({

if (bimgrization ID ==) |

chax u(8)

}\else if (binarization ID==4 ||

Bifarization ID==5) {

cmax_teg u(8)

} else if (binarization ID==8 ||
binarization ID==9) ({

cmax_dtu u(8)

110 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 107 (continued)
Syntax Type
if (binarization ID==6 || binarization ID==7 ||
binarization ID==8 || binarization ID==9) ({
split unit_size u(4)
}
}

max is specified in subclause 12.2.3. The maximum allowed value is 255 and shall always be Jess than
[<< coding_subsym_size). It shall be greater than zero.

Y o)

dmax_teg is specified in subclauses 12.2.5 and 12.2.6. The maximum allowed valué)is 255 gnd shall
lways be less than (1<< coding_subsym_size) and greater than 0.

ax_dtu is specified in clauses 12.2.9 and 12.2.10. The maximum allowed’yalue is 255 and shall
lways be smaller than (1<<split_unit_size) and greater than 0.

lit_unit_size is specified in subclause 12.2.7. The maximum allowed‘vdlue is 8 and shall always be
reater than 0 and smaller than output_symbol_size specified in subclause 12.3.2.

he binarizations SUTU (subclause 12.2.7), SSUTU (subclause:12.2.8), DTU (subclause 12.P.9) and
DTU (subclause 12.2.9) shall only be used when coding_order is equal to 0 and output_symbpol_size
5 equal to coding_subsym_size, while the internal subsymbol'size is signalled by the parameter split_
unit_size.

—

12.3.3.3 CABAC context parameters

]

he cabac_context_parameters data structure signals the parameters used for the initialization and
daptation of the ctxTable[] (specified in 12:4J'for the transformed subsequence (see Table 108)).

QD

Table 108 — Syntax of the cabac_context_parameters data structure

Syntax Type
cabac context parameters() {
adaptive mode flag u(1)
num_contexts u(16)

for ((4=0; i<num contexts; i++) {

context initialization_value[i] u(7)

)

if (coding subsym size < output symbol size) {

share_subsym ctx_ flag u(1)

}

adaptive_mode_flag if set to 1 signals that the arithmetic decoding engine specified in subclause 12.5
uses context adaptation, otherwise contexts adaptation is disabled.

num_contexts signals the size of the table ctxTable[] (initialized as defined in 12.4) containing the list
of context variables needed for the decoding of the LUTs and the transformed subsequence.

When num_contexts is signalled as 0:
— the process defined in 12.3.6.6 shall be used to calculate the state variable numCtxTotal;

— the process defined in 12.4 initializes the contexts in ctxTable[] with initState equal to 64
(equiprobability).

© ISO/IEC 2020 - All rights reserved 111

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Otherwise

— the state variable numCtxTotal is set to the signalled value of num_contexts;

— the process defined in 12.4 initializes the contexts in ctxTable[| with the values signalled in
context_initialization_values]].

context_initialization_values][i] specifies the initialization state value for the ith context variable. The

state value can range between 0 and 127, with value 64 representing the equiprobable state value.

coding |
output |

share_s
Otherwi
The def?

12.3.4

transfo

h 3 H Lo d Lal 12 .2 1
auua_ylu_)lbc 15 DPCLIIICU I SUUCIAdUST 1 4.J.4.

symbol_size is specified in subclause 12.3.2.

ult value is 0.
Transformation parameters

Table 109 — Data structure for transformation parameters

ubsym_ctx_flagif setto 1, all transformed subsymbols are decoded on the same set dfjcontexts
se, separate set of contexts are initialized and used to decode each transformed |subsymbaol.

Syntax

Type

transform subseq parameters () {

transform ID subseq

u(8)

if (transform ID subseq == equality coding) {

transformSubsegCounter += 1

} else if(transform ID subseq == matchlcoding) {

match_coding buffer size

u(16)

transformSubseqgCounter += 2

} else if (transform ID subseqg == rle coding) {

rle coding guard

u(8)

transformSubsegCounter’ += 1

} else if (transform.ID subseg == merge coding)

merge_coding_subseq_count

u(4)

transformSybseqgCounter = merge coding subseq count

for (1=0;\I<merge coding subseq count; i++)

merge” coding_shift size[i]

u(s)

}

'm/ID_subseq signals the applied subsequence transformation according to Table 110.

D«

112

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 110 — Values of transform_ID_subseq and transform_ID_subsym

Sub-sequence transformations

transform_ID_subseq name Remarks
0 no_transform No transform is applied.
1 equality_coding As specified in 12.6.2.10.2.
o] ol = H A i o d s 12 .92 102
[~ lllaL\.ll_\.Uullls e el D})bl.lll\.u I 1 &a Ve AV,
3 rle_coding As specified in 12.6.2.10.4.
4 merge_coding As specified in 12.6.2.10.5.
5..255 Reserved for future use.

Subsymbol transformations

transform_ID_subsym name Remarks
0 no_transform No transformatigh,is‘applied.
1 lut_transform It can only berused when cod-

ing_order ¥ 0,

2 diff_coding It can onlybe used when cod-
ing_order is equal to 0.

3.7 Réserved for future use.

ransform_ID_subsym specified in subclause 12.3.1 signals the applied subsymbol transfqg
ccording to Table 110. The value transform_ID_subsym equal to 1 is not allowed whenever
he following is true: coding_order is equal to 0, coding_subsym_size is greater than 8, or binaj
D is equal to one of the values {3, 5, 6, 7, 8, 9}.

_—ct QO e+

transformSubseqCounter is a state variable défined in subclause 12.3.1.

=

hatch_coding_buffer_size signals théJsize of the internal fifo buffer used in match|
ransformation (subclause 12.6.2.10.3)-

—

o

le_coding_guard is the guard valiie used in run-length coding transform (subclause 12.6.2.10

rmation
bither of
ization_

coding

4).

= =

nerge subsequence transformation (subclause 12.6.2.10.5). The minimum allowed value is 2.

merge_coding_shift ‘size[i] signals the number of bits to be shifted in the transformed
df each transforméd subsequence while applying the merge subsequence transfq
(bubclause 12.602,10.5).
1

he merge.subsequence transformation shall adhere to the following restrictions:

—+ Foreach transformed subsequence, coding_subsym_size shall be equal to output symbol_g

herge_coding_subseq_count signals the number of transform subsequences to be merged by the

symbols
rmation

ize.

—+“All transformed subsequences shall have exactly the same number of transformed symbol

s, which

shall also be equal to the number of symbols encoded in the descriptor subsequence.

— The sum ofthe sizes of transformed symbols (output_symbol_size) for all transformed subsequences

shall not be greater than 32.

12.3.5 Msar descriptor and read identifiers

The decoder configuration syntax for the msar descriptor and read identifiers (decoded as specified in

subclause 10.4.20) is specified in Table 111.

© ISO/IEC 2020 - All rights reserved

113

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 111 — Decoder configuration syntax for msar and read identifiers

Syntax Type
decoder configuration tokentype (encodingModelID) {
if (encodingModeID == 0) {
/* configuration for RLE specified in subclause 10.4.19.3.3 */
rte—guard—tokentype 83

* configuration for CABAC METHOD 0 specified in subclause 10.4.19.3.4 */

decoder configuration tokentype cabac(0)

* configuration for CABAC METHOD 1 specified in subclause 10.4.19.3.5 */

decoder configuration tokentype cabac(1l)

} ellse if (encodingModeID 2= 1) {

* reserved for future use */

}

rle_guard_tokentype represents the guard value used in the decodingprocess of RLE method (listefd
in Table|78 and specified in subclause 10.4.20.4.4) for the decoding of tokentype descriptor sequenceg.

Tabje 112 — Decoder configuration syntax for CABAC decoding of tokentype descriptors

Syntax Type
ecoder configuration tokentype cabac() {

transformSubsegCounter = 1
transform subseq parameters () As specified in 12.3.4.
for (j = 0; j < transformSubseg€eudnter; J++) {

transform ID_ subsym u(3)

support values () As specified in 12.3.2.

cabac_binarization() As specified in 12.3.3.

transform_subseq_parameéters() signals the parameters for transformed subsequences. It is

specifiedl in subclause 12:3.4.

transform_ID_subsym signals the subsymbol transformion to be applied. Allowed values are as

specifiedl in 12.34.

suppor{_values() signals a set of configuration parameters used to parse the transformed subsequencg.

It is spe¢ified in subclause 12.3.2.

cabac_binarization() signals information about the binarization used for the CABAC decoding of the

transformed subsequence. It is specified in subclause 12.3.3.

12.3.6 State variables

This subclause specifies how to calculate state variables used during the decoding process.

12.3.6.1 Number of alphabet symbols

The number of alphabet symbols for each subsymbol shall be calculated as numAlphaSubsym = 1 <<
coding_subsym_size. However, for some descriptor subsequences, this calculation produces larger

114 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

alphabets than needed. Table 113 lists these special cases and the value of numAlphaSubsym when
numAlphaSubsym is not calculated as numAlphaSubsym = 1 << coding_subsym_size.

Table 113 — Special cases for numAlphaSubsym values.

descriptor_ID subsequence_ID numAlphaSubsym

3

Size[salphabet_ID)

Size(S ., =)

sjubsym_size.

load 1
arpirapet_Io

Size (Salphabet_ID) +1

Size(salphabet_ID)

6

IO OIN|RINIFR|O

Size(salphabet_ID)

The number of subsymbols shall be calculated as numSubsyms

output_symbol_size /

12.3.6.2 Number of contexts per subsymbol

coding_

When bypass mode is not used (as signalled in subclause 12.3¢3), the cabac decoding of the tranjsformed
sjubsymbol uses a number of contexts (as specified in subélause 12.5.2). Table 114 lists the nymber of
dontexts needed to decode each transformed subsymbol with all binarizations.
Table 114 — Calculation of numCtxSubsym
binarization_ID numCtxSubsym
(coding subsym size
| cmax
p Floor (Log2 (numAlphaSubsym + 1)) + 1
Floor (Log2((numAlphaSubsym + 1)) + 2
4 cmax_teg + Floor (Log2 (numAlphaSubsym + 1)) + 1
b cmax(tey + Floor (Log2 (numAlphaSubsym + 1)) + 2
A (output symbol size / split unit size) * ((1<< split unit size) | 1) +
s ((I<<(outputSymSize % split unit size)) - 1)
1 (output symbol size / split unit size) * ((1<< split unit size) | 1) +
((1<<(outputSymSize % split unit size)) - 1) + 1
cmax dtu +
8 (output symbol size / split unit size) * ((1<< split unit size)|- 1)
+ ((l<<(outputSymSize % split unit size)) - 1)
cmax dtu +
D (output symbol size / split unit size) * ((1<< split unit size)| - 1)
+ ((1<<(output symbol size % split unit size)) - 1) + 1

coding_subsym_size is specified in subclause 12.3.2.

output_symbol_size is specified in subclause 12.3.2.

cLength is specified as a parameter to BI binarization (subclause 12.2.2) and it is set to coding_

subsym_size.

cmax is specified as a parameter to TU (subclause 12.2.3) and signalled in 12.3.3.2.

cmax_teg is specified as a parameter to the TEG (subclause 12.2.5) and STEG (subclause 12.2.5)

binarizations, and signalled in 12.3.3.2.

© ISO/IEC 2020 - All rights reserved

115

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

split_unit_size is specified as a parameter to the SUTU (subclause 12.2.7), SSUTU (subclause 12.2.8),
DTU (subclause 12.2.9) and SDTU (subclause 12.2.9) binarizations, and signalled in 12.3.3.2.

cmax_dtu is specified as a parameter to the DTU (subclause 12.2.9) and SDTU (subclause 12.2.9)
binarizations, and signalled in 12.3.3.2.

12.3.6.3 Coding order context offset

The decoding process of a subymbol can depend on a number of previously decoded subsymbols (at the
same bi pncifinnc) hy cign:\]ing r‘nding_nrdpr >(0as cpm‘ifipd insubclause 12 3 2

The progess of context selection (subclause 12.6.2.6) requires the context offsets corresponding-to thie
coding drder to correctly calculate the starting ctxIdx in the ctxTable[|, where each subsymbolis-to be
decoded.

Table 115 specifies how the list codingOrderCtxOffset[| containing these offsets forZeach coding
order id calculated. If bypass_flag is equal to 1 (as signalled in subclause 12.3.3),-all elements (
codingOrderCtxOffset are set to 0.

=)

Table 115 — Calculation of codingOrderCtxOffset[]

coding_order State variable Value
codingOrderCtxOffset[0] 0
codingOrderCtxOffset[1] numCxSubsym

codingOrderCtxOffset[2] numCtxSubsym *
numAlphaSubsym

12.3.6.4 Coding size context offset

The stafe variable codingSizeCtxOffset specifies\\the number of contexts needed to decode each
transformed subsymbol.

This stafe variable is used in the contexts-selection process (subclause 12.6.2.6) to correctly calculate
the starfing ctxIdx in the ctxTable[] whefejeach transformed subsymbol is to be decoded. It is computed
as specified in Table 116. If bypass_flag‘is equal to 1 (as signalled in subclause 12.3.3), this state variable
issettol0.

Table-116 — Calculation of codingSizeCtxOffset

if (shage subsym ctx fday)
codingSizeCtxOffiset = 0

else ifl(codingexrder == 0)
codingSiz&CtxOffset = numCtxSubsym

else

di : = — - 1 2 = = i I 2 1 el P}
(e6) LITHO L AZTULAUL L OTL = CUULIIYULUTLULAUL LOT U CUULIIY "ULUTL] ITUIIA L PITIdoUlS YIIT

12.3.6.5 Number of contexts for LUTs

The state variable numCtxLuts specifies the number of contexts needed to decode the LUTs using
the the decoding process for LUTs (specified in subclause 12.6.2.5), where each LUT symbol shall be
decoded using the SUTU binarization (binarization_ID equal to 6) with parameters splitUnitSize equal
to 2 and outputSymSize = coding_subsym_size. The value of numCtxLuts is computed as specified in
Table 117. If bypass_flag is equal to 1 (as signalled in subclause 12.3.3), this state variable is set to 0.

116 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 117 — Calculation of numCtxLuts

numCtxLuts = 0
if (transform ID subsym == 1)
/* Compute according to Table 114 for SUTU binarization */

numCtxLuts = (coding subsym size / 2) * ((1<< 2) - 1) +

o)

((1<<(coding subsym size % 2)) - 1)

2.3.6.6 Total number of contexts

[

he state variable numCtxTotal specifies the total number of contexts needed to decode.d tranisformed
ubsequence, which includes all the contexts needed for decoding of LUTs (subclause 12.6.2.5) and
ymbols (subclause 12.6.2.7) and shall be calculated as specified in Table 118. If bypass_flag islequal to
(as signalled in subclause 12.3.3), this state variable is set to 0.

=0

Table 118 — Calculation of numCtxTotal

| £ (num _contexts != 0) {
numCtxTotal = num contexts
else {
numCtxTotal = numCtxLuts
numCtxTotal += ((share subsym ctx flag) ? 1 NNV numSubsyms) ¥

((coding order > 0) ? cé&dingOrderCtxOffset[coding order] *

numAlphaSubsym : numCtxSubsymbol)

rnum_contexts is signalled in 12.3.3.3 along with the list of specific context_initialization_valuges]].

12.4 Initialization process for context variables

dtxTable[] is the data struetiire containing all context variables needed to decode a transformed
sjubsequence. Each element)of the ctxTable[| represents one context variable and consist$ of two
sftate variables: pStateldx’and valMps. The variable pStateldx represents a probability state index
and the variable valMps represents the value of the most probable symbol as further desdribed in
sjubclause 12.5.2.

The inputs tothis process are:

- ctxTable[] specified in subclause 12.6.2.4;

- Ahe ctxldx and initState variables specified in12.6.2.4.

i
1

1 4 PRI R N : IR 1 4 4 LG I IS | P alal 1 P
IIT UUTPUL O UIIS PTOCTSS IS5 dI HIIUAITATU CUIIITX T VAT TdUIT HITUIT LA TAUIT dITdy dU HIUTXA TLAT X.

The state variables pStateldx and valMps corresponding to index ctxIdx are initialized based on a 7-bit
initState as described in Table 119.

© ISO/IEC 2020 - All rights reserved 117

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 119 — Calculation of ctxTable

Syntax
context initialize state(ctxTable[], ctxIdx, initState) {
ctxTable[ctxIdx].valMps = (initState < 63) 2 0 : 1

ctxTable[ctxIdx] .pStateldx = ctxTable[ctxIdx].valMps ? (initState - 64)
(63 — initState)

}

where

Q)
t

ctxTablg¢[ctxIdx].valMps represents the variable valMps associated to the element in-ctxTable
index ctixldx

Q)
(s

ctxTabld[ctxIdx].pStateldx represents the variable pStateldx associated to the element in ctxTable
index ctkldx

12.5 Arithmetic decoding engine

12.5.1 [nitialization

(i

The outputs of this process are the initialized decoding engine~registers ivlCurrRange and ivlOffsg
both in 16 bit register precision.

The stafus of the arithmetic decoding engine is represented by the variables ivlCurrRange anfd
ivlOffset. In the initialization procedure of the arithmetic‘decoding process, ivlCurrRange is set equg
to 510 apd ivlOffset is set equal to the value returnedsfrom read_bits(9) interpreted as a 9 bit binary
representation of an unsigned integer with the mostsignificant bit written first.

—_—

The bitstream shall not contain data that resultin a value of ivlOffset being equal to 510 or 511.

NOTE The description of the arithmetie decoding engine in this Specification utilizes 16 bit registg
precisior]. However, a minimum register precision of 9 bits is required for storing the values of the variablg
ivlCurrRange and ivlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified ir;
subclausg 12.5.2. The arithmetic deeoding process for a binary decision (DecodeDecision) as specified i
subclausg 12.5.2.2 and the decoding-process for a binary decision before termination (DecodeTerminate) 34
specified in subclause 12.5.2.5 require a minimum register precision of 9 bits for the variables ivlCurrRange an|
ivlOffset| The bypass decoding-process for binary decisions (DecodeBypass) as specified in subclause 12.5.2,
requiresfa minimum registerptecision of 10 bits for the variable ivlOffset and a minimum register precision
9 bits for|the variable ivl€urrRange.

[]

—_ >

12.5.2 Arithmeticdecoding process

12.5.2.1 General

The inputs to this process are ctxlable, ctxIdx, and bypass_tlag, as specified in subclause 12.6.2.7, and
the state variables ivlCurrRange and ivlOffset of the arithmetic decoding engine.

The output of this process is the value of the bin.

Figure 9 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of
a bin, the context index table ctxTable and the ctxldx are passed to the arithmetic decoding process
DecodeBin(ctxTable, ctxIdx), which is specified as follows:

— IfbypassFlagis equal to 1, DecodeBypass() as specified in subclause 12.5.2.4 is invoked.

— Otherwise,ifbypassFlagisequalto 0,ctxTableisequalto 0,and ctxldxisequalto0,DecodeTerminate()
as specified in subclause 12.5.2.5 is invoked.

118 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

— Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision() as specified
in subclause 12.5.2.2 is invoked.

(DecodeBin(cthable, ctxldx, bypass_flag))

Yes

bypass_flag == 17

A

DecodeBypass

ctxTable == 0
&& ctxldx==07?

DecodeTerminate

No

DecodeDecision(ctxTable, ctxldx, bypass_flag)

Figure 9 — Overview of the arithmetic decoding process for a single bin

OTE Arithmetic coding is based on the_principle of recursive interval subdivision. Given a prjobability
stimation p(0) and p(1) =1 - p(0) of @binary decision (0, 1), an initially given code sub-interval with
he range ivlCurrRange will be subdivided into two sub-intervals having range p(0) * ivlCurrRange and
ylCurrRange - p(0) * ivlCurrRange;.fespectively. Depending on the decision, which has been obsefved, the
cprresponding sub-interval will be ¢hgsen as the new code interval, and a binary code string pointing|into that
interval will represent the sequence of observed binary decisions. It is useful to distinguish between [the most
probable symbol (MPS) and the\least probable symbol (LPS), so that binary decisions have to be identified as
efther MPS or LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability p; ps of
the LPS and the value of MPS (valMps), which is either 0 or 1. The arithmetic core engine in this document has
three distinct properties:

o o =z

—-

—+ The probability-gstimation is performed by means of a finite-state machine with a table-based tfansition
process between 64 different representative probability states { p; ps(pStateldx) | 0 < pStateldx § 64 } for
the LPS prebability p; ps. The numbering of the states is arranged in such a way that the probability state with
indexpStateldx = 0 corresponds to an LPS probability value of 0.5, with decreasing LPS probability towards
highexstate indices.

-+~ The range ivlCurrRange representing the state of the coding engine is quantized to a small set {Q{,...,Q4} of
pre-set quantization values prior to the calculation of the new interval range. Storing a table containing all
64x4 pre-computed product values of Q; * p; ps(pStateldx) allows a multiplication-free approximation of the
product iviCurrRange * p; ps(pStateldx).

— Forsyntax elements or parts thereof for which an approximately uniform probability distribution is assumed
to be given a separate simplified encoding and decoding bypass process is used.

12.5.2.2 Arithmetic decoding process for a binary decision

12.5.2.2.1 General

The inputs to this process are the variables ctxTable, ctxldx, iviCurrRange, and ivlOffset.

© ISO/IEC 2020 - All rights reserved 119

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

The outputs of this process are the decoded value binVal, and the updated variables ivlICurrRange and
ivlOffset.

Figure 10 shows the flowchart for decoding a single decision (DecodeDecision):

1. The

value of the variable ivlLpsRange is derived as follows:
Given the current value of iviCurrRange, the variable qRangeldx is derived as follows:

gRangeldx =(ivlCurrRange >>6) & 3

2. The

Given tTe value of binVal, the state transition is performed as spegified in subclause 12.5.2.2.2.

Depend
subclaus

Given qRangeldx and pStateldx associated with ctxTable and ctxIdx, the value of the variable
rangeTabLps as specified in Table 121 is assigned to ivlLpsRange:

ivlLpsRange = rangeTabLps|[pStateldx][qRangeldx]
variable ivlCurrRange is set equal to ivlCurrRange - ivlLpsRange and the following applies:

IfivlOffsetis greater than or equal to iviCurrRange, the variable binVal is set. equal to-1 - valMp#,
ivlOffset is decremented by ivlCurrRange, and ivlCurrRange is set equalto-ivlLpsRange.

Otherwise, the variable binVal is set equal to valMps.

ng on the current value of ivlCurrRange, renormalization™is performed as specified i

-

e12.5.2.3.
(DecodeDecision(cthable, cthdXD
v

gqRangeldx = (ivlCuryRange >> 6) & 3
ivlLpsRange = rangeTabbhps|pStateldx][qRangeldx]
ivlCurrRange = ivICurrRange - ivilLpsRange

Yes ivlOffset > No

v ivlCurrRange? v
binVal = lvalMps

binVal = valMps

ivlOffset = ivlOffset - ivlCurrRange pStateldx = transldxMps[pStateldx]

ivlCurrRange = ivlLpsRange

Yes

pStateldy l

valMps =1 - valMps
No |

A

pStateldx = transldxLps[pStateldx]

120

!

RenormD

v

Figure 10 — Flowchart for decoding a decision

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

12.5.2.2.2 State transition process

ISO/IEC 23092-2:2020(E)

The inputs to this process are the current pStateldx, the decoded value binVal and valMps values of the
context variable associated with ctxTable and ctxIdx.

The outputs of this process are the updated pStateldx and valMps of the context variable associated

with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valMps associated

with ctxIdx is derived as specified in Table 120.

Table 120 — Update of the two variables pStateldx and valMps

if(binval =
pStateldx

else {

valMps

pStateldx

[f (adaptive mode flag)
= valMps

= transIdxMps (pStateldx)

if(pStateldx
= 1 - valMps

= transIdxLps(pStateldx)

{
)

0)

(=]

able 122 specifies the transition rules transldxMps(+)rand transldxLps() after decoding the

value of

vfalMps and 1 - valMps, respectively.
[able 121 — Specification of rangeTabLps.depending on the values of pStateldx and qRangeldx
pStateldx qRangeldx pStateldx qRangeldx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 iNu! 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 84 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16

© ISO/IEC 2020 - All rights reserved 121

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

Table 121 (continued)

qRangeldx qRangeldx
pStateldx pStateldx

0 1 2 3 0 1 2 3
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
2 39 48 56 A5 57 7 9 11 12
24 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
29 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10

30 30 37 43 50 62 6 7 8

31 29 35 41 48 63 2 2 2

Table 122 — State transition table

pStateldi 0 1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15
transldeLps 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transldeMps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStateIdlx 16 17 18 19 20 (21 |22 23 24 |25 (26 27 28 29 30 31
transldeLps 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24
transldxiMps 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pStateIdlx 32 33 34 (35 |36 |37 38 (39 {40 |41 |42 43 44 |45 46 |47
transldeLps 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33
transldeMps 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
pStatelde 48 |49 |50 |51 52 53 54 |55 56 |57 58 59 60 61 62 63
transldeLps 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63
transldeMps 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

o

12.5.2.3 Renormalization procéssin the arithmetic decoding engine
The inputs to this process arebits from block payload data and the variables ivlCurrRange and ivlOffsef.

The outputs of this procéss are the updated variables iviCurrRange and ivlOffset.

t

A flowchart of the renormalization is shown in Figure 11. The current value of ivlCurrRange is firs
compar¢d to 256-ard then the following applies:

U

— If ilCurrRange is greater than or equal to 256, no renormalization is needed and the Renorm
progess is finished;

— Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop,
the value of ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by
using read_bits(1).

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to
ivlCurrRange upon completion of this process.

122 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2

ivlCurrRange < 256 ?

Yes

A

;V}CUIIRGIIS\' - ;V}CMIIRGIIS\' 1
ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

Done

Figure 11 — Flowchart of renormalization

12.5.2.4 Bypass decoding process for binary decisions

_ =]

he outputs of this process are the updated variable ivlOffset and the decoded value binVal.

—

he bypass decoding process is invoked when bypassFlag is equal to 1. Figure 12 shows a flow
he corresponding process.

—

Hirst, the value of ivlOffset is doubled, i.e;, left-shifted by 1 and a single bit is shifted into ivl(
sing read_bits(1). Then, the value of ivlOffset is compared to the value of ivlICurrRange and
bllowing applies:

-

- IfivlOffsetis greater thanor equal to ivlCurrRange, the variable binVal is set equal to 1 and
is decremented by ivlCurrRange.

— Otherwise (ivlOffsetis'less than ivlCurrRange), the variable binVal is set equal to 0.

The bitstream shall-fiot contain data that result in a value of ivlOffset being greater than or
/ICurrRange uporcompletion of this process.

—-

020(E)

he inputs to this process are bits from block payload dataand the variables ivlCurrRange and iyv10ffset.

rchart of

ffset by
then the

vlOffset

equal to

© ISO/IEC 2020 - All rights reserved

123

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

ISO/IEC 23092-2:2020(E)

12.5.2.5

(DecodeBypass)

ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

NS

Yes No

ivlOffset = ivlCurrRange ?

A A

binVal =1

ivlOffset = ivlOffset — ivICurrRange binVal = 0

Done

Figure 12 — Flowchart of bypass decoding process

Decoding process for binary decisions before termination

The inputs to this process are bits from block payload data and the variables iviCurrRange and ivlOffse

The out
value bi

This ded

puts of this process are the updated variables ivlICurrRange and ivlOffset, and the decode
hVal.

oding process applies to decoding.of end_of_descriptor_subsequence_terminate correspondinE
n|

to ctxTable equal to 0 and ctxIldx equdl to 0. Figure 13 shows the flowchart of the correspondi

decodin

First, the value of ivlCurrRange_ is decremented by 2. Then, the value of ivlOffset is compared to thie
value of

If iy
ren
ivlO|
insg

Oth

b process, which is specified as follows:

ivlCurrRange and then the following applies:

10ffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, n
rmalization is.carried out, and CABAC decoding is terminated. The last bit inserted in registe
fset is equalto 1. When decoding end_of_descriptor_subsequence_terminate, this last b

rted inregister ivlOffsetis interpreted as the stop bit for the decoding of descriptor subsequence.

ren

erwise(ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 an
rmalization is performed as specified in subclause 12.5.2.3.

[.

-+ = O

h

This procedure may also be implemented using DecodeDecision(ctxlable, CtxldX, bypassriag J wit
ctxTable = 0, ctxldx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, seven
more bits would be read by DecodeDecision(ctxTable, ctxldx, bypassFlag) and a decoding process
would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.

124

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=6fd494ae583bc25491f14b8d4cc77f39

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Conventions
	5.1 General
	5.2 Arithmetic operators
	5.3 Logical operators
	5.4 Relational operators
	5.5 Bit-wise operators
	5.6 Assignment operators
	5.7 Range notation
	5.8 Mathematical functions
	5.9 Order of operation precedence
	5.10 Variables, syntax elements and tables
	5.11 Text description of logical operators
	5.12 Processes
	6 Syntax and semantics
	6.1 Method of specifying syntax in tabular form
	6.2 Bit ordering
	6.3 Specification of syntax functions and data types
	6.4 Semantics
	7 Data structures
	7.1 General
	7.2 Data unit
	7.3 Raw reference
	7.3.1 General
	7.3.2 Syntax and semantics
	7.4 Parameter set
	7.4.1 Syntax and semantics
	7.4.2 Encoding parameters
	7.5 Access unit
	7.5.1 Syntax and semantics
	7.5.2 Access unit types
	8 Descriptors
	9 Sequencing reads
	9.1 General
	9.2 Supported symbols
	9.3 Paired-end reads
	9.4 Reverse-complement reads
	9.5 Data classes
	9.6 Aligned data
	9.7 Unaligned data
	10 Decoding process
	10.1 General
	10.2 dataset_type = 0 or 1
	10.2.1 General
	10.2.2 References padding
	10.2.3 Type 1 AU (Class P)
	10.2.4 Type 2 AU (Class N)
	10.2.5 Type 3 AU (Class M)
	10.2.6 Type 4 AU (Class I)
	10.2.7 Type 5 AU (Class HM)
	10.2.8 Type 6 AU (Class U)
	10.3 dataset_type = 2
	10.3.1 General
	10.3.2 Type 1 AU
	10.3.3 Type 2 AU
	10.3.4 Type 3 AU
	10.3.5 Type 4 AU
	10.3.6 Type 6 AU
	10.4 Genomic descriptors
	10.4.1 General
	10.4.2 pos
	10.4.3 rcomp
	10.4.4 flags
	10.4.5 mmpos
	10.4.6 mmtype
	10.4.7 clips
	10.4.8 ureads
	10.4.9 rlen
	10.4.10 pair
	10.4.11 mscore
	10.4.12 mmap
	10.4.13 msar
	10.4.14 rtype
	10.4.15 rgroup
	10.4.16 qv
	10.4.17 rname
	10.4.18 rftp
	10.4.19 rftt
	10.4.20 tokentype descriptors
	10.5 sequence
	10.5.1 General
	10.5.2 Aligned reads (Classes P, N, M, I, HM)
	10.5.3 Unmapped reads (Class HM, U)
	10.6 e-cigar
	10.6.1 Syntax
	10.6.2 Decoding process for the first alignment
	10.6.3 Decoding process for other alignments
	10.6.4 Reference transformation
	11 Representation of reference sequences
	11.1 External reference
	11.2 Embedded reference
	11.3 Computed reference
	11.3.1 General
	11.3.2 Supported Algorithms
	11.3.3 Reference transformation
	11.3.4 PushIn
	11.3.5 Local assembly
	11.3.6 Global assembly
	12 Block payload parsing process
	12.1 General
	12.2 Inverse binarizations
	12.2.1 General
	12.2.2 Binary (BI)
	12.2.3 Truncated unary (TU)
	12.2.4 Exponential golomb (EG)
	12.2.5 If the output of step 2 is 1, symVal= -1*symValTruncated exponential golomb (TEG)
	12.2.6 Signed truncated exponential golomb (STEG)
	12.2.7 Split unit-wise truncated unary (SUTU)
	12.2.8 Signed split unit-wise truncated unary (SSUTU)
	12.2.9 Double truncated unary (DTU)
	12.2.10 Signed double truncated unary (SDTU)
	12.3 Decoder configuration
	12.3.1 Sequences and quality values
	12.3.2 Support values
	12.3.3 CABAC binarizations
	12.3.4 Transformation parameters
	12.3.5 Msar descriptor and read identifiers
	12.3.6 State variables
	12.4 Initialization process for context variables
	12.5 Arithmetic decoding engine
	12.5.1 Initialization
	12.5.2 Arithmetic decoding process
	12.6 Decoding process for sequence descriptors
	12.6.1 General
	12.6.2 Block payload decoding process
	13 Output format
	13.1 General
	13.2 MPEG-G record
	13.2.1 General
	13.2.2 number_of_template_segments
	13.2.3 number_of_record_segments
	13.2.4 number_of_alignments
	13.2.5 class_ID
	13.2.6 read_group_len
	13.2.7 reserved
	13.2.8 read_1_first
	13.2.9 seq_ID
	13.2.10 as­_depth
	13.2.11 read_len
	13.2.12 qv_depth
	13.2.13 read_name_len
	13.2.14 read_name
	13.2.15 read_group
	13.2.16 sequence
	13.2.17 quality_values
	13.2.18 mapping_pos
	13.2.19 ecigar_len
	13.2.20 ecigar_string
	13.2.21 reverse_comp
	13.2.22 mapping_score
	13.2.23 split_alignment
	13.2.24 delta
	13.2.25 split_pos
	13.2.26 split_seq_ID
	13.2.27 flags
	13.2.28 more_alignments
	13.2.29 next_pos
	13.2.30 next_seq_ID
	13.3 Initialization process
	Annex A (informative) Tokenization of reads identifiers
	Annex B (informative) Mapping quality
	Annex C (informative) Inverse binarization examples

