INTERNATIONAL ISO/IEC
STANDARD 23090-23

First edition
2023-10

Information technology —’Coded
representation of immersive medip —

Part 23:
Conformance andveference software
for MPEG immersive video

Technologies de l'inforination — Représentation codée de média
immersifs —

Partie 23: Confarmité et logiciels de référence pour la vidéo immersive
MPEG

Reference number
ISO/IEC 23090-23:2023(E)

© ISO/IEC 2023

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

© ISO/IEC 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2023 - All rights reserved

https://www.iso.org
https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

Contents Page
FOT@WOT. ... ettt iv
0010 o0 1o L0 Ut (o) o OSSOSO \ 4

B N =

b COMVEINTIOILS ... bl 2
b ConformancCe tESTINE ...y e e 2
6.1 LT3 T = OSSR =\ SN S 2
6.2 Bitstream conformance. w2
6.3 Decoder conformance.... w2
6.4 Reference bitstreams................ 2
6.5 Procedure to test bitstreams... .3
6.6 Procedure to test decoders ... A4
6.6.1 Conformance DIitSIrEAMS AT i e 4
6.6.2 Contents of the bitstream zZip-files. ... Sy o, 4
6.6.3 Requirements on decoder output and tINITIZ ... o, 4
7 Reference SOftWAIe ...l oo
7.1 Purpose of the reference software
7.2 SOFEWATE 1OCALION ...oocneeees e
7.3 SOFEWATE LICEINSE ...ttt
7.4 Software installation
7.5 SOftWATE ArCRITECTUTE. ..o
7.5.1 Reference SOftware EICOAET ...t o 5
7.5.2 Reference SOftWar@)dECOAET ...t o 5
B Decoder output Io0GING PIOCESS ...t
8.1 General decoder output logging process
8.2 General RaShiNG PIOCESS ... s
82,1 GEIMEIAILN .
8.2.2 Hash table pre-computation process
8.2.3 Hash state initialization ProCess.........ss e,
8.2.4 ~\Hash state update process for unsigned integer values..........c.c o 7
8.2-5\~Hash state update process for signed integer values w7
826 Hash state update process for floating-point values..........ccccocceee .8
8:2.7 Hash value computation PrOCESS ...
8,3\ Video data haShing PrOCeSS........iiiissse s
8.3.1 Occupancy video data hashing process...
8.3.2 Geometry video data hashing ProCess...... ..
8.3.3 Attribute video data hashing ProCess ...
8-3-4 PCIL}\Cd \4 ;dCU data haohius Pl ULLTOSS
8.4 Block to patch map hashing process........c......
8.5 Patch params list hashing process.................
8.6 View params list hashing Process........eee,
8.7 Atlas sequence parameter set MIV extension hashing process
8.8 Atlas frame parameter set MIV extension hashing process ...,
8.9 Common atlas sequence parameter set MIV extension hashing process...........cco, 12
BIDLEOGIAPIY ...t 13

© ISO/IEC 2023 - All rights reserved iii

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical

commit

tees established by the respective organization to deal with particular fields of technical

activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international

organiz

ations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

The pr
are de
needed
accordd
WWWw.id

pcedures used to develop this document and those intended for its further maintenancg
scribed in the ISO/IEC Directives, Part 1. In particular, the different approval .criterig
for the different types of document should be noted. This document was drafted in
nce with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/diréctives o1
c.ch/members_experts/refdocs).

ISO and
use of

any clai
had not

IEC draw attention to the possibility that the implementation of this document may involve the
) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of
med patent rights in respect thereof. As of the date of publication of this’"document, ISO and IE(
received notice of (a) patent(s) which may be required to implementithis document. However

imple
fromt
not be

Any tr
constit

For an
express
the Wd
WWWw.id

nters are cautioned that this may not represent the latest information, which may be obtained
patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shal
eld responsible for identifying any or all such patent rights.

e name used in this document is information given for'the convenience of users and does nof
te an endorsement.

explanation of the voluntary nature of standards, the meaning of ISO specific terms and
ions related to conformity assessment, as_well as information about ISO's adherence td
rld Trade Organization (WTO) principlesyin the Technical Barriers to Trade (TBT) sedq

o.org/iso/foreword.html. In the IEC, see wWww.iec.ch/understanding-standards.

This dd
Subcom

A list of

Any feg
body. |
WWW.i€

cument was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology
mittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

all parts in the ISO/IEC 23090 series can be found on the ISO and IEC websites.

dback or questions on-this document should be directed to the user’s national standards
A\ complete listing -of*-“these bodies can be found at www.iso.org/members.html and
c.ch/national-committees.

© ISO/IEC 2023 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

Introduction

ISO/IEC 23090-12 was developed to support compression of immersive video content, in which a real
or virtual 3D scene is captured by multiple real or virtual cameras. The use of this document enables
storage and distribution of immersive video content over existing and future networks, for playback
with 6 degrees of freedom of view position and orientation.

© ISO/IEC 2023 - All rights reserved v

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

INTERNATIONAL STANDARD ISO/IEC 23090-23:2023(E)

Information technology — Coded representation of
immersive media —

. Scope
lecoders meet the requirements specified in ISO/IEC 23090-12.
2 Normative references

Constitutes requirements of this document. For dated refefences, only the edition cited appl|

VIPEG immersive video
B Terms and definitions

following apply.
SO and IEC maintain terminologyjdatabases for use in standardization at the following addres{

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

8.1
alternative deceder
lecoder (3.4)other than the reference software decoder (3.7)

8.2

pitstream
sequence of bits that conforms to the syntax requirements specified by ISO/IEC 23090-12 or sg
bf-bits to be tested for conformance to those syntax requirements

3.3

bitstream zip-file

archive file containing a bitstream plus files with information on that bitstream for the pur
decoder conformance testing

3.4
decoder

ive

[his document specifies a set of tests and procedures designed to indicate“whether encoders or

[he following documents are referred to in the text in such aiway that some or all of their content

ies. For

indated references, the latest edition of the referenced dogument (including any amendments) applies.

SO/IEC 23090-12:2023, Information technology — Coded representation of immersive media — Part 12:

For the purposes of this document, the terms and definitions given in ISO/IEC 23090-12 and the

quence

pose of

embodiment of the decoding process specified by ISO/IEC 23090-12 or process to be tested for

conformance to that decoding process specification

Note 1 to entry: The decoding process does not include post-decoding, reconstruction and display process, which

are outside of the scope of this document.

© ISO/IEC 2023 - All rights reserved

https://www.iso.org/obp
https://www.electropedia.org/
https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

3.5

decoder output log
log file that is output by a decoder (3.4) in response to a bitstream (3.2) for use in bitstream analysis or
decoder conformance testing

3.6

encoder

embodiment of a process, not specified in this document, that produces a bitstream (3.2)

3.7

reference software decoder

particular decoder (3.4) provided as a software package for use as an example available for studyj as
a poterftial starting basis for the development of other decoders, as a way of testing bitstreams foj
conforrmance, and as a reference for comparison with the behaviour of other decoders

3.8

refererce software encoder

particular encoder (3.6) provided as a software package for use as an example available for study, as 3
potentipl starting basis for the development of other encoders, and as a reference_for comparison with
the behpviour of other encoders

4 Abbreviated terms

For the

5 Co

For the

6 Co

6.1 G

The fol
decode
annext

6.2 Bitstream conformance

The bit

6.3 D
The ded

purposes of this document, the abbreviated terms in ISO/YEC23090-12:2023, Clause 4 apply.

hventions

purposes of this document, the conventions spetified in ISO/IEC 23090-12:2023, Clause 5 apply

hformance testing

eneral

owing clauses specify normative tests for verifying the conformance of bitstreams as well as
's. Those normative tests make use of test data (bitstream test suites) provided as an electronig
p this document and thereference software decoder.

stream confonmance of ISO/IEC 23090-12 is specified by ISO/IEC 23090-12:2023, Clause E.4.

ecoder.conformance

oder.conformance of ISO/IEC 23090-12 is specified by ISO/IEC 23090-12:2023, Clause E.5.

6.4 Reference bitstreams

The bitstreams used for the decoder conformance testing specified in this document shall be those
listed in Table 1. They are available at:

https://standards.iso.org/iso-iec/23090/-23/ed-1/en/

© ISO/IEC 2023 - All rights reserved

https://standards.iso.org/iso-iec/23090/-23/ed-1/en/
https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

Table 1 — List of reference bitstreams

ID Codec group IDC | Toolset IDC Features tested
CB01 HEVC Main10 MIV Extended Packed video data, entity coding
CB02 VVC Main10 MIV Extended Full occupancy, occupancy video data, different atlas frame sizes
CB03 VVC Main10 MIV Main Explicit view IDs
CB04 VVC Main10 MIV Main Grouping, explicit view IDs, multiple CVSs
CB05.1 |VVC Main10 MIV Extended None of the atlases contain constant depth patches
CB05.2 |VVC Main10 MIV Extended One atlas has constant depth patches, one does nat,
CB05.3 |VVC Main10 MIV Extended All atlases contain constant depth patches
CBO06 VVC Main10 MIV Main Ancillary atlas flag
CB07.1 |VVC Main10 MIV Main Pruning graph (cluster graph)
CB07.2 |VVC Main10 MIV Main Pruning graph (connected graph)
CB07.3 |VVC Mainl0 MIV Main No pruning graph
CB08 HEVC Main10 MIV Extended Restricted geometry
CB09 HEVC Main10 MIV Main Geometry scaling (differentfactors)
CB10 HEVC Main10 MIV Main 8-bit video sub-bitstreams
CB11 VVC Main10 MIV Main Inpaint patches
CB12 VVC Main10 MIV Main Coordinate system’' parameters
CB14 VVC Main10 MIV Main 360-degree‘equirectangular projection (clip Classropm-
Video)
CB15 VVC Main10 MIV Main Perspective projection matrix layout (clip Painter)
CB16 VVC Main10 MIV Main 180<degree equirectangular projection (clip Museum)
CB17 VVC Main10 MIV Main Perspective projection vector layout (clip Frog)
CB18 VVC Main10 MIV Geometry ab- Only texture video (clip Cadillac)
sent
CB19 VVC Main10 MIV Main Non-IRAP frames: NAL_CAF_TRIAL and NAL_TRAIL|N
CB20 VVC Main10 MIV Extended Multiple tiles
.5 Procedure to test hitstreams
A bitstream that claims(conformance with ISO/IEC 23090-12 shall pass the following test:
['he bitstream shallbe decoded by processing it with the reference software decoder. When procgssed by

'he reference software decoder, the bitstream shall not cause any error or non-conformance mgessages
[0 be reportediby the reference software decoder. This test should not be applied to bitstreans that
hre knownst0. contain errors introduced by transmission, as such errors are highly likely to result in
pitstreams)that lack conformance to ISO/IEC 23090-12.

Additional tests can be necessary to more thoroughly check that the bitstream properly mieets all
he requlrements spec1f1ed in ISO/IEC 23090 12 1nclud1ng the hypothetlcal reference decode (HRD)

' r TfoT r ricusability
mformatlon (VUI) These complementary tests may be performed using other b1tstream verifiers that
perform more complete tests than those implemented by the reference software decoder.

To check the correctness of a bitstream, it is necessary to parse the entire bitstream and to extract all
the syntax elements and other values derived from those syntactic elements and used by the decoding
process specified in ISO/IEC 23090-12.

A verifier will not necessarily perform all stages of the decoding process specified in ISO/IEC 23090-12
to verify bitstream correctness. Many tests can be performed on syntax elements in a state prior to
their use in some processing stages.

© ISO/IEC 2023 - All rights reserved 3

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC

6.6 Pr

23090-23:2023(E)

ocedure to test decoders

6.6.1 Conformance bitstreams

A Dbitstr

eam has values of ptl_profile_codec_group_idc, ptl_profile_toolset_idc and ptl_level_idc

corresponding to a set of specified constraints on a bitstream for which a decoder conforming to a
specified profile and level is required to properly perform the decoding process.

6.6.2 Contents of the bitstream zip-files

The corfformance bitstreams are available as an electronic attachment to this document. The folloWwing
information is included in a single zip-file for each bitstream:

— theltest bitstream in V3C sample stream format, with file extension .bit,
— adecoder output log, as specified in Clause 8, with file extension .dec.

— ashort textual description of the bitstream, with file extension .txt, including:

6.6.3 [Requirements on decoder output and-timing

The output of the decoding process is specified in ISO/IEC 23090-12.

For output timing conformance, a conforming decoder shall also output the decoded samples at the

rates a

Post-defcoding, reconstruction and display processes are outside of the scope of this document.

7 Reference software

7.1

The pufposesefithe reference software includes:

— serpving as an example available for study, e.g. to illustrate how the standard can be implemented,

contact information,

profile-tier-level information,
adescription of the encoder, including version information, thatwas used to create the bitstream
the version of the reference software decoder that wasdsed to create the decoder output log,

a description of the alternative decoders (if any), including version information, that were used
to verify the decoder output log,

a list of features of ISO/IEC 23090-12 that are‘specifically exercised by this bitstream.

d times specified in ISO/IE€23090-12.

rpose ofithe reference software

— demonstrating the capabilities and behaviour that can be expected from implementations of the
standard to clarify how to interpret what is specified in ISO/IEC 23090-12,

— providing a potential basis for the development of implementations of ISO/IEC 23090-12,

— providing a reference for comparison with the behaviour of other decoders,

— testing of bitstreams for conformance to ISO/IEC 23090-12.

The use

of the reference software is not a requirement for the implementation of ISO/IEC 23090-12. An

implementer is permitted to use only the text of ISO/IEC 23090-12 for creating an implementation of a
conforming encoder or decoder.

4

© ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

7.2 Software location
The reference software is available at the following location:

https://standards.iso.org/iso-iec/23090/-23/ed-1/en/

This document corresponds to version 15.1.1 of the reference software.

7.3 Software license

['he software license is included in the electronic attachment that provides the reference software.
7.4 Software installation
[he software manual is included in the electronic attachment that provides the refexence softwpre.
7.5 Software architecture
7.5.1 Reference software encoder
[he reference software encoder consists of the TmivEncoder and)TmivMultiplexer executaples. To
bncode a bitstream, the following steps are followed:
h) Invoke the TmivEncoder to output:
1) apartial bitstream that does not include the video sub bitstreams,
2) anuncompressed video data file per videoub bitstream.
) For each uncompressed video data file,sinvoke a video encoder to encode the video data file,
outputting a video sub bitstream.
[) Invoke the TmivMultiplexer to output a bitstream.
7.5.2 Reference software decoder
['he reference software deceder consists of a single executable named Tmivbecoder.
['he reference software'décoder is configurable to output a decoder output log according to the format
that is specified in Clause 8.
B Decoder output logging process
B.1 General decoder output logging process
[hé'decoder output log is a file in UTF-8 format specified in ISO/IEC 10646, without byte order marking
bind’ with line endings formed hy a single 1I1-000A [1.F] code point The file consists of a singld-space-
separated table with one row per line. An example of a decoder output log is:

0 0 1024 1024 G 21623b35 A 0 6c9dele8 b4d473£8 e797e251 432058a9 73b0£f2c9 00000000
26ng1>0i024 1024 G 14fcdcf2 A 0 36ffa830 Oba8e5c2 fd42de31l 432058a9 73b0f2c9 00000000
26(:?0}(3)0?024 1024 G dfle301d A 0 e3f15be5 b4d473f8 e797e251 432058a9 73b0f2c9 00000000
26¢c9cbla

1 1 1024 1024 G flalalOc4 A 0 a89a7200 0ba8e5c2 fd42de31 432058a9 73b0f2c9 00000000
26C2C€Oi024 1024 G 8f3a24d3 A 0 3399c717 9a%p5536 cd0al09%a7 cab9c5db 73b0f2c9 00000000
26C§C?Oi024 1024 G 29641a88 A 0 d0e419f0 Oba8e5c2 7103d7bl cab9c5db 73b0f2c9 00000000
26c9cbla

© ISO/IEC 2023 - All rights reserved

https://standards.iso.org/iso-iec/23090/-23/ed-1/en/
https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

There is one row per volumetric frame and atlas. The rows are ordered by frame order count
(presentation order) and atlas ID.

The columns in order from left to right are:
— frame order count;
— atlas ID;

— atlas frame width;

— atlgs frame height;
— if decoded occupancy video data is present:
— | literal “0”;
— | hash over DecOccFrames, as specified in 8.3.1;
— if decoded geometry video data is present:
— | literal “G”;
— | hash over DecGeoFrames, as specified in 8.3.2
— if decoded attribute video data is present:
— | literal “A”;
— | for each attribute in order of increasing index:
— attribute index;
— hash over DecAttrFrames, as specified\ify 8.3.3;
— if decoded packed video data is present:
— | literal “P”
— | hash over DecPckFrames, as\specified in 8.3.4;
— blofk to patch map hash, specified in 8.4;
— patch params list hash; specified in 8.5;
— view params list hash, specified in 8.6;
— atlgs sequenceparameter set MIV extension hash, specified in 8.7;
— atlas frapte-parameter set MIV extension hash, specified in 8.8;

— corhmen atlas sequence parameter set MIV extension hash, specified in 8.9.

All hashes are formatted as an eight-digit zero-padded lower-case hexadecimal number.
8.2 General hashing process

8.2.1 General

This process and subprocesses calculate a CRC-32 hash, specified in ISO/IEC/IEEE 8802-3, as follows:
a) Pre-compute the CRC32 table (8.2.2).

b) Initialize the hash state (8.2.3).

6 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

c) Consume multiple unsigned integers (8.2.4), signed integers (8.2.5), or floating-point values (8.2.6)
to hash.

d) Calculate the hash value (8.2.7).

8.2.2 Hash table pre-computation process

This process calculates the table Crc32Table of length 256 as follows:

for (i = 0; 1 < 0x100; i++) {
n =1
for (j = 0; 3 < 8; j++) |
n=(ns1) ==0722n>1: (n > 1) ~ 0xEDB88320

Crc32Table[1] = n
}

B.2.3 Hash state initialization process

['his process is defined by the function InitHashState() as follows:

InitHashState() {
return OxFFFFFFFF
}

B.2.4 Hash state update process for unsigned integer values
['he inputs to this process are:

— the variable state in range 0 .. 232 - 1, inclusive,

— the variable value in range 0 .. 232 - 1, inclusiye!

[he output of this process is a new hash statein range 0 .. 232 - 1.

[his process is defined by the function HashConsumeU32(state, value) as follows:

HashConsumeU32 (state, value)~{
s = state
s = (s > 8) ” crc32Takle[(s ~ (value >> 24)) & OxFF]
s = (s > 8) ” crc32Table[(s ~ (value >> 16)) & OxFF]
s = (s >> 8) ~ crc®Table[(s ~ (value >> 8)) & OxFF]
s = (s > 8) " ctc32Table[(s » value) & OxFF]
return s

}

B.2.5 Hash state update process for signed integer values
[he inputs tathis process are:
— the vapiable state in range 0 .. 232 - 1, inclusive,

— Athe signed integer variable value.

inh} 4 1l : 1 1 PRI FaY 232 4
T'TIT OULPpUl UI'UILS PIOCTSS 15 d TITW TIAS5IT SUAlT HT T dITgsT UL 4 = 1.

This process defines the function HashConsumel32(state, value) as follows:

HashConsumeI32 (state, value) {
return 0 <= value
? HasConsumeU32 (state, value)
: HasConsumeU32 (state, value + 232)

© ISO/IEC 2023 - All rights reserved 7

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

8.2.6 Hash state update process for floating-point values
The inputs to this process are:

— the variable state in range 0 .. 232 - 1, inclusive,

— the floating-point variable valueFL32.

The output of this process is a new hash state in range 0 .. 232 - 1.

£

This prpressdefines the functiom HashComsumeFE32{state, vatueFE32) as foltows:

a) The floating-point value valueFL32 is converted to a bit string according to the fl(32) descriptor:
b) Th¢ bit string is parsed using the u(32) descriptor, resulting in a value valueU32.

c) Th¢ output of this process is the result of HashConsumeU32(state, valueU32).

8.2.7 |Hash value computation process
The inpjut to this process is the variable state in range 0 .. 232 - 1, inclusive.
The ouffput of this process is the hash value in range 0 .. 232 - 1.

This prpcess is defined by the function hashValue(state) as follows:

ComguteHashValue (state) {
feturn ~state

}
8.3 Vjideo data hashing process

8.3.1 |Occupancy video data hashing process

The inpjuts to this process are:

— adecoded MIV access unit with decodéd video frame index frameldx,
— an gtlas ID atlasld.

The outfput of this process is the alue hashValue in range 0 .. 232 - 1.

The prqcess is defined as follows:

s =|InitHashState ()

for| i = 0; i &/PecOccHeight[frameldx]; i++)
for(j =_0%"] < DecOccWidth[frameIdx]; j++)
s = HashConsumeU32(s,
DecOccFrames|[frameIdx][O J[1 1[3 1)

hasiVadue = ComputeHashValue(s)

8.3.2 Geometry video data hashing process

The inputs to this process are:

— adecoded MIV access unit with decoded video frame index frameldx,
— an atlas ID atlasld.

The output of this process is the value hashValue in range 0 .. 232 - 1.

The process is defined as follows:

8 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

s = InitHashState()

for(i = 0; i1 < DecGeoHeight[0][framelIdx]; j++)
for(j = 0; J < DecGeoWidth[0][framelIdx]; j++)
s = HashConsumeU32(s,
DecGeoFrames[O][frameIdx]1[O I1[1 1[3 1)

hashValue = ComputeHashValue(s)

8.3.3 Attribute video data hashing process

Theinputsto-thisprocessare:

— adecoded MIV access unit with decoded video frame index frameldx,
— an atlas ID atlasld,

— an attribute index attrldx.

[he output of this process is the value hashValue in range 0 .. 232 - 1.

[he process is defined as follows:

s = InitHashState()

for(i = 0; i1 < DecAttrHeight[attrIdx][O][O][frameldx]; i++)
for(j = 0; J < DecAttrWidth[attrIdx][0][0,]f frameldx]; Jj++)
for(¢ = 0; ¢ < DecAttrNumComp[attrIdx][O [0][frameIdx]; c++)
s = HashConsumeU32(s,
DecAttrFrames|[attrIdx][0][O J[SframeIdx][c J[1 I1[3 1)

hashValue = ComputeHashValue(s)

B.3.4 Packed video data hashing process

['he inputs to this process are:

— adecoded MIV access unit with deedded video frame index frameldx,
— an atlas ID atlasld.

[he output of this process is the.value hashValue in range 0 .. 232 - 1.

[he process is defined as follows:

s = InitHashState)")

for(i = 0; (Gn¥ DecPckHeight[frameIdx]; i++)
for(J<=Y0; j < DecPckWidth[frameIdx]; j++)
foh~c = 0; c < DecPckNumComp[framelIdx]; c++)
s = HashConsumeU32(s,
DecPckFrames|[framelIdx][c][1 1[3 1)

HashValue = ComputeHashValue(s)
B4 Block tonatch map hashing process
) xr [= b

The inputs to this process are a decoded block to patch map and an atlas ID atlasld.
The output of this process is the value hashValue in range 0 .. 232 - 1.
The process is defined as follows:
s = InitHashState ()
for(i = 0; i < AtlasBlockToPatchMapHeight; i++) {
for(j =0; j < AtlasBlockToPatchMapWidth; j++) {

P AtlasBlockToPatchMap[i][J]
S HashConsumeU32(s, p == -1 ? OxFFFFFFFF : p)

© ISO/IEC 2023 - All rights reserved 9

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

ISO/IEC 23090-23:2023(E)

}
}
hashValue = ComputeHashValue(s)

8.5 Patch params list hashing process

The inputs to this process are the variable AtlasTotalNumPatches and the arrays of which the name
starts with AtlasPatch.

The output of this process is the value hashValue in range 0 .. 232 - 1.

This prpcess is defined as follows:

s =|InitHashState()

for| p = 0; p < AtlasTotalNumPatches; p++) {

4 = HashConsumeU32 (s, AtlasPatch3dOffsetU[p])

$ = HashConsumeU32(s, AtlasPatch3dOffsetV|[p])
= HashConsumeU32(s, AtlasPatch3dOffsetD[p])

4 = HashConsumeU32(s, AtlasPatch3dRangeD[p])

4 = HashConsumeU32(s, AtlasPatchProjectionId|[p])

$ = HashConsumeU32(s, AtlasPatchOrientationIndex[p])
= HashConsumeU32 (s, AtlasPatchLoDScaleX[p])

I
Il

(
(
(
(
(
(
HashConsumeU32 (s, AtlasPatchLoDScaleY[p])
(
(
(
(
(
(

4 = HashConsumeU32(s, AtlasPatchEntityId[p 1)

$ = HashConsumeU32(s, AtlasPatchDepthOccThreshold[p])
= HashConsumeI32(s, AtlasPatchTextureOffset[p][O L))

4 = HashConsumeI32(s, AtlasPatchTextureOffset[p 1%])

4 = HashConsumeI32(s, AtlasPatchTextureOffset[p AN 2 1)

¢ = HashConsumeU32(s, AtlasPatchInpaintFlag[p] Y

}
hasijValue = ComputeHashValue(s)

8.6 Viiew params list hashing process

The inguts to this process are the variable NumViews and the arrays of which the name starts with
View.

The outjput of this process is the value hashValue in range 0 .. 231 - 1.

This prpcess is defined as follows:

s =|InitHashState ()

for| v = 0; v < NumViews;.wH+) {

$ = HashConsumeU32 (sh ViewTypel[v])

= HashConsumeU32 (§, ViewProjectionPlaneWidth[v])
3 = HashConsumeU32A) s, ViewProjectionPlaneHeight[v])

1f(ViewType[v _A4N==) |

s = HashCofisymeFL32 (s, ViewErpPhiMin[v])

s = HashCenSumeFL32(s, ViewErpPhiMax[v])

s = Hash€onsumeFL32(s, ViewErpThetaMin[v])

s = HashConsumeFL32(s, ViewErpThetaMax[v])

elseSIf(ViewTypel[v] == 1) {

g ¥ HashConsumeFL32 (s, ViewPerspectiveFocalHor[v])

s = HashConsumeFL32(s, ViewPerspectiveFocalVer[v])

§ = HashCongsumeFT.32 (, [icwPer pnh‘ri 7@Driﬂhipa1prﬂ'nfﬂmrf 1)

s = HashConsumeFL32(s, ViewPerspectivePrincipalPointVer[v])
} else if(ViewTypel[v] == 2) {

s = HashConsumeFL32 (s, ViewOrthoWidth[v])

s = HashConsumeFL32(s, ViewOrthoHeight[v])

}
s = hash.consumeFL32(s, ViewPosX[v])
s = hash.consumeFL32(s, ViewPosY[v])
s = hash.consumeFL32(s, ViewPosZ[v])
s = hash.consumeFL32(s, ViewQuatW|[v])
s = hash.consumeFL32(s, ViewQuatX[v])
s = hash.consumeFL32(s, ViewQuatY[v])
s = hash.consumeFL32(s, ViewQuatz[v])
if(ViewQuantizationLaw|[v] ==) |
s = hash.consumeFL32(s, ViewNormDispMin|[v])

10 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=1854cd0cd49d09943428297b8d53752b

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Conventions
	6 Conformance testing
	6.1 General
	6.2 Bitstream conformance
	6.3 Decoder conformance
	6.4 Reference bitstreams
	6.5 Procedure to test bitstreams
	6.6 Procedure to test decoders
	6.6.1 Conformance bitstreams
	6.6.2 Contents of the bitstream zip-files
	6.6.3 Requirements on decoder output and timing

	7 Reference software
	7.1 Purpose of the reference software
	7.2 Software location
	7.3 Software license
	7.4 Software installation
	7.5 Software architecture
	7.5.1 Reference software encoder
	7.5.2 Reference software decoder

	8 Decoder output logging process
	8.1 General decoder output logging process
	8.2 General hashing process
	8.2.1 General
	8.2.2 Hash table pre-computation process
	8.2.3 Hash state initialization process
	8.2.4 Hash state update process for unsigned integer values
	8.2.5 Hash state update process for signed integer values
	8.2.6 Hash state update process for floating-point values
	8.2.7 Hash value computation process

	8.3 Video data hashing process
	8.3.1 Occupancy video data hashing process
	8.3.2 Geometry video data hashing process
	8.3.3 Attribute video data hashing process
	8.3.4 Packed video data hashing process

	8.4 Block to patch map hashing process
	8.5 Patch params list hashing process
	8.6 View params list hashing process
	8.7 Atlas sequence parameter set MIV extension hashing process
	8.8 Atlas frame parameter set MIV extension hashing process
	8.9 Common atlas sequence parameter set MIV extension hashing process

	Bibliography

