

Reference number
ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012

INTERNATIONAL
STANDARD

ISO/IEC
23000-12

First edition
2010-07-15

AMENDMENT 2
2012-05-01

Information technology — Multimedia
application format (MPEG-A) —

Part 12:
Interactive music application format

AMENDMENT 2: Compact representation of
dynamic volume change and audio
equalization

Technologies de l'information — Format pour application multimédia
(MPEG-A) —

Partie 12: Format d'application musicale interactive

AMENDEMENT 2: Représentation compacte de changement de
volume dynamique et égalisation audio

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 2 to ISO/IEC 23000-12:2010 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 1

Information technology — Multimedia application
format (MPEG-A) —

Part 12:
Interactive music application format

AMENDMENT 2: Compact representation of dynamic volume
change and audio equalization

In 6.6.5: Preset Box, replace:

 if(preset_type == 0){
 for(i=0; i<num_preset_elements; i++){
 unsigned int(8) preset_volume_element;

 }

 }

 if(preset_type == 1){
 unsigned int(8) num_input_channel[num_preset_elements];
 unsigned int(8) output_channel_type;
 for (i=0; i<num_preset_elements; i++){
 for (j=0; j<num_input_channel[i]; j++){
 for (k=0; k<num_output_channel; k++){
 unsigened int(8) preset_volume_element;
 }

 }
 }
 }

 if(preset_type == 2){ // dynamic track volume preset
 unsigned int(16) num_updates;
 for(i=0; i<num_updates; i++){
 unsigned int(16) updated_sample_number;
 for(j=0; j<num_preset_elements; j++){
 unsigned int(8) preset_volume_element;

 }
 }
 }

 if(preset_type == 3){ // dynamic object volume preset
 unsigned int(16) num_updates;
 unsigned int(8) num_input_channel[num_preset_elements];
 unsigned int(8) output_channel_type;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

2 © ISO/IEC 2012 – All rights reserved

 for(i=0; i<num_updates; i++){
 unsigned int(16) updated_sample_number;
 for(j=0; j<num_preset_elements; j++){
 for(k=0; k<num_input_channel[j]; k++){
 for(m=0; m<num_output_channel; m++){
 unsigned int(8) preset_volume_element;
 }

 }
 }
 }
 }

with:

if(preset_type&0x07 == 0){ // static track volume preset
 for(i=0; i<num_preset_elements; i++){
 unsigned int(8) preset_volume_element;

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(j=0; j<num_eq_filters; j++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }
 }

 if(preset_type&0x07 == 1){ // static object volume preset
 unsigned int(8) num_input_channel[num_preset_elements];
 unsigned int(8) output_channel_type;
 for (i=0; i<num_preset_elements; i++){
 for (j=0; j<num_input_channel[i]; j++){
 for (k=0; k<num_output_channel; k++){
 unsigned int(8) preset_volume_element;
 }

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(k=0; k<num_eq_filters; k++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }
 }
 }

 if(preset_type&0x07 == 2){ // dynamic track volume preset
 unsigned int(16) num_updates;
 for(i=0; i<num_updates; i++){
 unsigned int(16) updated_sample_number;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 3

 for(j=0; j<num_preset_elements; j++){
 unsigned int(8) preset_volume_element;

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(k=0; k<num_eq_filters; k++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }
 }
 }

 if(preset_type&0x07 == 3){ // dynamic object volume preset
 unsigned int(16) num_updates;
 unsigned int(8) num_input_channel[num_preset_elements];
 unsigned int(8) output_channel_type;
 for(i=0; i<num_updates; i++){
 unsigned int(16) updated_sample_number;
 for(j=0; j<num_preset_elements; j++){
 for(k=0; k<num_input_channel[j]; k++){
 for(m=0; m<num_output_channel; m++){
 unsigned int(8) preset_volume_element;
 }

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(m=0; m<num_eq_filters; m++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }
 }
 }
 }

 if(preset_type&0x07 == 4){ // dynamic track approximated volume preset
 unsigned int(16) num_updates;
 for(i=0; i<num_updates; i++){
 unsigned int(16) start_sample_number;
 unsigned int(16) duration_update;
 for(j=0; j<num_preset_elements; j++){
 unsigned int(8) end_preset_volume_element;

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(k=0; k<num_eq_filters; k++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) end_filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

4 © ISO/IEC 2012 – All rights reserved

 }
 }

 if(preset_type&0x07 == 5){ // dynamic object approximated volume preset
 unsigned int(16) num_updates;
 unsigned int(8) num_input_channel[num_preset_elements];
 unsigned int(8) output_channel_type;
 for(i=0; i<num_updates; i++){
 unsigned int(16) start_sample_number;
 unsigned int(16) duration_update;
 for(j=0; j<num_preset_elements; j++){
 for(k=0; k<num_input_channel[j]; k++){
 for(m=0; m<num_output_channel; m++){
 unsigned int(8) end_preset_volume_element;
 }

 if(preset_type&0x08 == 8){ // with EQ
 unsigned int(8) num_eq_filters;
 for(m=0; m<num_eq_filters; m++){
 unsigned int(8) filter_type;
 unsigned int(16) filter_reference_frequency;
 unsigned int(8) end_filter_gain;
 unsigned int(8) filter_bandwidth;
 }
 }
 }
 }
 }
 }

In 6.6.5: Preset Box, replace:

preset_type – is an integer that indicates the preset type.

Static track volume preset has the time invariant volume information related to each track involved in the
preset. In this case, the output channel type is the same as channel type of the track which has the
largest number of channels among tracks involved in the preset. Type value is 0.

Static object volume preset has the time invariant volume information related to each object which is
individual channel (i.e. mono) of the track involved in the preset. Type value is 1.

Dynamic track volume preset has the time variant volume information related to each track involved in the
preset. In this case, the output channel type is the same as channel type of the track which has the
largest number of channels among tracks involved in the preset. Type value is 2.

Dynamic object volume preset has the time variant volume information related to each object which is
individual channel (i.e. mono) of the track involved in the preset. Type value is 3.

preset_type Meaning

0 static track volume preset
1 static object volume preset
2 dynamic track volume preset
3 dynamic object volume preset

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 5

with:

preset_type – is an integer that indicates the preset type.

A preset can contain volume and/or audio equalization (EQ) information. The last three bits (0b00000111)
of preset_type represent the volume related information, and the fourth last bit (0b00001000)
represents EQ related information.

Static track volume preset has the time invariant volume with or without EQ information related to each
track involved in the preset. In this case, the output channel type is the same as channel type of the track
which has the largest number of channels among tracks involved in the preset. Type value is 0 without
EQ, or 8 with EQ.

Static object volume preset has the time invariant volume with or without EQ information related to each
object which is individual channel (i.e. mono) of the track involved in the preset. Type value is 1 without
EQ, or 9 with EQ.

Dynamic track volume preset has the time variant volume with or without EQ information related to each
track involved in the preset. In this case, the output channel type is the same as channel type of the track
which has the largest number of channels among tracks involved in the preset. Type value is 2 without
EQ, or 10 with EQ.

Dynamic object volume preset has the time variant volume with or without EQ information related to each
object which is individual channel (i.e. mono) of the track involved in the preset. Type value is 3 without
EQ, or 11 with EQ.

Dynamic track approximated volume preset has the time variant approximated volume with or without EQ
information related to each track involved in the preset. In this case, the output channel type is the same
as channel type of the track which has the largest number of channels among tracks involved in the
preset. Type value is 4 without EQ, or 12 with EQ.

Dynamic object approximated volume preset has the time variant approximated volume with or without
EQ information related to each object which is individual channel (i.e. mono) of the track involved in the
preset. Type value is 5 without EQ, or 13 with EQ.

preset_type Meaning

0 static track volume preset
1 static object volume preset
2 dynamic track volume preset
3 dynamic object volume preset
4 dynamic track approximated volume preset
5 dynamic object approximated volume preset
6 Value reserved
7 Value reserved
8 static track volume preset with EQ
9 static object volume preset with EQ

10 dynamic track volume preset with EQ
11 dynamic object volume preset with EQ
12 dynamic track approximated volume preset with EQ
13 dynamic object approximated volume preset with EQ

In 6.6.5: Preset Box, replace:

num_updates – is an integer that gives the number of updates on preset_volume.

with:

num_updates – is an integer that gives the number of updates on preset_volume or filter_gain.
In the case of preset_type == 4, 5, 12 and 13, it indicates an integer that gives the number of
updates on end_preset_volume or end_filter_gain.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

6 © ISO/IEC 2012 – All rights reserved

In 6.6.5: Preset Box,previous to “preset_name – is a null-terminated string in UTF-8 characters which gives
a human-readable name for the preset.”, add:

start_sample_number – is an integer that indicates the time when the gradual volume or EQ
update takes place.

duration_update – is an integer that indicates the number of samples (time duration) that the
gradual volume or EQ update to incur. The volume level or filter gain level is changing linearly in time
in the time duration from the previous volume level or filter gain level before the update to the new
volume level or filter gain level. When duration_update has the value 0, it indicates that the
volume or EQ update incurs instantly.

end_preset_volume_element – is an integer that indicates the new volume at the end of the
gradual volume update.

In dynamic presets (preset_type equals to 2, 3, 4, 5, 10, 11, 12 and 13), the first volume update
should be at the beginning time (where updated_sample_number equals to 0) so that volume
levels are defined for the whole time period of the music.

num_eq_filters – is an integer representing the number of filters used for each preset element.

filter_type – is an integer representing the type of filter. There are 5 filter types: Low pass filter
(LPF), High pass filter (HPF), Low shelf filter (LSF), High shelf filter (HSF) and Peaking filter. The filter
types and corresponding value of filter_type is listed in the table below.

filter_type 1 2 3 4 5
Filter type LPF HPF LSF HSF Peaking

filter_reference_frequency, filter_gain, end_filter_gain, and filter_bandwidth
– are integers representing the parameters of the filters. Exact meanings of the parameters depend
on the type of filter, as specified in filter_type. The meanings of the parameters are listed in the
table below.

Filter type filter_reference_frequency filter_gain/
end_filter_gain

filter_bandwidth

LPF Cut-off frequency (F in Hz) Undefined Slope (S in dB/octave)
HPF Cut-off frequency (F in Hz) Undefined Slope (S in dB/octave)
LSF Corner frequency (F in Hz) Gain (G in dB) Slope (S in dB/octave)
HSF Corner frequency (F in Hz) Gain (G in dB) Slope (S in dB/octave)
Peaking Center frequency (F in Hz) Gain (G in dB) Quality factor (Q)

filter_reference_frequency – is a 16-bit unsigned integer. The frequency value F is exactly
the value of filter_reference_frequency: F=filter_reference_frequency (Hz). The frequency range is
from 0Hz to 65535Hz, which covers the frequency range of 96kHz sampled audio.

filter_gain – is an 8-bit unsigned integer. The gain value G represented by filter_gain is
computed by: G=filter_gain/5-41 (dB). A range between -41.0dB to 10.0dB with 0.2dB resolution can
be represented. In the cases of low pass filter (LPF) and high pass filter (HPF), filter_gain is undefined.
For LPF and HPF, filter gain is undefined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 7

end_filter_gain – is an 8-bit unsigned integer that indicates the EQ filter gain at the end of the
gradual EQ update. The gain value G represented by end_filter_gain is computed by:
G=filter_gain/5-41 (dB). Thus a range between -41.0dB to 10.0dB with 0.2dB resolution can be
represented. In the cases of low pass filter (LPF) and high pass filter (HPF), end_filter_gain is
undefined.

filter_bandwidth – is an 8-bit unsigned integer, which indicates slope of filter for LPF, HPF, LSF
and HSF. The slope value S in dB/octave is computed by: S=filter_bandwidth*6 (dB/octave).
filter_bandwidth indicates the quality factor Q for peaking filter. The value Q is computed by:
Q=filter_bandwidth/10.

Add the following Annexes after Annex D:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

8 © ISO/IEC 2012 – All rights reserved

Annex E
(informative)

Compact Dynamic Volume Change Representation

E.1 Description of compact dynamic volume change representation

In dynamic volume preset of IM AF, the volume of a track (or tracks) can vary over time. In the IM AF standard
specification, volume change at each sample is represented individually by the sample number and the new
volume level. Figure E.1 gives an example of volume fading (for illustration only). SA and SB indicate the
sample numbers of the starting time and ending time of the fading. VA and VB indicate the corresponding
volume level of SA and SB. The horizontal dashed lines stand for time period with no volume change.

Figure E.1 — Volume curve of fading

By using the existing IM AF standard specification for representation of the dynamic volume changes
(preset_type == 2 or 3), DF pairs of (sample number, new level) are needed, where DF=SB-SA. It should be
noted that DF could be a quite large number, as the time duration of a sample in IM AF is about 21ms for AAC
audio with sample rate of 48kHz. A large number DF would imply a large number of volume updates in the IM
AF file.

In the new compact representation, the dynamic volume changes are specified by using time intervals, instead
of by using each sample as in the existing representation. The volume change of one time interval is
illustrated in Figure E.2. It is assumed that the volume change during the time interval is close to linear. Thus
the volume changes during the time interval can be represented by a triplet (a, b, c), where a stands for the
starting sample number, b stands for the duration of the time interval (number of samples) that the volume
change takes place, and c stands for the new volume level at the end of the time interval.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 9

Figure E.2 — Representing volume change by a time interval

For the volume fading example illustrated in Figure E.1, the dynamic volume change information can be
represented by about 6 time intervals as shown in Figure E.3. The information required are 6 triplets:
(S1,D1,V1), (S2,D2,V2), (S3,D3,V3), (S4,D4,V4), (S4,D4,V4), (S5,D5,V5), and (S6,D6,V6). It should be noted that the
volume level VA is from the previous volume update, and there should always be an instant initial volume
update at the beginning time 0: (0,0,V0).

Figure E.3 — Dynamic volume changes represented by the proposed method

With the new compact representation of continuous dynamic volume change, the required storage space in IM
AF file and file parsing complexity of IM AF players can be significantly improved, while the errors in the
volume levels due to time interval approximation do not affect the audio quality significantly.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

10 © ISO/IEC 2012 – All rights reserved

E.2 A method for deriving compact representation of dynamic volume change by
volume curve approximation

This Subclause presents a method for deriving the compact representation of dynamic volume change in IM
AF, which is specified in this amendment, from an arbitrary volume curve. The volume curve may correspond
to volume fading, e.g. fade-in and fade-out in various curve shapes, e.g. exponential, logarithmic, linear, etc.

Step 1: Quantizing the volume curve using the original dynamic volume change representation in IM AF.

V[i], where i stands for the index of the samples (assume i takes the values of 1 to N) and V is the volume gain
(ratio) that takes the values as indicated in the table for preset_volume_element (0 to 4.00 with step size of
0.02).

Step 2: Approximating V[i] using a sequence of time intervals of linear volume change.

The algorithm below in MATLAB selects the sample indexes T[k] from [i], such that only V[T[k]] are used in the
representation of volume change and the unselected samples can be approximated based on the selected
samples. The input variable error_thres controls the approximation error.

% input: V – volume curve
% input: error_thres
% output: T – indexes of the selected samples

function [T]= fade_coding(V, error_thres)

N=length(V);

point_flag(1:N)=1;

start_i=1;

for i=2:N-1
 if V(start_i)==0
 if V(i)==0
 point_flag(i)=0;
 start_i=i;
 continue;
 else
 start_i=i-1;
 point_flag(i-1)=1;
 end;
 end;

 end_i=i+1;
 flag_error=0;
 for j=start_i+1:end_i-1
 t1=start_i;
 t2=j;
 t3=end_i;
 v1=V(start_i);
 v2=V(j);
 v3=V(end_i);
 v_esti=round(v1+(v3-v1)*(t2-t1)/(t3-t1));

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

© ISO/IEC 2012 – All rights reserved 11

 v_error=abs(v_esti-v2);
 if v_error > error_thres
 flag_error=1;
 break;
 end;
 end;

 if flag_error==0
 point_flag(i)=0;
 else
 start_i=i;
 end;
end;

T=find(point_flag(1:num_point)==1);

The derived compact representation of volume change is a sequence of (T[k], D[k] and Ve[k]), where k stands
for the sequence index of time intervals, T stands for the starting sample number of the time interval, D stands
for the duration (in number of samples) of the time interval, and Ve stands for the ending volume of the time
interval.

D[k]=T[k+1]-T[k]

Ve[k]=V[T[k]]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

ISO/IEC 23000-12:2010/Amd.2:2012(E)

12 © ISO/IEC 2012 – All rights reserved

Annex F
(informative)

Audio Equalization Support in IM AF

F.1 Audio equalization

Audio equalization is a useful feature for users to enhance individual tracks or objects with equalization effects.
This functionality is supported by IM AF. An IM AF file can contain a set of tunable equalization parameters for
each track or audio object for the desirable effects. The actual equalization processing on each track or object
is performed by the filters in the IM AF player.

F.2 An example of efficient implementation of EQ filters in IM AF players

Audio EQ filter can be implemented efficiently using the design based on 2nd order IIR structure.

The transfer function of 2nd order IIR filter is defined as:

2
2

1
10

2
2

1
10)(







zazaa

zbzbb
zH (F.1)

The flowgraph with b0 normalized is illustrated in the Figure below.

Figure F.1 — Flowgraph of 2nd order IIR filter

The most straightforward implementation of the filters would be the “Direct Form 1” as in Equation F.2 below:

         2121][
0

2

0

1

0

2

0

1

0

0 











































 ny

a

a
ny

a

a
nx

a

b
nx

a

b
nx

a

b
ny (F.2)

The filter coefficients in Eq. (2) (a0, a1, a2, b0, b1 and b2) can be derived directly from the EQ parameters:

 Reference frequency (F0),
 Filter gain (G), and
 Filter bandwidth (S or Q)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

0-1
2:2

01
0/A

md 2
:20

12

https://standardsiso.com/api/?name=c5552a4c85d2b78bbfd1e46ed53633d7

