INTERNATIONAL
STANDARD

ISO/IEC
13814

First edition
1998-07-01

Information technology — Programming
languages — Generic package of complex

elementary functions for-Ada

Technologies de l'information — Lanhgages de programmation —

Paquetage générique de fonctions élémentaires complexes pour Ada

Reference number
ISO/IEC 13814:1998(E)

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

Contents Page
1 SCOPIE - v v v 1
2 Normativereferences 1
3 Subprograms provided. o L Y 1
4 Instgntiations Dy 2
5 Implementations S 3
6 Excgptions 4
7 Argyments outside the range of safe numbers. 5
8 Method of specification of functions. . .7 5
9 Brarch cut and domain definitions)>. 5
10 Range definitions o 5
11 Accuracy requirement§)" 6
12 OvetflowS . 7
13 Underflow o). o 8
14 Spedifications of the functions 9

14.1— SQRT — oSquare root . - - - - - - - - - - -+~ - ---.. 9

14.2 LOG — Natural logarithm 10

14.3 EXP — Exponential function, complex argument 10

14.4 EXP — Exponential function, imaginary argument. 11

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 ¢ CH-1211 Genéve 20 e Switzerland
Printed in Switzerland

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC

14.5
14.6
14.7
14.8

14.9
14.10

"x%" — Exponentiation operator, complex to complex
power arguments Lo
"xx" — Exponentiation operator, complex to real power
arguments
"x%" — Exponentiation operator, real to complex power
arguments
SIN — Trigonometric sine function
€0S — Trigonometric cosine function
TAN — Trigonometric tangent function

14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23

Annexes

€0T — Trigonometric cotangent function
ARCSIN — Inverse trigonometric sine function) .
ARCCOS — Inverse trigonometric cosine funttion .
ARCTAN — Inverse trigonometric tangent function |
ARCCOT — Inverse trigonometric cotangent functiop
SINH — Hyperbolic sine function
COSH — Hyperbolic cosine function
TANH — Hyperbolic tangent. function
COTH — Hyperbolic cotangent function
ARCSINH — Inverse hyperbolic sine function
ARCCOSH — Inverse Kyperbolic cosine function ..
ARCTANH — Inverse ‘hyperbolic tangent function .
ARCCOTH — Inverse hyperbolic cotangent function

A Ada specification for GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS

B Rationale

B.1
B.2
B.3
B.4
B.5
B.6
B.7

C Bibliography

Figures

B.1 Result rectangle for a subprogram satisfying a maximum
component error requirement

Introduction and motivation.
History
Packaging considerations
Choice of functions
Handling of exceptions
Matters of style
Method of expressing accuracy requirements. . . .

ptelative

B.3 Result circle for a subprogram satisfying a maximum relative vec-

tor error requirement

ISO/IEC 13814:1998(E)

iii

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the In-

ternat

onal Electrotechnical Commission) form the specialized system for

worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
commlttees established by the respective organization to deal with particular

fields

bf technical activity. ISO and IEC technical committees collaborafe

in fields of mutual interest. Other international organizations, governmental

and n
work.

n-governmental, in liaison with ISO and IEC, also take pat® i the

In thq field of information technology, ISO and IEC havéClestablished a
joint fechnical committee, ISO/IEC JTC 1. Draft International Standards

adopté
for vof
least T

Intern
Comu
gramnn|

Annex
and C

d by the joint technical committee are circulated:to national bodies
ing. Publication as an International Standard \requires approval by at
5% of the national bodies casting a vote.

htional Standard ISO/IEC 13814 was-prepared by Joint Technical
ittee ISO/IEC JTC 1, Information'technology, Subcommittee 22, Pro-
ing languages, their environmenis and system software interfaces.

A forms an integral part of this International Standard. Annexes B
are for information ondy

v

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 1381

4:1998(E)

Introduction

The generic package described here is intended to provide the b
mathematical routines from which portable, reusable applicat
built. This International Standard serves“avbroad class of appli
reasonable ease of use, while demanding implementations that
quality, capable of validation, and, dlse/practical given the state

The specification included in<this International Standard is pr

compilable Ada specificationnin Annex A, with explanatory text

hsic complex
lons can be
cations with
are of high
of the art.

bsented as a
n numbered

clauses in the main body of text. The explanatory text is normative, with

the exception of the following items:

— notes (under the heading Notes associated with some of th

and

— netes (labeled as such) presented at the end of any numt

Thé word “may” as used in this International Standard consis

“8 allowed to” (or “are allowed to”). It is used only to express

as in the commonly occurring phrase “an implementation may”
(such as “can,”
capacity or consequentiality.

could” or “might”) are used to express abilit

e functions);

ered clause.
fently means
permission,
other words
vy, possibility,

\

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 13814:1998(E)

Information technology —
Programming languages —
Generic package of complex elementary functions for Ada

1 Sdope

This Indternational Standard defines the specification of a generic package of complex elementary functjons called
GENERI/C_COMPLEX_ELEMENTARY_FUNCTIONS. It does not provide the body of the package.

This Ifternational Standard specifies certain basic complex mathematical routinesfrom which portablg, reusable
applicagions can be built. This International Standard serves a broad class of applications with reasonable gase of use,
while demanding implementations that are of high quality, capable of validatio;and also practical given the state of

the art

This Injternational Standard is applicable to programming environments conforming to ISO/IEC 8652:1987 and is
relevant to the revised standard ISO/IEC 8652:1995.

2 Normative references

The following standards contain provisions which, thteligh reference in this text, constitute provisions of this Interna-
tional $tandard. At the time of publication, the editions indicated were valid. All standards are subject fo revision,
and pafties to agreements based on this International Standard are encouraged to investigate the possibility pf applying
the mdst recent editions of the standards indicated below. Members of IEC and ISO maintain registers ¢f currently
valid Ipternational Standards.

ISO/IKC 8652, Information technology,— Programming languages — Ada.

ISO/IKC 11430, Information dechnology — Programming languages — Generic package of elementary functions for
Ada.

ISO/IEC 11729, Information technology — Programming languages — Generic package of primitive functidns for Ada.

ISO/IEC 13813 siformation technology — Programming languages — Generic packages of real and c¢mplez type
declardtions andbasic operations for Ada (including vector and matric types).

3 Subprograms provided

The following twenty mathematical functions are provided:

SQRT LOG EXP Mook !
SIN cos TAN CcoT
ARCSIN ARCCOS ARCTAN ARCCOT
SINH COSH TANH COTH

ARCSINH ARCCOSH ARCTANH ARCCOTH

These are the square root (SQRT), logarithm (LOG) and exponential (EXP) function and the exponentiation operator
(#*); the trigonometric functions for sine (SIN), cosine (COS), tangent (TAN) and cotangent (COT) and their inverses

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

(ARCSIN, ARCCOS, ARCTAN and ARCCOT); and the hyperbolic functions for sine (SINH), cosine (COSH), tangent (TANH),
and cotangent (COTH) together with their inverses (ARCSINH, ARCCOSH, ARCTANH, and ARCCOTH). These are the same
functions by the same names that are in the package GENERIC_ELEMENTARY_FUNCTIONS definied in ISO/IEC 11430.

Several variations are provided for the exponentiation operator and the exponential function. All functions have one or
more formal parameters of type COMPLEX or IMAGINARY and return a value of type COMPLEX. COMPLEX and IMAGINARY
are generic formal parameters of the generic package GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS.

4 Instdntiations

This Interrational Standard describes a generic package, GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS, which the user
must instaptiate to obtain a computational capability. The generic package has three required generic formal pprame-
ters and mpny generic formal subprograms with defaults. At instantiation, the user must specify,’as’the generiq actual
parameterd to be associated with REAL, COMPLEX and IMAGINARY respectively,

a) a fldating-point type,

b) a prjivate composite type containing real and imaginary components of the type specified by a), (WitQjin this
Internatjonal Standard, the real and imaginary components of the composite'type are referred to simply as gompo-
nents.)

¢) a pr]vate type of the same base type as a) that is interpreted, as’the pure imaginary form of b).

Types suitpble for b) and c) are exported by the package obtained by instantiating, with the type specified by a) as
its generic [actual parameter, the generic package GENERIC_C@MPLEX_TYPES defined in ISO/IEC 13813. (Instarftiation
of the package GENERIC_COMPLEX_TYPES is not a prerequisite for using GENERIC_COMPLEX_ELEMENTARY_FUN(TIONS;
it is merely an option that the user might find convenient to pursue.) In addition the user may specify th¢ many
subprograrh generic formal parameters as generic actural parameters, or for convenience, all these subprograms are
exported by the instantiation of GENERIC_COMPLEX "TYPES described above.

Depending|on the implementation, the user may or may not be allowed to specify a generic actual type having h range
constraint [for the first generic actual parameter (see clause 5). The generic actual parameters for the subprpgrams
can be omitted if functions having names and profiles matching those of the corresponding generic formal pargmeters
are visible|at the place of the instantiation. An instantiation of GENERIC_COMPLEX_TYPES, as described aboye, can
optionally pe used to obtain subprograms that satisfy these requirements.

In addition to the body of the generic package itself, implementers may provide (non-generic) library packages that can
be used jugt like instantiations of the generic package in which the first generic actual parameter is a predefined floating-
point typeland the remainder are related to the first in appropriate ways. In particular, the name of a package gerving
as a replagement<for“an instantiation of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS for the predefined typel FLOAT
shall be COMPLEX/ELEMENTARY_FUNCTIONS with REAL replaced by FLOAT in the profiles of the functions that it exports.
Similarly, the-names of packages servmg as replacements for instantiations of GENERIC_COMPLEX_ELEMENTARY_FUNC-
TIONS for 1 NCTIONS,
SHORT_COMPLEX_ELEMENTARY FUNCTIONS etc respectlvely and REAL shall be systematlcally replaced in the profiles
of the functions that they export by LONG_FLOAT, SHORT_FLOAT, etc. Implementers are responsible for ensuring that
a composite type called COMPLEX containing a pair of components of types FLOAT, LONG_FLOAT, SHORT_FLOAT, etc.,

respectively, are available. For example, each of the non-generic library packages could be prefixed by an appropriate
context clause, such as:

with COMPLEX_TYPES;
package COMPLEX_ELEMENTARY_FUNCTIONS is ...

The packages COMPLEX_TYPES, LONG_COMPLEX_TYPES, etc., described in ISO/IEC 13813, are not a prerequisite for
implementation, yet are an option the implementer might find convenient to pursue.

2

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 13814:1998(E)

5 Implementations

Portable implementations of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS are strongly encouraged. However, implemen-
tations are not required to be portable. In particular, an implementation of this International Standard in Ada may use
pragma INTERFACE or other pragmas, unchecked conversion, machine-code insertions or other machine-dependent
techniques as desired. On the other hand, to the extent that generic packages (e.g. GENERIC_ELEMENTARY_FUNCTIONS
defined in ISO/IEC 11430 and GENERIC_PRIMITIVE_FUNCTIONS defined in ISO/TEC 11729) become widely available,
portable implementations of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS should not be particularly difficult to con-
struct. In particular, it is possible to achieve the accuracy required by this International Standard, when specified, by
appropfiate use of the package GENERIC_ELEMENTARY_FUNCTIONS.

value for
implemen-

An implementation is allowed to limit the precision it supports (by stating an assumed maXirhun
SYSTEM.MAX_DIGITS), since portable implementations would not, in general, be possible otherfwise. An
tation |s also allowed to make other reasonable assumptions about the environment in which ‘it is to bg used, but
only when necessary in order to match algorithms to hardware characteristics in an ecorioniical manney. All such
limits 4nd assumptions shall be clearly documented. By convention, an implementation of GENERIC_CONPLEX_ELE-

MENTAR
assumtj

effect,

An im
not ha

restrict]

a)
b)

PLEX

Convegsely, if an implementation does not impose)the restriction, then it must not allow such a range

when 1
compo
result

Any of
EMENT
GENER]
restrict

An implementation,shall function properly in a tasking environment. Apart from the obvious restricti
implen
functig

use of

Some

Y_FUNCTIONS is said not to conform to this International Standard in any envirohment in which i
tions are not satisfied, and this International Standard does not define its.behavior in that envir
his convention delimits the portability of implementations.

lementation is allowed to impose a restriction that the generic actual parameter associated with
le a range constraint that reduces the range of allowable values.<If it does impose this restrictioy
ion shall be documented, and the effects of violating the restsiction shall be one of the following:

Compilation of a unit containing an instantiation of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS is }

CONSTRAINT_ERROR or PROGRAM_ERROR is raised durihg the elaboration of an instantiation of GEI
_ELEMENTARY_FUNCTIONS.

hcluded with the user’s actual type, to interfere with the internal computations of the functions; th
hents of the argument and the result are’within the range of the type, then the implementation shal
hnd shall not raise an exception (such as CONSTRAINT_ERROR).

the restrictions discussed above may in fact be inherited from implementations of the packages Gl
RY_FUNCTIONS defined in ISO/IEC 11430, GENERIC_PRIMITIVE_FUNCTIONS defined in ISO/IEC
C_COMPLEX_TYPES definad in ISO/IEC 13813, if used. The dependence of an implementation on su
ions should be documiented.

hentation of / GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS shall avoid declaring variables that are gl
ns, no special constraints are imposed on implementations. Nothing in this International Standard
such global variables.

ts limits or
nment. In

REAL shall
i, then the

ejected.

(ERIC_COM-

constraint,
at is, if the
return the

ENERIC_EL-
11729 and
h inherited

on that an
obal to the
equires the

hardware and their accompanying Ada implementations have the capability of representing and dis

criminating

between positively and negatively signed zeros as a means, e.g., of preserving the sign of an infinitesimal quantity
that has underflowed to zero. This International Standard allows implementations of GENERIC_COMPLEX_ELEMENTA-
RY_FUNCTIONS to exploit that capability, when available, so as to exhibit continuity in the results of some functions
as certain limits are approached. At the same time, it accommodates implementations in which that capability is
unavailable. Because a definition of what comprises the capability of representing and distinguishing signed zeros is
beyond the scope of this International Standard, implementations are allowed the freedom not to exploit the capability,
even when available. An implementation shall exercise its choice consistently, either exploiting signed-zero behavior
everywhere or nowhere in this package. The signs of zero results prescribed by this International Standard apply only
to implementations that exploit signed zeros; an implementation that does not exploit signed zeros may give any sign
to a zero result. In addition an implementation shall document its behavior with respect to signed zeros. In this
International Standard, unless otherwise qualified, zero means any of (+£0.0, +0.0) and one means either of (1.0,
40.0).

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

6 Exceptions

The ARGUMENT_ERROR exception is raised by a function in the generic package when an argument of the function violates
one or more of the conditions given in the function’s domain definition (see clause 9). Note that these conditions are
related only to the mathematical definition of the function and are therefore implementation independent.

The ARGUMENT _ERROR exception is declared as a renaming of the exception of the same name declared in the package EL-
EMENTARY_FUNCTIONS_EXCEPTIONS deﬁned in ISO/IEC 11430. This exceptlon d1st1ngu1shes neither between dlfferent
kinds of argument.e

EMENTARY_FUNCTIONS, nor between instantiations of GENERIC_COMPLEX_ELEMENTARY_ FUNCTIONS and those of,GENER-
IC_ELEMENTARY_FUNCTIONS.

Besides ARGGUMENT_ERROR, the only exceptions allowed during a call to a function in GENERIC_COMPLEX_ELEMENTA-
RY_FUNCTIPNS are predefined exceptions, as follows:

a) Virtpally any predefined exception is possible during the evaluation of an argument of a function in GENER-
IC_COMPLEX_ELEMENTARY_FUNCTIONS. For example, NUMERIC_ERROR, CONSTRAINT_ERROR or even PROGRAM|ERROR
could be|raised if an argument has an undefined value; and CONSTRAINT_ERROR will be raised when the valuf of an
argumen} (or component of an argument) lies outside the range of the user’s generic’ actual type REAL. Additjonally
STORAGE| ERROR could be raised, e.g. if insufficient storage is available to perferm the call. All these exceptions are
raised before the body of the function is entered and therefore have no bearing on implementations of GENERIC_COM-
PLEX_ELEMENTARY_FUNCTIONS.

b) Alscd, CONSTRAINT_ERROR will be raised when a function in GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS atfempts
to construct a complex return value with a component outside the range of the user’s generic actual type ass¢ciated
with REAL. The exception raised for this reason shall be propagated to the caller of the function.

¢) Whdnever the arguments of a function are such that \d&’component of a result permitted by the accuracy rpquire-
ments would exceed REAL'SAFE_LARGE in absolute value, as formalized below in clause 12, an implementatipn may
raise, anfl shall then propagate to the caller, the exception specified by Ada for signaling overflow.

d) Wh¢never the arguments of a function‘are such that the corresponding mathematical function is infinite (i.e.,

has an ipfinite component), an implementation shall raise and propagate to the caller the exception specified by
Ada for signaling division by zero.

e) Onc¢ execution of a functigh has begun, an implementation may propagate STORAGE_ERROR to the calley of the
function| but only to signal the nnexpected exhaustion of storage. Similarly, once execution of a function has |begun,
an implgmentation may propagate PROGRAM_ERROR to the caller of the function, but only to signal errors mlade by
the user jJof GENERIC_COMRLEX_ELEMENTARY_FUNCTIONS.

No exceptipn is allowed during a call to a function in GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS except thoke per-
mitted by the foregeing rules. In particular, for arguments for which all components of results satisfying the adcuracy
requirements-rémain less than or equal to REAL SAFE LARGE in absolute Value in both real and i 1mag1nary parts, a
1 averflow

is possible, and shall not propagate an exception signaling that overﬂow to the caller of the function.

The only exceptions allowed during an instantiation of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS, including the ex-
ecution of the optional sequence of statements in the body of the instance, are CONSTRAINT_ERROR, STORAGE_ERROR
and PROGRAM_ERROR, and then only for the following reasons. The raising of CONSTRAINT_ERROR during instantiation
is only allowed when the implementation imposes the restriction that the generic actual type associated with REAL
shall not have a range constraint, and the user violates that restriction (it may, in fact, be an inescapable consequence
of the violation). The raising of PROGRAM_ERROR during instantiation is only allowed for the purpose of signaling errors
made by the user violating some restriction or limitation of the implementation. The raising of STORAGE_ERROR during
instantiation is only allowed for the purpose of signaling the exhaustion of storage.

NOTE — In ISO/IEC 8652:1995, the exception specified for signaling overflow is CONSTRAINT _ERROR.

4

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 13814:1998(E)

7 Arguments outside the range of safe numbers

The ISO/IEC 8652:1987 fails to define the result safe interval of any basic or predefined operation of a real subtype
when the absolute value of one of its operands exceeds the largest safe number of the operand subtype. (The failure
to define a result in this case occurs because no safe interval is defined for the operand in question.) In order to
avoid imposing requirements that would, consequently, be more stringent than those of Ada itself, this International
Standard likewise does not define the result of a contained function when the absolute value of a component of one
of its arguments exceeds REAL'SAFE_LARGE. All of the accuracy requirements and other provisions of the following
clauses_are understood to be implicitly qualified by the assumption that both components of function arguments are
less tHan or equal to REAL'SAFE_LARGE in absolute value.

8 Method of specification of functions

One of the functions has three overloaded forms. For each form of each function covered by this Internationpl Standard,
the function is specified by its parameter and result type profile, a defining equation,'the applicable brarjch cuts, the

domajn of its argument(s), its range, and the accuracy required of its implementation,“Phe meaning of, and|conventions
applidable to, these specifications are described below.

The s
the fu
of the
corred
is bas

behavior of
nition is one
may not be
he definition
ents.

pecification of each function has a heading called Definition. This is-meant to convey the required
nction. The definition is not necessarily an appropriate implemefitation for the function. The defi
mathematically correct definitions of the function but algebraic simplifications or transformations|
t. Transformations may cause the sign of the result to be wrong or cause a gratuitous singularity. T
ed on exact computation whereas an implementation must'take into account the accuracy requirem

9 Branch cut and domain definitions

The s
The b
the h

nd Domain.
tives. Under
thematically

becification of each function covered by this dnternational Standard includes headings of Branch cut 3
ranch cuts or slits are specified to warn.the user of discontinuity in the function or one of its deriva
bading Domain, a characterization of'the argument values is given for which the function is ma)

defing

condi
defini
plane
imple

Inabi
ROR,

d. The portion of the complex plane over which the function is defined is expressed by inequali
ions which the arguments must satisfy to be valid. The phrase “mathematically unbounded”
bion indicates that all representable values of the argument are valid, i.e., that the domain is the en
Whenever the argumentgfail to satisfy all the conditions, the implementation shall raise ARGUMENT
mentation shall not raise, ARGUMENT_ERROR if all the domain conditions are satisfied.

but shall be tréated in the same way that Ada defines for its predefined floating-point operation

ity to deliver a result*for valid arguments because the result overflows, for example, shall not raise Al

ies or other
n a domain
tire complex
| ERROR. The

RGUMENT_ER-
5 (see clause

12).

10 |[Range definitions

The usual mathematical meaning of the “range” of a function is the set of values into which the function maps the
values in its domain. Many of the functions covered by this International Standard are mathematically multivalued,
in the sense that a given argument value can be mapped by the function into many different result values. By means
of range restrictions, this International Standard imposes a uniqueness requirement on the results of multivalued
functions, thereby reducing them to single-valued functions.

The range of each function is shown under the heading Range in the specifications. The range definition is expressed
by inequalities or other conditions that shall be satisfied by the components of the returned result. An implementation
shall not exceed a limit of a range component when that limit is a safe number of REAL (like 0.0 or 1.0). On the other
hand, when a range component limit is not a safe number of REAL (like 7), an implementation is allowed to exceed
the range component limit, but it is not allowed to exceed the safe number of REAL next beyond the range component
limit in the direction away from the interior of the range component; this is in general the best that can be expected

5

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

© ISO/IEC

from a portable implementation. Effectively, therefore, range definitions have the added effect of imposing accuracy
requirements on implementations above and beyond those presented under the heading Accuracy in the specifications

(see clause

11).

The phrase “mathematically unbounded” in a range definition indicates that the range of values of the function is not
bounded by its mathematical definition.

11 Acc

.
1rac\L rnnnlramnnfc
T y—tr gt

Because thg
package carf

The accura|
allowed in
quirements
stated undd
range defin]
number of |
subject to 3
In that case
for the fund

The first ki
on the relaf
by the rules
mathemati
“relative bg
each compq
computed 1

relative boX

relative box

while the rq

relative con

, at best, only approximate the corresponding mathematically defined functions.

r the heading Range impose requirements that constrain the values impleméntations may yield,
tions are another source of accuracy requirements (the precise meaning of{a)range limit that is not

11 of the function’s applicable accuracy requirements, except in the oné.case described in clause 13,
tion.

nd of accuracy requirement used under the heading Accuracy in the specifications is a separate
ive error in the components of the computed value of the function, which shall hold (except as pr

al result is finite and nonzero. For some functiong, the relative error bound is stated as a bound

esult F'(z) at the argument z is defined as

error in real part of result
_ Vlre(r(2)) - re(f())]
max(|re(f(2))l, [im(f(2))I)

error in imaginary part.of result

_im(F() - im(f)
max(| re(f(2))], |im(f(2))])

lative component error is defined as

hpohent error in real part of result

y are implemented on digital computers with only finite precision, the functions provided in(this g

cy requirements contained in this International Standard define the latitude that Amplementatio
hpproximating the intended precise mathematical result with floating-point computations. Accura
of two kinds are stated under the heading Accuracy in the specifications. Additionally, range defipitions

REAL, as an accuracy requirement, is discussed above in clause 10). Every result yielded by a func

, the result will satisfy a small absolute error requirement in lieu ofthe other accuracy requirements d

in clauses 12 and 13) for all arguments satisfying thé conditions in the domain definition, providi

x error” in each component, while for others it i§jstated as a bound on the “relative component er
nent. For a given function f, having an exact‘result f(z), the relative box error in the componen

eneric

ns are
cy re-

so the
a safe
tion is
below.

efined

bound
bvided
ng the
bn the
or” in
ts of a

_ 1re(r(z)) —re(J(2))]
|re(f(2))]

relative component error in imaginary part of result

_ [Im(F(2)) — im(f(2))|
|im(f(2))|

providing the denominators are finite and nonzero. The relative box error in a component of the result is not defined
when the mathematical result is zero or either of its components are infinite. The relative component error in a

component

6

of the result is not defined when that component of the mathematical result is infinite or zero.

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 13814:1998(E)

The second kind of accuracy requirement used under the heading Accuracy in the specifications is a stipulation,
in the form of an equality, that the implementation shall deliver “prescribed results” for certain special arguments.
It is used for two purposes: to define a component of the computed result to be zero when the relative error is
undefined, i.e., when the mathematical result has a zero component, and to strengthen the accuracy requirements at
special argument values. When a component of such a prescribed result is a safe number of REAL (like 0.0 or 1.0), an
implementation shall deliver a result having that safe number as its component. On the other hand, when a component
of a prescribed result is not a safe number of REAL (like m or 7/2), an implementation may deliver a result in which the
component has any value in the surrounding safe interval. Prescribed results take precedence over maximum relative
error requirements but never contravene them. The real and imaginary parts may have any combination of the two
kinds ¢f accuracy requirement.

Range|definitions, under the heading Range in the specifications, are an additional source of accuragy-fequjrements, as
stated [above in clause 10. As an accuracy requirement, a range definition (other than “mathematically unbounded”)
has the effect of eliminating some of the values permitted by the maximum relative error requirements|, i.e., those
outsid¢ the range.

12 Pverflow

Floatipg-point hardware is typically incapable of representing numbers ‘Whose absolute value exgeeds some

implerpentation-defined maximum. For the type REAL, that maximum, will be at least REAL'SAFE_LARGE. For the

functigns defined by this International Standard, whenever the maximim error requirements permit a r¢sult with a

compdnent whose absolute value is greater than REAL'SAFE_LARGE{the’implementation may
— |yield any result permitted by the maximum relative error'requirements, or

— |raise the exception specified by Ada for signaling overflow.

In addition, some of the functions are allowed to signal overflow for certain arguments for which neither|component
of the|result can overflow. This freedom is granted)in the following specific cases:

a) |for EXP, when reX > log, REAL'SAFE_LARGE;

b) |[for SIN, when imX > log, REAL{ SAFE_LARGE + log, 2.0;
¢) [for cOS, when imX > log/REAL'SAFE_LARGE + log, 2.0;
d) |for SINH, when re X &-l6g, REAL' SAFE_LARGE + log, 2.0;

e) [for COSH, when‘reX > log, REAL'SAFE_LARGE + log, 2.0.

Permipsion to sighal overflow in these cases recognizes the difficulty of avoiding overflow in the computatjion of inter-
mediatte results“and allows the same latitude as specified in the package GENERIC_ELEMENTARY_FUNCTIONS defined in
ISO/IECA 1430 for real functions EXP, SINH and COSH.

An implementation shall raise the exception specified by Ada Tor signaling division by zero 1n the foltowing specific
cases:

a) LOG(X) when X is zero;

b) LEFT ** RIGHT (clause 14.5) when LEFT is zero and re RIGHT < 0.0;
¢) LEFT ** RIGHT (clause 14.6) when LEFT is zero and RIGHT < 0.0;
d) LEFT ** RIGHT (clause 14.7) when LEFT = 0.0 and re RIGHT < 0.0;

e) COT(X) when X is zero;

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

RCTAN(X) when X is £1i;

g) ARCCOT(X) when X is +i;
h) COTH(X) when X is zero;
i) ARCTANH(X) when X is either one or negative one; and

3)

ARCCOTH(X) when X is either one or negative one.

In these casgs, the corresponding mathematical functions have a component that is infinite.

OTES

1 The rule

for which eit}

Concerning overflow permits an implementation to raise an exception, instead of delivering a result, for argyments
hick er component of the mathematical result is close to but does not exceed REAL' SAFE_LARGE in absolute value
arguments mjust necessarily be very close to an argument for which the component of the mathematical result does
REAL'SAFE_LWARGE in absolute value. In general, this is the best that can be expected from a portable implementation

reasonable amount of effort.

bxceed
vith a

2 The rule
set of possibl
maximum, tH

3 In ISO/I}

13 Und

Floating-po
implementa
functions de

s motivated by the behavior prescribed in ISO/IEC 8652:1987 for the,predefined operations. That is, wh
e results of a predefined operation includes a number whose absolute Walue exceeds the implementation-d|
e implementation is allowed to raise the exception specified for signaling overflow instead of delivering a re

LC 8652:1995, the exception specified for signaling overflow iscCONSTRAINT_ERROR.

erflow

nt hardware is typically incapable of represénting nonzero numbers whose absolute value is less thanl
ion-defined minimum. For the type REAL, that minimum will be at most REAL'SAFE_SMALL. F
fined by this International Standard;whenever the maximum relative error requirements permit a

bn the
efined
sult.

some
r the
result

with a comyj
implementa

a)

b) any 1
the maxir]

c)

onent whose absolute value is less‘than REAL'SAFE_SMALL and a prescribed result is not stipulate
ion may yield a result in which\that component is

1, the

any vplue permitted by the maximum relative error requirements;

onzero value less thah)or equal to REAL'SAFE_SMALL in magnitude (and having the correct sign, finless

hum relative error Téquirements permit values with either sign); or

Z€ero.

NOTES

1 Whenever part b) or c) of this rule takes effect for a component of the result, the maximum relative error requirements for
that component are, in general, unachievable and are waived.

2 The rule permits an implementation to deliver a result violating the maximum relative error requirements for arguments for
which a component of the mathematical result equals or slightly exceeds REAL'SAFE_SMALL in absolute value. Such arguments
must necessarily be very close to an argument for which that component of the mathematical result is less than REAL'SAFE_SMALL
in absolute value. In general, this is the best that can be expected from a portable implementation with a reasonable amount
of effort.

3 The rule is motivated by the behavior prescribed in ISO/IEC 8652:1987 for predefined operations. That is, when the set
of possible results of a predefined operation includes a nonzero number whose absolute value is less than the implementation-
defined minimum, the implementation is allowed to yield zero or any nonzero number having the correct sign and an absolute
value less than or equal to that minimum. An exception is never raised in this case.

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14 Specifications of the function

The equations on the right side of the & are mathematical definitions and are not meant to specify how the functions
should be implemented. Although some definitions are well known, other definitions are critical to specify the required
function, for example the difference in the definition of ARCTAN vs. ARCCOT and ARCTANH vs. ARCCOTH in order to get the
required values along the branch cut. Yet other definitions provide a basis for accuracy analysis and overflow threshold
determination, as in EXP, SIN, COS, TAN, COT, SINH, COSH, TANH and COTH. The mathematical functions | |, arg, re
and im denote the modulus (absolute value) argument (angle in [—m,7]), real part and imaginary part respectively.
The branch cuts are informational as they may be derived from the definition, domain and range. Branch cuts are

impor mmmﬂmﬁmmmmmﬁwmﬁmﬂﬁ ot analytic.
Under|the heading Definition in each of the following specifications, the semantics of an Ada call to the-fupction being

definefl is provided by a mathematical definition in the form of an approximation. The left-hand ‘side (the function
call) if set in the fixed-width font used throughout this International Standard for program fragments. The right-hand

Caiiy 13 SCL il LiiC LACU Qi 101 uscQ LAITOUSIION NS 1nLeliliatiofldt o

side is{to be interpreted as an exact mathematical formula; as such, it and similar mathematical formulas| throughout
this Ijternational Standard employ standard mathematical symbols, notation and fonts“\(except for varjable names
and sqme real literals, which are set in the fixed-width “program-fragment” font). The degree to which the function
call of] the left-hand side is allowed to approximate the value of the formula on the right-hand side is, of cofirse, spelled
out unpder the heading Accuracy, as discussed in clause 11.

14.1 [SQRT — Square root
14.1.]1 Declaration

functlion SQRT (X : COMPLEX) return COMPLEX;

14.1.2 Definition

SQRT (X))~ VX = \/[X| - e}(2181)/2

14.1.3 Branch cut

Negatfive real axis

14.1.4 Domain

Math¢matically unbounded

14.1.p Range

Real part{ngnnegative, imaginary part mathematically unbounded

14.1.6 Accuracy
a) Maximum relative component error = 6.0 - REAL'BASE'EPSILON
b) The sign of the real part of the result is positive.
c) The sign of the imaginary part of the result is the same as the sign of the imaginary part of X.

d) When X is zero, the result is zero.

e) When X is negative one, the result is +i except that implementations exploiting signed zeros shall conform to
case c) above (see clause 5).

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC

i4.2 LoG

13814:1998(E)

R

nNT | [PR R
— INavural 1ogariiiiin

14.2.1 Declaration

function LOG (X : COMPLEX) return COMPLEX;

14.2.2 Definition

@© ISO/IEC

14.2.3 Br

Negative rea

14.2.4 Dg

Mathematic

14.2.5 R4
Real part m
14.2.6 Aq

LOG(X) = log, X = log, |X| + iargX

anch cut

1 axis

main

hlly unbounded

nge

hthematically unbounded, imaginary part in [—x, 7]

curacy

a) Maxifnum relative box error of real part = 13,0“REAL'BASE'EPSILON

b) Maximum relative box error of imaginary part = 4.0 - REAL'BASE'EPSILON

¢) Thes
d) When
NOTE — Cl

14.3 EXP

14.3.1 Dq

X is one, the result is zero:

puse 12 applies wher X\is zero.

— Exponential function, complex argument

claration

gn of the imaginary part of the‘result is the same as the sign of the imaginary part of X.

function EXP (X : COMPLEX) return COMPLEX;

14.3.2 Definition

14.3.3 Br

None

10

EXP(X) ~ e = €™ . cos(imX) + i e™* - sin(imX)

anch cut

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14.3.4 Domain

Mathematically unbounded

14.3.5 Range

Mathematically unbounded

14.3.6 Accuracy

a) | Maximum relative component error = 7.0 - REAL'BASE'EPSILON when |imX| is less thap‘or equal to some
documented implementation-dependent threshold, which shall not be less than

REAL' MACHINE_RADIXLREAL ' HACHIHE_HAHTISSA/?J

For{larger values of |imX|, degraded accuracy is allowed. An implementation shall document its behayior for large
| im X|.

b) | When X is zero, the result is one; in this case the sign of the imaginary part of the result is the same as the sign
of the imaginary part of X.

NOTYE — clause 12 applies when reX > log, REAL'SAFE_LARGE, approximately.

14.4| EXP — Exponential function, imaginary argument
14.4l Declaration

function EXP (X : IMAGINARY) return COMPLEX;

14.42 Definition

EXB(X) ~ e* = cos(imX) + i sin(imX)

14.4/3 Branch cut

None

14.4/4 Domain

Mathematically~uhbounded

14.4)5_"Range

Real part in [—1, 1], imaginary part in [—1, 1]

14.4.6 Accuracy

a) Maximum relative component error = 2.0 - REAL'BASE'EPSILON when |X| is less than or equal to some docu-
mented implementation-dependent threshold, which shall not be less than

REAL'MACHINE RADIXI_REAL'HACHIHE_HMITISSA/Z_]

For larger values of |X|, degraded accuracy is allowed. An implementation shall document its behavior for large |X.

b) When X is zero, the result is one; in this case the sign of the imaginary part of the result is the same as the sign
of X.

11

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

14.5 "*x" — Exponentiation operator, complex to complex power arguments
14.5.1 Declaration
function "**" (LEFT, RIGHT : COMPLEX) return COMPLEX;

14.5.2 Definition

@© ISO/IEC

LEFT %% RIGHT ~ LEFTMCHT — (RIGHT log, LEFT

14.5.3 Bpnanch cut

LEFT along

14.54 D

re RIGHT #

hegative real axis

oémain

0.0 when LEFT is zero

14.5.5 Range

Mathematidally unbounded

14.5.6 A

a) Maximum relative box error is the error bound that results from an implementation using functions fro:
nal Standard and from the package GENERIC_ELEMENTARY_FUNCTIONS defined in ISO/IEC 11430.

Internati

b) Whe

Ccuracy

h RIGHT is zero and LEFT is nonzerd, the result is one.

¢) When LEFT is zero and re RIGHT >.0:0, the result is zero.

d) Whe

h RIGHT is one, the result 1S'LEFT.

e) When LEFT is one, theesult is one.

NOTES

1 EXP(RIGHT*LOGCLEFT)) is an allowed implementation, but note the accuracy requirements.

2 clause 19 applies when LEFT is zero and re RIGHT < 0.0 .

mn this

14.6 "xx" — Exponentiation operator, complex to real power arguments
14.6.1 Declaration
function "**" (LEFT : COMPLEX; RIGHT : REAL) return COMPLEX;

14.6.2 D

12

efinition

LEFT *% RIGHT ~ LEFTPIGHT — RIGHT log, LEFT

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 13814

14.6.3

Branch cut

LEFT along negative real axis

14.6.4 Domain

RIGHT

0.0 when LEFT is zero

14.6.5 Range

Mathd

14.6.6 Accuracy

a)

Intq

NOTH

—

2 cld

14.7

14.7.

funcH

14.7.

matically unbounded

Maximum relative box error is the error bound that results from an implementation using functio]
rnational Standard and from the package GENERIC_ELEMENTARY_FUNCTIONS/defined in ISO/IEC 1]

When LEFT is nonzero and RIGHT = 0.0, the result is one.
When LEFT is zero and RIGHT > 0.0, the result is zero.
When RIGHT = 1.0, the result is LEFT.

When LEFT is one, the result is one.

S
P (RIGHT*LOG (LEFT)) is an allowed implémentation, but note the accuracy requirements.

use 12 applies when LEFT is zero and.RIGHT < 0.0.

"xx" — Exponentiation operator, real to complex power arguments

1 Declaration

ion "#x" (LEFT : REAL; RIGHT : COMPLEX) return COMPLEX;

P _Definition

:1998(E)

ns from this

430.

14.7.

None

14.7.

RIGHT-log, LEFT hen LEFT >=0.0
~ RIGHT _) € , When > '
LEFT ** RIGHT ~ LEFT = { MIGHT (log (~LEFT)+i7m) when LEFT < 0.0

3 Branch cut

4 Domain

re RIGHT # 0.0 when LEFT = 0.0

13

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

14.7.5 Range

Mathematically unbounded

14.7.6 Accuracy

a) Maximum relative box error is the error bound that results from an implementation using functions from this

Internatiofal Standard and Irom the package GENERIC_ELEMENTARY_FUNCTIUNS defined in ISO/TEC 11430

b) When|LEFT # 0.0 and RIGHT is zero, the result is one.
¢) When|LEFT = 0.0 and reRIGHT > 0.0, the result is zero.
d) When|RIGHT is one, the result is the complex value having LEFT as the real part and 0 {0 as the imaginary [part.

e) When|LEFT = 1.0, the result is one.

NOTES

1 EXP(RIGHT*LOG(LEFT)) when LEFT >= 0.0 and EXP(RIGHT*(LOG(-LEFT)#ir)) when LEFT < 0.0 is an allowed impl¢men-
tation, but ndte the accuracy requirements.

2 clause 12 ppplies when LEFT = 0.0 and reRIGHT < 0.0 .

14.8 SIN|[— Trigonometric sine function
14.8.1 Dgclaration

function SIN (X : COMPLEX) return CGMPLEX;

14.8.2 Ddfinition

SIN(X) ~ sinX = sin(reX) - cosh(imX) + i cos(reX) - sinh(imX)

14.8.3 Branch cut

None

14.8.4 Domain

Mathematically unbounded

14.8.5 Range

Mathematically unbounded

14

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14.8.6 Accuracy

a) Maximum relative component error = 11.0 - REAL'BASE'EPSILON when | re X| is less than or equal to some
documented implementation-dependent threshold, which shall not be less than

REAL'MACHINE RADIX[REAL 'MACHINE_MANTISSA/2]

For larger values of |reX|, degraded accuracy is allowed. An implementation shall document its behavior for large
|reX|.

b) | When X is zero, the result is zero; in this case the sign of each component of the result is the(samye as the sign
of the corresponding component of X.

NOTE — clause 12 applies when im X > log, REAL' SAFE_LARGE + log 2.0, approximately.

14.9| C0S — Trigonometric cosine function
14.9{1 Declaration

function COS (X : COMPLEX) return COMPLEX;

14.9/2 Definition

COS(X) ~ cos X = cos(reX) - cosh(imX) — i sin(reX) - sinh(imX)

14.9{3 Branch cut

Nons

14.9}]4 Domain

Mathematically unbounded

14.915 Range

Mathematicallysinbounded

14.9{.6~_ Accuracy

a) Maximum relative component error = 11.0 - REAL'BASE'EPSILON when |reX| is less than or equal to some
documented implementation-dependent threshold, which shall not be less than

REAL' MACHINE_RADIXI_EEAL 'MACHINE_MANTISSA /2]

For larger values of |reX|, degraded accuracy is allowed. An implementation shall document its behavior for large
|re X|.

b) When X is zero, the result is one; in this case the sign of the imaginary part of the result is negative when the
sign of re X is the same as the sign of imX, and positive otherwise.

NOTE — clause 12 applies when im X > log, REAL' SAFE_LARGE + log, 2.0, approximately.

15

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

14.10 TAN — Trigonometric tangent function
14.10.1 Declaration

function TAN (X : COMPLEX) return COMPLEX;

14.10.2 Definition

© ISO/IEC

sin(re X) - cos(re X)

sinh(imX) - cosh(imX)

~ tanX = T
TAN(X) ~ tan cos(re X)? + sinh(im X)?

14.10.3 Branch cut

None

14.10.4 Domain

Mathematicplly unbounded

14.10.5 Range

Mathematicplly unbounded

14.10.6 Accuracy

cos(re X)? + sinh(im X)?2

a) Maximum relative component error = 35.0* REAL'BASE'EPSILON when |reX| is less than or equal to|some

documented implementation-dependent thresheld, which shall not be less than

REAL 1 MACHINE RADIX"REAL ' HACHI“E_HA“TISSA/2J

For larger| values of |reX|, degraded-accuracy is allowed. An implementation shall document its behavior for{large

| re X|.

b) The gign of the imagimary part of the result is the same as the sign of the imaginary part of X.

¢) When X is zerd, the result is zero; in this case the sign of the real part of the result is the same as the sjgn of

the real pprt of X:

14.11 COT — Trigonometric cotangent function
14.11.1 Declaration

function COT (X : COMPLEX) return COMPLEX;

14.11.2 Definition

sin(re X) - cos(re X)

sinh(imX) - cosh(im X)

COT(X) ~ cotX =

16

sin(re X)2 + sinh(imX)2 *

sin(re X)? + sinh(im X)?2

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC

14.11.3 Branch cut

None

14.11.4 Domain

Mathematically unbounded

14.11.5 Range

Math¢matically unbounded

14.11.6 Accuracy

dodumented implementation-dependent threshold, which shall not be less thah

For larger values of |reX|, degraded accuracy is allowed. An implementation shall document its behay

| re

NOTE — clause 12 applies when X is zero.

14.1

14.12.1 Declaration

func

14.1

14.12.3° Branch cut

Real

ISO/IEC 13814:1998(E)

Maximum relative component error = 35.0 - REAL'BASE'EPSILON when [reX| is less than or eq

REAL'MACHINE RADIXLREAL 'MACHINE_MANTISSA/2]

|.

The sign of the imaginary part of the result is the:same as the sign of the imaginary part of X.

P ARCSIN — Inverse trigonometric sine function

tion ARCSIN (X : COMPLEX) return COMPLEX;

p.2 Definition

ARCSIN(X) ~ arcsinX = —i log,(i X+ V1 —X?)

ual to some

ior for large

axis outside the open interval (—1.0, 1.0)

14.12.4 Domain

Mathematically unbounded

14.12.5 Range

Imaginary part mathematically unbounded, real part in [—7/2, 7/2]

17

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)
14.12.6 Accuracy
a) Maximum relative component error = 14.0 - REAL'BASE'EPSILON
b) The sign of the real part of the result is the same as the sign of the real part of X.
¢) The sign of the imaginary part of the result is the same as the sign of the imaginary part of X.
d) When X is zero, the result is zero.
e) When|X is one, the result is 7/2 .

NOTE — =/
slightly; see ¢
implementati

the reauirem

4
vl ICQUIICinngivs

14.13 AR

14.13.1 D

function A

14.13.2 D

14.13.3 Bpranch cut

Real axis ou

14.13.4 D

Mathematic

14.13.5 R

Imaginary p

X is negative one, the result is —m/2 .

and —n /2 are not safe numbers of REAL. Accordingly, an implementation may exceed the Tarnge limits, bu
lause 10 for a precise statement of the requirements. Similarly, when accuracy requirement e) or f) appli
n may approximate the prescribed result, but only within narrow limits; see clause 11.for a precise statem

nta
v

CCO0S — Inverse trigonometric cosine function
eclaration

RCCOS (X : COMPLEX) return COMPLEX;

efinition

ARCCOS(X) ~ arccosX = —i log, (X +1i V1 —X?)

bside the open interval (—1.0,1:0)

omain

1lly unbounded

ange

rt mathematically unbounded, real part in [0.0, 7]

© ISO/IEC

only
bs, an
ent of

14.13.6 Accuracy

a)

Maximum relative component error = 14.0 - REAL 'BASE ' EPSILON

b) The sign of the imaginary part of the result is the opposite of the sign of the imaginary part of X, unless the

imaginary
¢)

d) When
e) When

18

part of the result is zero and the implementation does not exploit signed zeros.

The sign of the real part of the result is positive.

X is one, the result is zero.

X is zero, the result is 7/2 .

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© ISO/IEC ISO/IEC 13814:1998(E)

f) When X is negative one, the result is 7 .

NOTE — 7/2 and = are not safe numbers of REAL. Accordingly, an implementation may exceed the range limits, but only
slightly; see clause 10 for a precise statement of the requirements. Similarly, when accuracy requirement e) or f) applies, an
implementation may approximate the prescribed result, but only within narrow limits; see clause 11 for a precise statement of
the requirements.

14.14 ARCTAN — Inverse trigonometric tangent function

14.14.1 Declaration

functlion ARCTAN (X : COMPLEX) return COMPLEX;

14.14.2 Definition

ARCTAN(X) =~ arctanX = —%(loge(l +1i X) —log, (=1 X))

14.14.3 Branch cut

Imaginary axis outside the open interval (—1i, i)

14.14.4 Domain

Mathpmatically unbounded

14.14.5 Range

Imagjnary part mathematically unbounded; real part in [—7/2, 7/2]

14.14.6 Accuracy
a) [Maximum relative component error = 14.0 - REAL'BASE'EPSILON
b) | The sign of the-real part of the result is the same as the sign of the real part of X.
¢) | The sign _of the imaginary part of the result is the same as the sign of the imaginary part of X.

d) | WhenX 1s zero, the result is zero.

NOTES

1 —=/2 and 7/2 are not safe numbers of REAL. Accordingly, an implementation may exceed the range limits, but only slightly;
see clause 10 for a precise statement of the requirements.

2 clause 12 applies when X is +i.

14.15 ARCCOT — Inverse trigonometric cotangent function
14.15.1 Declaration

function ARCCOT (X : COMPLEX) return COMPLEX;

19

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC

13814:1998(E)

14.15.2 Definition

X—1

i
ARCCOT(X) ~ arccotX = —log, ——
x) 2 B X+1i

14.15.3 Branch cut

Imaginary a:

14.15.4 D

Mathematic

14.15.5 R

Imaginary pj

14.15.6 Accuracy

© ISO/IEC

1S 1n the closed interval {(—1, 1}

omain

hlly unbounded

ange

bhrt mathematically unbounded, real part in [0.0 ,]

y; see
h may
ts.

a) Maxifnum relative component error = 14.0 - REAL'BASE'EPSILON
b) The dign of the imaginary part of the result is the opposite of the sign of the imaginary part of X, unlegs the
imaginary part of the result is zero and the implementation does not exploit signed zeros.
¢) The sign of the real part of the result is positive.
d) When X is zero, the result is 7/2 .
NOTES
1 7 and 7/ are not safe numbers of REAL) Accordingly, an implementation may exceed the range limits, but only slight
clause 10 for|a precise statement of the xrequirements. Similarly, when accuracy requirement d) applies, an implementatio
approximate [the prescribed result, but-only within narrow limits; see clause 11 for a precise statement of the requiremen
2 clause 12|applies when X i§ 3.
14.16 SINH —. Hyperbolic sine function
14.16.1 IDéclaration

function SINH (X :

COMPLEX) return COMPLEX;

14.16.2 Definition

SINH(X) = sinh X = sinh(re X) - cos(imX) + i cosh(re X) - sin(imX)

14.16.3 Branch cut

None

20

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14.16.4 Domain

Mathematically unbounded

14.16.5 Range

Mathematically unbounded

14.14.6 Accuracy

a) | Maximum relative component error = 11.0 - REAL'BASE'EPSILON when |imX| is less)than or equal to some
doqumented implementation-dependent threshold, which shall not be less than

REAL'MACHINE RADIX[REAL "MACHINE_MANTISSA/2|

Forj larger values of |imX|, degraded accuracy is allowed. An implementatiorishall document its behayior for large
| inf X|.

b) | When X is zero, the result is zero; in this case the sign of each\component of the result is the sam¢ as the sign
of fhe corresponding component of X.

NOTE — clause 12 applies when reX > log, REAL'SAFE_LARGE + {6g. 2.0, approximately.

14.1F C0SH — Hyperbolic cosine function
14.17.1 Declaration

function COSH (X : COMPLEX) return COMPLEX;

14.17.2 Definition

COSH(X) ~ cosh X = cosh(reX) - cos(imX) + i sinh(reX) - sin(imX)

14.17.3A Branch cut

None

14.17.4 Domain

Mathematically unbounded

14.17.5 Range

Mathematically unbounded

21

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

14.17.6 Accuracy

a) Maximum relative component error = 11.0 - REAL'BASE'EPSILON when |imX| is less than or equal to some
documented implementation-dependent threshold, which shall not be less than

REAL 'MACHINE RADIXI_R.EAL'HACHIHE_HAIITISSA/QJ

For larger values of |imX|, degraded accuracy is allowed. An implementation shall document its behavior for large
|imX|.

b) Whell X is zero, the result is one; in this case the sign of the imaginary part of the result is positive-whén the
signs of the real and imaginary parts of X agree and negative otherwise.

NOTE — clquse 12 applies when reX > log, REAL' SAFE_LARGE + log, 2.0, approximately.

14.18 TANH — Hyperbolic tangent function
14.18.1 Declaration

function TIANH (X : COMPLEX) return COMPLEX;
14.18.2 IDefinition

sinh(re X) - cosh(re X) . sin(imX) - cos(imX)

TANH(X) ~ tanhX = — - - .
sinh(re X)? 4 cos(imX)? * sinh(re X)? + cos(im X)?2

14.18.3 Branch cut

None

14.18.4 TIDPomain

Mathematidally unbounded

14.18.5 Range

Mathematidally unbounded

14.18.6 Accuracy

a) Maximum relative component error = 35.0 - REAL'BASE'EPSILON when |imX| is less than or equal to some
documented implementation-dependent threshold, which shall not be less than

REAL'MACHINE RADIX'_REAL'HACHIHE_HMITISSA/QJ

For larger values of |imX|, degraded accuracy is allowed. An implementation shall document its behavior for large
|imX|.

b) The sign of the real part of the result is the same as the sign of the real part of X.

c) When X is zero, the result is zero; in this case the sign of the imaginary part of the result is the same as the
sign of the imaginary part of X.

22

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14.19 COTH — Hyperbolic cotangent function
14.19.1 Declaration

function COTH (X : COMPLEX) return COMPLEX;

14.19.2 Definition

sinh(re X) - cosh(re X) . sin(imX) - cos(imX)

COTH(X) =~ cothX = — - - : 7T
OTH(X) % co sinh(re X)? + sin(im X)? * sinh(re X)2 + sin(im X)2

14.19.3 Branch cut

None

14.19.4 Domain

Math¢matically unbounded

14.19.5 Range

Math¢matically unbounded

14.19.6 Accuracy

a) [Maximum relative component error = 35.0 - REAL'BASE'EPSILON when |imX| is less than or equal to some
dodumented implementation-dependent thréshold, which shall not be less than

REAL' MACHINE_RADIX”'E“' "MACHINE_MANTISSA /2]

Forl larger values of |imX|, degraded accuracy is allowed. An implementation shall document its behayior for large
| im X|.

b) | The sign of the real"part of the result is the same as the sign of the real part of X.

NOTHE — clause 12 applies when X is zero.

14.20 ARESINH — Inverse hyperbolic sine function

14.20.1%) Declaration

function ARCSINH (X : COMPLEX) return COMPLEX;

14.20.2 Definition

ARCSINH(X) ~ arcsinh X = log, (X + V1 + X?)

14.20.3 Branch cut

Imaginary axis outside the open interval (—1i, i)

23

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

14.20.4 Domain

Mathematically unbounded

14.20.5 Range

Real part mathematically unbounded, imaginary part in [—7/2, 7/2]

© ISO/IEC

14.20.6 I:curacy
a) Maximum relative component error = 14.0 - REAL'BASE'EPSILON
b) The pign of the real part of the result is the same as the sign of the real part of X.
¢) The sign of the imaginary part of the result is the same as the sign of the imaginary part of X.
d) Whep X is zero, the result is zero.
NOTE — —1/2 and /2 are not safe numbers of REAL. Accordingly, an implementation may)exceed the range limits, byt only
slightly; see ¢lause 10 for a precise statement of the requirements.
14.21 ARCCOSH — Inverse hyperbolic cosine function
14.21.1 Declaration
function ARCCOSH (X : COMPLEX) return COMPLEX;
14.21.2 Definition
ARCCOSH(X) ~arccoshX = log, (X + VX —1-VX+1)
14.21.3 Branch cut
Real axis leps than or equal 1.0
14.21.4 IDomain
Mathematig¢ally unbounded
14.21.5 I|Lange
Real part >= 0.0 and 1maginary part in [—m, 7]
14.21.6 Accuracy
a) Maximum relative component error = 14.0 - REAL'BASE'EPSILON
b) The sign of the imaginary part of the result is the same as the sign of the imaginary part of X.
¢) When X is one, the result is zero; in this case the sign of the real part of the result is positive.
NOTE — —m and 7 are not safe numbers of REAL. Accordingly, an implementation may exceed the range limits, but only

slightly; see clause 10 for a precise statement of the requirements.

24

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

14.22 ARCTANH — Inverse hyperbolic tangent function
14.22.1 Declaration

function ARCTANH (X : COMPLEX) return COMPLEX;

14.22.2 Definition

ARCTANH(X) = arctanhX = %(loge(l +X) — log, (1 — X))

14.22(3 Branch cut

Real 4xis outside the open interval (—1.0, 1.0)

14.22.4 Domain

Math¢matically unbounded

14.22.5 Range

Real part mathematically unbounded, imaginary part in [—7/2; 7/2]

14.22.6 Accuracy
a) | Maximum relative component error = 14«0/ REAL'BASE'EPSILON
b) | The sign of the real part of the result:is the same as the sign of the real part of X.
¢) |The sign of the imaginary partiof the result is the same as the sign of the imaginary part of X.

d) | When X is zero, the result_is zero.

NOTES

1 —%/2 and =/2 arenot safe numbers of REAL. Accordingly, an implementation may exceed the range limits, butjonly slightly;
see clguse 10 for{a\precise statement of the requirements.

2 cldused2¢applies when X is either one or negative one.

14.23 ARCCOTH — Inverse hyperbolic cotangent function
14.23.1 Declaration

function ARCCOTH (X : COMPLEX) return COMPLEX;
14.23.2 Definition

1 X+1
ARCCOTH(X) = arccothX = 3 log, i_i:_l

25

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E) © ISO/IEC

14.23.3 Branch cut

Real axis in the closed interval [—1.0, 1.0]

14.23.4 Domain

Mathematically unbounded

14.23.5 Hange

Real part mfathematically unbounded, imaginary part in [0.0,]

14.23.6 Accuracy
a) Maximum relative component error = 14.0 - REAL'BASE'EPSILON
b) The dign of the real part of the result is the same as the sign of the real part ©f)X.
¢) The sign of the imaginary part of the result is positive.

d) When X is zero, the result is iw/2 .

NOTES

1 = and 7/} are not safe numbers of REAL. Accordingly, an implementation may exceed the range limits, but only slightly; see
clause 10 for a precise statement of the requirements. Similarly,\when accuracy requirement d) applies, an implementatiop may
approximate [the prescribed result, but only within narrow limits; see clause 11 for a precise statement of the requiremenfts.

2 clause 12|applies when X is either one or negative one.

26

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

@© ISO/IEC ISO/IEC 13814:1998(E)

Annex A
(normative)
Ada specification for GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS

with ELEMENTARY_FUNCTIONS_EXCEPTIONS;

generic

e REAL is digits <>;
e COMPLEX is private;
IMAGINARY is private;

54

ct
(]

wifth function RE (X : COMPLEX) return REAL is <>;

witth function IM (X : COMPLEX) return REAL is <>;

wilfth function IM (X : IMAGINARY) return REAL is <>;

wifth procedure SET_RE (X : in out COMPLEX; RE : REAL) is <>;

wilth procedure SET_IM (X : in out COMPLEX; IM : REAL) is <>;

wifth function COMPOSE_FROM_CARTESIAN (RE, IM : REAL) return<COMPLEX is <>;

with function MODULUS (X : COMPLEX) return REAL is <>;

wilth function "-" (RIGHT : COMPLEX) return COMPLEX is/<>%

wilth function "+" (LEFT, RIGHT : COMPLEX) return COMPLEX is <>;

wifth function "-'" (LEFT, RIGHT : COMPLEX) return COMPLEX is <>;

wilth function "*" (LEFT, RIGHT : COMPLEX) return“COMPLEX is <>;

wifth function "/'" (LEFT, RIGHT : COMPLEX) returd COMPLEX is <>;

wilth function "+" (LEFT : REAL; RIGHT : COMPLEX) return COMPLEX is <>;

wilth function "-" (LEFT : REAL; RIGHT : GOMPLEX) return COMPLEX is <>;

with function "-'" (LEFT : COMPLEX; RIGHT“: REAL) return COMPLEX is <>;

wilth function "*" (LEFT : REAL; RIGHT: COMPLEX) return COMPLEX is <>;

with function "/'" (LEFT : COMPLEX»RIGHT : REAL) return COMPLEX is <>;
packdge GENERIC_COMPLEX_ELEMENTARY.FUNCTIONS is

function SQRT (X : COMPLEX) return COMPLEX;

fynction LOG (X : COMPLEX) return COMPLEX;

fynction EXP (X { COMPLEX) return COMPLEX;

fuynction EXP (X~ IMAGINARY) return COMPLEX;

function "¥*" (LEFT, RIGHT : COMPLEX) return COMPLEX;

fynction "*%Y (LEFT : COMPLEX; RIGHT : REAL) return COMPLEX;

function J**" (LEFT : REAL; RIGHT : COMPLEX) return COMPLEX;

fynction SIN (X : COMPLEX) return COMPLEX;

fynétion COS (X : COMPLEX) return COMPLEX;

function TAN (X : COMPLEX) return COMPLEX;

function COT (X : COMPLEX) return COMPLEX;

function ARCSIN (X : COMPLEX) return COMPLEX;
function ARCCOS (X : COMPLEX) return COMPLEX;
function ARCTAN (X : COMPLEX) return COMPLEX;
function ARCCOT (X : COMPLEX) return COMPLEX;

function SINH (X : COMPLEX) return COMPLEX;
function COSH (X : COMPLEX) return COMPLEX;
function TANH (X : COMPLEX) return COMPLEX;
function COTH (X : COMPLEX) return COMPLEX;

27

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

ISO/IEC 13814:1998(E)

function
function
function
function

ARGUMENT

ARCSINH (X : COMPLEX) return COMPLEX;
ARCCOSH (X : COMPLEX) return COMPLEX;
ARCTANH (X : COMPLEX) return COMPLEX;
ARCCOTH (X : COMPLEX) return COMPLEX;

_ERROR :

exception renames ELEMENTARY_FUNCTIONS_EXCEPTIONS.ARGUMENT_ERROR;

end GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS;

28

© ISO/IEC

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

© IS

B.1

0/IEC

Annex B
(informative)
Rationale

Introduction and motivation

ISO/IEC 13814:1998(E)

Ada 83, the

first three being ISO/IEC 11430 [12] ISO/IEC 11729 [13] and ISO/IEC 13813 [14] ThlS Internatlonal Stnda.rd adds
to the [functionality of complex types as defined in the generic package GENERIC_COMPLEX_TYPES of ISO/IHC 13813 by
providing complex analogs of the real elementary functions defined in the generic package GENERIC_ELEMENTARY_FUNC-

TIONS

Severall application areas depend on the use of complex arithmetic and the complex elementary function|
urier transforms are used, for example, in conjunction with radar, sonar and el¢ctro-optical sensors
hg uses complex arithmetic in fluid-flow problems, including the analysis ofelocity fields aroun

fast Fg
mappi
torped

B.2

This I
dards

the W]

Similalr capabilities have been incorporated into the Numeri¢s' Annex of Ada 95 [11]. Originally, the Ada 94

the co

arithmetic, except that types and operations for vectors’and matrices of complex components were never [
b. The complex types package in Ada 95 underwent a significant redesign as a result of the much lar

Ada 9
of peo
benefi

B.3

Since
theret
used 1

type U

in termns of that floating-point type.

REAL

and E:Iother generic formal private type. The order of the parameters is REAL, COMPLEX, and IMAGINARY

insta:

of ISO/IEC 11430.

o noses and airfoils; and a/c circuit analysis is classically modeled in terms-of complex exponential

History

n the series. The bulk of the design work was performed by:the SIGAda Numerics Working Group,

mplex arithmetic packages were patterned after working drafts of the Ada 83 secondary standards

ple monitoring and contributing to its design. The two secondary standards for complex arithmeti
ted from the redesign of their Ada 95 @nalogs and are in general agreement with the latter.

Packaging consideration$s

he complex type is defined elsewhere (e.g., by an instantiation of GENERIC_COMPLEX_TYPES or by som¢
), GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS must be generic, so that it can “import” the comple
h the parameter and-résult profiles of the functions it defines. It is also necessary to import the fl
sed in the definitioh of the complex type (i.e., for its components), as well as the pure-imaginary t
The generic formal parameters for these imported types are callg
and IMAGINARY, respectively; they define a generic formal private type, a generic formal floating

iation,of GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS will be as follows:

with

hternational Standard was developed concurrently with ISO/IE€/13813, several years after the othg

(G9 Numerics Rapporteur Group; contributions were alss.made by the Ada-Europe Numerics Work

5. Complex
; conformal
d radomes,

.

r two stan-
eporting to
ing Group.

versions of
for complex
roposed for
ger number
c in Ada 83

alternative
k type to be
ating-point
ype defined
d COMPLEX,
-point type
. A typical

GENERIC_COMPLEX_TYPES;

with GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS;
procedure APPLICATION is

type REAL is digits ...;

pa
us

pa

us

)

ckage COMPLEX_TYPES is new GENERIC_COMPLEX_TYPES (REAL);

e COMPLEX_TYPES;

ckage COMPLEX_ELEMENTARY_FUNCTIONS is

new GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS (REAL, COMPLEX, IMAGINARY);
e COMPLEX_ELEMENTARY_FUNCTIONS;

begin

end APPLICATION;

29

https://standardsiso.com/api/?name=3d651256670b0c6d65fb9940e74a72a6

