INTERNATIONAL STANDARD ISO/IEC 13249-2:2000
TECHNICAL CORRIGENDUM 1

Published 2003-08-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION o MEXOYHAPOOHAA OPFAHU3ALIMA MO CTAHOAPTU3ALIMM e ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION . MEXOYHAPOOHAA SNEKTPOTEXHNYECKASA KOMUCCUA . COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Information technology — Database languages — SQL
multimedia and application packages —

Part 2:
Full-Text

TECHNICAL CORRIGENDUM 1

Technologies de Il'information — Langages de bases de données'— Multimédia SQL et paquetages
d'application

Partie 2: Texte complet

RECTIFICATIF TECHNIQUE 1

Technical Corrigendum 1 to ISO/IEC 13249-2:2000 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 32, Data management and interchange.

Statement of purpose of rationale:

A statement indicating the rationale for each change to ISO/IEC 13249-2:2000(E) is included. This is to inforlln
the users of‘that standard as to the reason why it was judged necessary to change the original wording. In
many €ases the reason is editorial or to clarify the wording; in some cases it is to correct an error or gn
omission in the original wording.

Notes on numbering:

Where this Corrigendum introduces new Definitional Rules and Descriptions, the new rules have begn
numbered as follows:

Rules inserted between, for example, Rules 7) and 8) are numbered 7.1), 7.2), etc. [or 7) a.1), 7) a.2),
etc.]. Those inserted before Rule 1) are numbered 0.1), 0.2), etc.

Where this Corrigendum introduces new subclauses, the new subclauses have been numbered as follows:
Subclauses inserted between, for example, subclause 4.3.2 and 4.3.3 are numbered 4.3.2a, 4.3.2b, etc.
Those inserted before, for example, 4.3.1 are numbered 4.3.0, 4.3.0a, etc.

ICS 35.060 Ref. No. ISO/IEC 13249-2:2000/Cor.1:2003(E)

© ISO/IEC 2003 — All rights reserved

Published in Switzerland

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

Contents Page
oY S F= I3 T LT [S ;)
43 Text sCOring faCilitieS ..o e r e e s mne e e e e annn e e s 4
44.2 Treatment Of STOP WOIS ... e s mmm e e e e s 4
45 Word Normalization..........oooeoiiiiiiiiiii i e e s s e e s e s e s e s s s e s e s e s e s e s e sessr s e s s s s ssssssssssssssssssssnsnnsnsnnnnnnnsnennnenennnnnnnneds 5
46 Types and routines provided by this part of ISO/IEC 13249 ... 5
6.1 Types and routines intended for public USe.........ccccciiiiiiiccccciemerrr e ssnne e e s e i To e 5
1.1 FUITEXE TYPE i ieceteerscssne e ssssse e s sssns s ssssnn e sasssn e e s s s nnn e sanssnnessassnsensassnneenassnnnensnnennnssnde shthnnnnnans 6
1.3 RaNK Methods........ s e s e s fE b e s 7
1.4 ToKenize Method e s r e e mmn s e s e e g s b an s e e 8
1.5 TokenizePosition Method............. s by e n s nm s 8
1.7 TokenizeAndStem Method............coo e ST e e 8
1.8 TokenizePositionAndStem Method ... e s 8
1.9 FullText Methods..........oooirri e mmsne e s s sss e e i e e e 9
B g S S W = 7= ¢ RN 1/ o - 9
& T T el . N3 Y 0/ « - P, 7S 10
1.3 FT_Any Method.......... s fo s B ke s s s s s s s s nm s 10
S0 S BN I I =Y T T T 10
4.2 Contains Method ... e Sar e b s e s smn e e e e s e s s mnmn e e e ee s nnmn e e e e e e s nnnnnn 11
4.5 Tokenize Method fe s e e e s e e e s e e e e e mmn e e e e e e s nnnnnn 12
4.7 FT_TextLiteral Methods..........cocoieiiiiiiiiie e e e e e s e e e e e s s s e s s se s s s s e s s s s esnnennsnsmnmnmnmnmsrenennnnnnnnnnnes 12
5.1 FT_StemmedWord TYPeccooicciiirririrrnnrcmmenr e S s s 12
5.2 Contains Method ... i b e e e e s s s s s s smne e e s e e s s s s nmn e e e e e essassmnnneenesanssnnnnnnns 13
5.4 TokenizeAndStem Method........... e e e 14
5.5 FT_StemmedWord Methods........ccccceiiececeimfediniiiiininncreinis s ssssssse e s s s ss s s s ssssses s s e s ssssssssnmnsensssnmnnes 14
200 O el B S o1 = LT TR I/ o1 15
6.2 Contains Method ... e snerr e s s s e e s e s s s s smne e e e e e e s s s s snmn e e e e eessassnnnneenesenssnnnnnnns 15
6.5 TokenizePosition Methodoa e 17
6.6 FT_Phrase Methodsccccciiieiiefiiiniiiriirirrirrrssssssssssssssssss s s s s s s s s s s s s s s s s s e s e e e s e s e s e s e s e e e e e e e e e e reesssasssssnsssnsans 17
71 FT_StemmedPRrase TyPe. ...t o eeeiiiiiicemiie s e e e iessessmsne e e s s s s s s smsr e e s s sa s s mmmne e e e s sa s s mmnnesns s nnmnnes 18
7.2 Contains Method ... i e crserr e s e e e e s s s s smne e e e ee s s s s anmn e e e e eessassmnnneenesanssnnnnnnns 18
7.4 TokenizePositionAndStem Method ... e 20
7.5 FT_StemmedPhrase MethoOdscccocccccmmiiiiiiii e r s sssne e s s s s s ssms e e s e s s s mmn e e e e s e nnmnnns 20
L= 20 O ol B o RN 13/ o L= 21
< 2 S i W o o> " U= 3 oo 21
L T O e =T o 10 4 e [G 14/ = 21
9.4 FT_SoundeX-Method............cccciiiiiiiiccccceccier s csssss e s s s s s e s e e e s se s s samnn e e e e e s e s s s e e e e senssnnnmnnns 22
9.5 GetSoundsSimilar FUNCHION ... s mmn e e 22
10.1 FT_BroaderTerm TYPEcccccccrcrnnsnnnnnsssnsnsssasnsnnnsnnnnnnnnn 22
10.4 FT_BroaderTerm Method.......... s e e s s e e 22
10.5 GeétBroaderTerms FUNCHION...........ooc e e e e e s mns e e e e s s s am s e e e e s s mnmn e e neean 23
I IO Bl =T e 1= o I =Y TR I8 o T 24
114 YFT_NarrowerTerm Method........... s s s 24
115 GetNarrowerTerms FUNCHION............. e mmmn e 25
L% 2 B i = 3 o T I -2 26
6.12.4 FT_Synonym Method ... e 26
6.13.1 FT _PreferredTermM TYPe ... ccceeirirrisssssssssnes e s sssss s s sssne e e e s ssss s sanms e e e s e sssassssnnnesensssssssssenssanssssnnnnns 27
6.13.4 FT_PreferredTerm Method e s e 27
6.13.5 GetPreferredTerms FUNCHION........coiii e s e s s smn e e s e e s e nmnee s e s anmnnns 27
6.14.1 FT _RelatedTerm Ty PO ... i e esmer s s e s smme e e s e s s s smn e e e e s e s se s mmene e e essas s sneeeesannsnnnnnnns 28
6.14.4 FT_RelatedTerm Method ... s r s e e e e e e e e e e e ensnnnnnnnnnnnnn 28
L7000 O e N e o 1= 4 3 0 T I8/ « - 29

© ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.15.4 FT_TopTerm Method er s sr s s s e s e e s e e s s e s e e e e e e r e e e rerer e e e e e e e eenensnsnsnnnnnsanann 29
6.15.5 GetTopTerms FUNCLION e n e e e e e e e e e mmnnns 29
(200 700 T i 5 X o o T U R 1/ o - 30
6.16.4 FT_ISAbOUt MEthOd...........o et men e e e e s e s sme e e e e e s e n s nmnnns 31
L 00 A O 0o 51 (= N 1 o L OSSP 31
6.17.4 FT_Context Method e mn e s e s e e s e n e e e e e e e e mmnnns 31
6.18.1 FT ParEXpPr Ty Pe. .. iiiiiueceiiiiiiiiiiissiis s s i i s i e s e e s ssssne s e s s rasmsn e s e s s s anmnns 31
6.18.4 FT_ParEXpr Method e smmmn e e e e sn e e e e e s mmnned 3
L0 e TR T i N =Y 45 T Y 1, 3
6.19.4 FT_Term Method et s s s smnnn s e e s e s smmmne s e e e sesmnnneseesnnnslafpTan 3
L2 0 R T i I = o N 13/ « - s S A 3
6.20.4 FT_EXPr Method ... e s e e s e s s mme e e s e s s e mmn e e e s e e s e nnmnn e a@ia b s s s s nmnnns 3
6.21.1 FT_PhraseList TYPeccccciiiiiiieii s irsrersssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssnssssssesbonssdessssssnnnsannns 3
6.21.4 FT_PhraseList Method............. e smme e ek b e e e e mmnnes 3
10.2 FT_FEATURES base table........ccccooiiiieeiirrrcre e escmre s ssssee s ssssmne e ssssmee e ssssmesn fes e e s s sme e s same e s nnsmes 3
1 853 1= 021 Yo [L 0 O 3
121 Requirements for conformance............ccocceiimiircccccsemnnennnsscccssseseess sl 3
Annex A (informative) Implementation-defined elements ... Gt 3
A1 Implementation-defined Meta-variablesccoooommirreimmnrec R e e 37
Annex B (informative) Implementation-dependent elements.......... T 38
© ISO/IEC 2003 — All rights reserved 3

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

Global changes

1. Rationale: Shorten Information Schema name to be 18 characters in length.
Globally replace "FT_INFORMATION_SCHEMA" with "FT_INFORMTN_SCHEMA".

4|.2.4.2 Expansion facility patterns

~\

Rationale: Soundex facility cannot be used with <phrase>.

vl

eplace the bulleted list with:
e terms which are broader terms for the generating term,
o terms which are narrower terms for the generating term,
e terms which are synonyms of the generating term,
o terms which are preferred terms for the generating term,
¢ terms which are related to the generating term,

e terms which are top terms of the generating term.

4.3 Text scoring facilities

Rationale: The term rank is not consistent with its function:

=

eplace Subclause 4.3 with:

When a text value matches a certain pattern thereds no indication on how well the text is characterized by
that pattern. For instance a text matches the pattern:

' ("Standard", "Internationad®™, "method") '

if at least one of the pattern's words™(e.g. Standard) occurs at least once in that text. The method
Contains used for performing thé. test gives no indication about the number of matching words or
about the number of occurrencesof these words in the text value.

For that end this part of ISO/IEC 13249 provides a Score method for the FullText type. This method takes
any pattern that can also be.used for text identification as in the following example:

firstSample.Scére(' ("Standard", "International", "method") ')

The Score method-teturns a relevance measure as a non-negative floating point number where larger
numbers mean-a better match between the text value (firstSample in the above example) and the
given pattern:” The exact relationship between a text value and a pattern and the associated score
value is(implementation-defined.

4]4.2 Treatment of stop words
1

DPAatin
oIt

nala- Civ dictan~n hafanan
T et

T TOT T T IA GTotarTCC—oC W Cr 144

Delete third bullet item that begins with "It is implementation-defined whether the distance separating two
words W1 and W2".

4 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

4.5 Word normalization

1. Rationale: The term rank is not consistent with its function.
Replace Subclause 4.5 with:

When evaluating Score or Contains method invocations conforming implementations are allowed to
normalize word patterns in an implementation-defined way provided that the words contained in the text

values being tested or scored by the Score or Contains methods are effectively processed in the same
way. For instance, the word pattern

v "Miiller" v

may be replaced by

' "Mueller" '

This pattern will be matched by any text value containing at least one occurrence of Miller since th|s
word is effectively replaced by Mueller before performing the test.

Normalization can possibly result in more matches than would be obseryed Without normalization.
German texts the word Mueller (as opposed to Miiller) has a low occurrence probability. If text value
containing Mueller are to be identified then unwanted texts (i.e.~those containing Miiller but ng
Mueller) will eventually be identified as well.

~ W0 35

4.6 Types and routines provided by this part of ISO/IEC 13249

1. Rationale: The term rank is not consistent with its function.
Replace Item 2 with:

2. definition oriented types and routines that.are used to capture the semantics of the Category 1 typegs
and routines, except for Score methods.(see Subclause 5.3.1, "FT_Pattern Type").

4.6.1 Types and routines intended for public use

1. Rationale: The term rank is-hot consistent with its function.
Replace Subclause 4.6.1 with:

The following types_and routines are intended for public use:
e FullText type with

e methods Language,

e ~/methods Contains,

e methods Score,

e methods FullText,

e function FullText _to Character to cast a FullText value into a character string,

e FT Pattern type.

© ISO/IEC 2003 — All rights reserved 5

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

511 FullText Type

1. Rationale: Correct constructor method definitions.

Replace the <original method specification>s that begins with "METHOD FullText" in the Definition with:

CONSTRUCTOR METHOD FullText
(string CHARACTER VARYING (FT MaxTextlLength))

RETURNS FullText
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL

CALLED ON NULL INPUT,

CONSTRUCTOR METHOD FullText
(string CHARACTER VARYING (FT MaxTextLength),
Language CHARACTER VARYING(FT MaxLanguageLength))
RETURNS FullText
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

N

Rationale: Support SQL-data dependent implementations of Contains()-and Rank() methods.

eplace the <original method specification>s that begins with "METHQD ‘Contains" in the Definition with:

vl

METHOD Contains
(pattern FT Pattern)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
READS SQL DATA
CALLED ON NULL INPUT,

METHOD Contains
(pattern CHARACTER,(VARYING (FT MaxPatternLength))
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
READS SQL DATA
CALLED ONe«NULIL INPUT,

3 Rationale: The term_rank is not consistent with its function and support SQL-data dependent
implementations of.Contains() and Rank() methods.

|

eplace the <original'method specification>s that begins with "METHOD Rank" in the Definition with:

METHOD Score
(pattern FT Pattern)
RETURNS DOUBLE PRECISION
LANGUAGE SQL
FT ScoreDeterminism
READS SQL DATA

CALLED ON NULL INPUT,

METHOD Score
(pattern CHARACTER VARYING (FT MaxPatternLength))
RETURNS DOUBLE PRECISION
LANGUAGE SQL
FT ScoreDeterminism
READS SQL DATA
CALLED ON NULL INPUT,

6 © |ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

4. Rationale: The term rank is not consistent with its function.
Add the following Definitional Rule:
5.1) FT_ScoreDeterminism is either NOT DETERMINISTIC or DETERMINISTIC.

5. Rationale: The term rank is not consistent with its function.

Ranlaca Doacerintion 1) A\ vithe
Replase-Deseription—H-c-with:
d) a method Score(FT_Pattern),

6. Rationale: The term rank is not consistent with its function.
Replace Description 1) e) with:
e) a method Score(CHARACTER VARYING),

51.3 Rank Methods

1. Rationale: The term rank is not consistent with its function.
Replace Subclause 5.1.3 with:
Purpose
Search a FullText value for a linear search pattern and\give the relevance of the pattern.
Definition

CREATE METHOD Score (pattern FT_ Patfekn)
RETURNS DOUBLE PRECISION
FOR FullText
BEGIN

-— !l See Description

END

CREATE METHOD Score
(pattern CHARAQTER VARYING (FT MaxPatternLength))
RETURNS DOUBLE) PRECISION
FOR FullText
RETURN SELF.Score (CAST (pattern AS FT Pattern))

Definitional Rulées

1) FT_MaxPatternLength is the implementation-dependent maximum length for the charactgr
representation of an FT_Pattern value.

Description
1) The method Score(FT_Pattern) takes the following input parameters:
a) an FT_Pattern value pattern.
2) The method Score(CHARACTER VARYING) takes the following input parameters:
a) a CHARACTER VARYING value pattern.

3) The result of the invocation Score(CHARACTER VARYING) or Score(FT_Pattern) is determined
as follows:

Case:

a) If the value of pattern does not have the format of a <search expression>, then an exception
condition is raised: SQL/MM Full-Text exception — invalid search expression.

NOTE 6 <search expression> is defined in Subclause 5.3.1, "FT_Pattern Type".

© ISO/IEC 2003 — All rights reserved 7

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

b) Otherwise:
Case:
i) If SELF, SELF.Contents, or pattern is the null value, the null value.

i) Otherwise, an implementation-dependent DOUBLE PRECISION value constrained by
implementation-defined minimum and maximum values. The size of this value is an

indication-of-howrelevant SELE is forthe gi\/nn pgﬂ'nrn

4) The result of invocation of Score(FT_Pattern) is invariant to the case of the <key word>s in
FT_Pattern.

NOTE 7 A list of FT_Pattern <key word>s is given in Subclause 5.3.2, "FT_Pattern Key Words™

51.4 Tokenize Method

~\

Rationale: Provide missing text regarding tokenization of stop words.

b~

dd the following Description:

3.1) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Contents, or all stop words of SELF.Contents other than leadingjand trailing stop words are
effectively included in the result of SELF.Tokenize(). If stop .words are included, then it is
implementation-defined how they are effectively represented, provided their representation is such
that the result of comparing any two stop words is true.

51.5 TokenizePosition Method

~\

Rationale: Lowest position is not necessarily 1 (one).

|

eplace Description 9) with:

9) Let TLE be the element of SELF.TokenizePosition('WORDS') with the lowest Position value. If
leading stop words are included in the'result of SELF.TokenizePosition('WORDS’) then the value of
TLE.Position shall be 1 (one).

51.7 TokenizeAndStem Method

~\

Rationale: Provide missing text regarding tokenization of stop words.

b~

dd the following Description:

3.1) It is implementation-defined whether no stop words of SELF.Contents, all stop words of
SELF.Centents, or all stop words of SELF.Contents other than leading and trailing stop words are
effectively included in the result of SELF.TokenizeAndStem(). If stop words are included, then it is
implementation-defined how they are effectively represented, provided their representation is such
thap the result of comparing any two stop words is true.

5.1.8 TokenizePositionAndStem Method

1. Rationale: Lowest position is not necessarily 1 (one).
Replace Description 7) with:

7) Let TLE be the element of SELF. TokenizePositionAndStem() with the lowest Position value. If leading
stop words are included in the result of SELF.TokenizePositionAndStem() then the value of
TLE.Position shall be 1 (one), otherwise the value of TLE.Position shall be one more than the number
of leading stop words.

8 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

51.9 FullText Methods

1. Rationale: Correct constructor method definitions.

Replace the Definition with:

CREATE CONSTRUCTOR METHOD FullText
(string CHARACTER VARYING (F'T MaxTextlLength))

RETURNS FullText
FOR FullText
RETURN SELF.Contents (string)

CREATE CONSTRUCTOR METHOD FullText
(string CHARACTER VARYING (FT MaxTextLength),
Language CHARACTER VARYING (FT MaxLanguageLength))
RETURNS FullText
FOR FullText
BEGIN
DECLARE InvalidLanguage CONDITION FOR SQLSTATE ! XXF02";

IF Language IS NULL OR
Language = '' OR

-- if Language does not specify a s@pported language

THEN
SIGNAL InvalidLanguage
SET MESSAGE TEXT = 'invalid language specification';
END IF;
RETURN SELF.Contents (string).language (Language) ;
END

5.31 FT_Pattern Type

1. Rationale: Proximity facility cannot\be used with phrases.

Replace the syntactic element for <token list1> and <token list2> in Description 3) with:
<token listl> =Ntoken list>

<token 1list2>°:= <token list>
Replace the first paragraph of 5) f) that begins with "If P is a <Proximity expansion> PF[" with:

f) If P\is a <Proximity expansion> PFI, then let TL1 be <token list1> and TL2 be <token list2%.
Augment both TL1 and TL2 such that every occurrence of a <word>, or <stemmed word> whigh
does not specify a <language specification> is adorned by a <language specification> denoting
the default language. Additionally augment both TL7 and TL2 such that every occurrence o¢f
<stemmed word> which does not specify the optional key word STEMMED is adorned by th|s
missing optional key word.

2. Rationale: Soundex facility cannot be used with <phrase>.

Replace the first sentence of 5) i) that begins with "If P is a <Soundex expansion>" with:

i) If Pis a <Soundex expansion> SF/, augment SF/ such that the occurrence of a <word> which
does not specify a <language specification> is adorned by a <language specification> denoting
the default language.

© ISO/IEC 2003 — All rights reserved 9

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.1.1 FT_Any Type

1. Rationale: Correct constructor method definitions.
Replace the <original method specification> that begins with "METHOD FT_Any" in the Definition with:

CONSTRUCTOR METHOD FT Any
(tokens FT WordOrPhrase ARRAY[FT MaxArrayLength])

RETURNS T ANy

SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL

CALLED ON NULL INPUT

6.1.3 FT_Any Method

~\

Rationale: Correct constructor method definitions.
eplace the Definition with:

vy

CREATE CONSTRUCTOR METHOD FT Any
(tokens FT WordOrPhrase ARRAY[FT MaxArrayLength))
RETURNS FT Any
FOR FT Any
RETURN SELF.Tokens (tokens)

6.4.1 FT_TextLiteral Type

~\

Rationale: The RETURNS clause is not consistent with'the usage of the method.
eplace the <original method specification>s that begins)with "METHOD FT_Tokenize" in the Definition with:

vy

METHOD Tokenize ()
RETURNS FT_TextLiteral ARRAY [1]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULINNNPUT,

N

Rationale: Correct constructor method definitions.
eplace the <original method specification>s that begins with "METHOD FT_TextLiteral" in the Definition with:

by

CONSTRUECTOR METHOD FT TextLiteral
(W(Emrl1lText Token,
Laflguage CHARACTER VARYING (FT MaxLanguageLength))
RETURNS FT TextLiteral
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

CUNSTRUUTUR METHUD rl_le ELiEEIdL
(w FullText Token
Language CHARACTER VARYING (FT MaxLanguageLength),
EscapeChar CHARACTER (1))
RETURNS FT_TextLiteral
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

10 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.4.2 Contains Method
1. Rationale: Align semantics with FT_Phrase.
Replace the Definition with:

CREATE METHOD Contains
(text FullText)

RETURNS BOOLEAN
FOR FT TextLiteral
BEGIN
DECLARE result BOOLEAN;

IF text.Tokenize () IS NULL THEN
RETURN UNKNOWN;

END IF;
IF CARDINALITY (text.Tokenize()) = 0 THEN
SET result = FALSE;
ELSEIF CARDINALITY (SELF.Tokenize()) = 0 THEN
-- !l See Description
ELSE
SET result = (WITH RECURSIVE tempTal,(pOs, token) AS
(VALUES (1, text.Tokenize () [1])

UNION
SELECT tt.pos + 1, text.Tok&nhize() [tt.pos + 1]
FROM tempTab tt
WHERE tt.pos < CARDINALITY (text.Tokenize())
)y
Temp (BasI) AS
(SELECT MAX (BasI)
FROM (VALUES (@) UNION
SELECT
CASE SELF.Tokenize () [1] .matches (tt.token)
WHEN FALSE THEN 1
WHEN, TRUE THEN 3
ELSE 2
END
FEROM TempTab tt) AS TT (BasI)
)
SELHCT" ARRAY [FALSE, UNKNOWN, TRUE] [BasI] FROM Temp
) ;
END&IE;
RETURN (SELF.NOT tag = result);
END

Replace first paragraph of Description 2) with:

2) LetTL be the result of the invocation of text. Tokenize() and TLE be elements of TL, normalized in gn
implementation-defined way, and with leading and trailing blanks removed. Let T be the result of the
invocation of SELF.Tokenize() and if the cardinality of T is one then let TE be the first element of T,
normalized in an implementation-defined way and with leading and trailing blanks removed. |If
SELF.EscapeSpec is the null value, let TT be TE; otherwise, let TT be TE ESCAPE
SELF.EscapeSpec.

2. Rationale: Align semantics with FT_Phrase and allow Stop words in query.
Replace Description 2) a) i)
i) If the cardinality of T is zero then it is implementation-defined whether
1) tolet R be false, or

2) an exception condition is raised: SQL/MM Full-Text - effectively empty search
expression.

© ISO/IEC 2003 — All rights reserved 11

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.4.5 Tokenize Method
1. Rationale: The RETURNS clause is not consistent with the usage of the method.
Replace Definition with:

CREATE METHOD Tokenize ()
RETURNS FT Textliteral ARRAY[1]

FOR FT TextLiteral
BEGIN

-- !l See Description

END

N

Rationale: Wild card characters are preserved and provide missing text regarding tokenizatiofi of stop
words.

Replace Description 2) with:

2) Tokenize() normalizes SELF.LitPart in an implementation-defined way. Any-wild card characters in
SELF.LitPart are preserved in the result of Tokenize(). In addition, it isyimplementation-defined
whether stop words are effectively included in the result, and if so, how they are represented.
However, a conforming implementation must treat stop words in thisimethod and in the FullText
method Tokenize() in the same way.

6.4.7 FT_TextLiteral Methods

~\

Rationale: Correct constructor method definitions.

)

eplace the Definition with:

CREATE CONSTRUCTOR METHOD FT TextlLiteral
(w FullText Token,
Language CHARACTER VARYING (FT MaxLanguageLength))
RETURNS FT TextLiteral
FOR FT TextLiteral
RETURN SELF.LitPart{EliminateDQS (w)) .
Language (Language) .NOT tag (TRUE)

CREATE CONSTRUCTOR METHOD FT TextLiteral
(w FullText, Token B
Language (€HARACTER VARYING (FT MaxLanguageLength),
EscapeChar-CHARACTER (1))
RETURNS\PT TextLiteral
FOR FT-TextLiteral
RETPURN FT TextLiteral (w, Language) .EscapeSpec (EscapeChar)

6,5.1 FT_StemmedWord Type

11 "-Rationale: The RETURNS clause is not consistent with the usage of the method.

Replace the <original method specification>s that begins with "METHOD FT_Tokenize" in the Definition with:

METHOD TokenizeAndStem()
RETURNS FT_TextLiteral ARRAY [1]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

12 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

2. Rationale: Correct constructor method definitions.

Replace the <original method specification>s that begins with "METHOD FT_StemmedWord" in the Definition
with:

CONSTRUCTOR METHOD FT StemmedWord
(sw FullText Token,
Language CHARACTER VARYING (FT MaxLanguageLength))

RETURNS FT StemmedWord
SELF AS RESULT
LANGUAGE SOQL
DETERMINISTIC

CONTAINS SOL

CALLED ON NULL INPUT

CONSTRUCTOR METHOD FT StemmedWord
(sw FullText_Tokeﬁ_
Language CHARACTER VARYING (FT MaxLanguageLength),
EscapeChar CHARACTER (1))
RETURNS FT StemmedWord
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

6.5.2 Contains Method

1. Rationale: Align semantics with FT_StemmedPhrase.

Replace the Definition with:

CREATE METHOD Contains
(text FullText)
RETURNS BOOLEAN
FOR FT StemmedWord
BEGIN
DECLARE resudt BOOLEAN;

IF text\TokenizeAndStem() IS NULL THEN
RETURN UNKNOWN;
ENDSEE';
IE\.CARDINALITY (text.TokenizeAndStem()) = 0 THEN
SET result = FALSE;
ELSEIF CARDINALITY (SELF.TokenizeAndStem()) = 0 THEN

-- !l See Description

ELSE
SET result = (WITH RECURSIVE tempTab (pos, token) AS
(VALUES (1, text.TokenizeAndStem() [1])
UNION
SELECT tt.pos + 1, text.TokenizeAndStem() [tt.pos + 1]
FROM tempTab tt

WHERE tt.pos < CARDINALITY (text.TokenizeAndStem())
)
Temp (BasI) AS
(SELECT MAX (BasI)
FROM (VALUES (1) UNION
SELECT
CASE SELF.TokenizeAndStem() [1] .matches (tt.token)
WHEN FALSE THEN 1
WHEN TRUE THEN 3

© ISO/IEC 2003 — All rights reserved 13

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

ELSE 2
END
FROM TempTab tt) AS TT(BasI)
)
SELECT ARRAY[FALSE, UNKNOWN, TRUE] [BasI] FROM Temp
)i
END IF;

RETURN (SELF.NOT tag = result);
END

vl

eplace first paragraph of Description 2) with:

2) Let TL be the result of the invocation of text. TokenizeAndStem(). Let TLE be elements of HL,
normalized and reduced to stems in an implementation-defined way, and with leading and trailing
blanks removed. Let T be the result of the invocation of SELF.TokenizeAndStem() and-if the
cardinality of T is one then let TE be the first element of T, normalized and reduced to stems in an
implementation-defined way, and with leading and trailing blanks removed. If SELF.EScapeSpec is
the null value, let TT be TE; otherwise, let TT be TE ESCAPE SELF.EscapeSpec.

Insert new Description 2) a) 0.i):
0.i) If the cardinality of T is zero then it is implementation-defined whether
1) tolet R be false, or

2) an exception condition is raised: SQL/MM Full-Text - effectively.empty search expression.

6.5.4 TokenizeAndStem Method

~\

Rationale: Align semantics with FT_StemmedPhrase.

v

eplace the Definition with:

CREATE METHOD TokenizeAndStem()
RETURNS FT_TextLiteral ARRAY [J-]
FOR FT_ StemmedWord

BEGIN
:: !'l See Descriptien
END N
24 Rationale: Provide missing text'regarding tokenization of stop words.
Replace Description 2) with:

2) TokenizeAndStem() normalizes and stem-reduces SELF.LitPart in an implementation-defined way. In
addition, it is implementation-defined whether stop words are effectively included in the result, and if
so, how they-aré represented. However, a conforming implementation must treat stop words in this
method and,in the FullText method TokenizeAndStem() in the same way.

65.5 _FT/StemmedWord Methods

11 _‘Rationale: Correct constructor method definitions.

I tha Naofinid: H 1
CUMIAQLT UIC UTTITTIIUUTT VWILTT.

CREATE CONSTRUCTOR METHOD FT StemmedWord
(sw FullText Token,
Language CHARACTER VARYING (FT MaxLanguageLength))
RETURNS FT StemmedWord
FOR FT_StemmedWord
RETURN SELF.LitPart (EliminateDQS (sw)) .
Language (Language) .NOT Tag (TRUE)

14 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

CREATE CONSTRUCTOR METHOD FT StemmedWord
(sw FullText Token, B
Language CHARACTER VARYING (FT MaxLanguageLength),
EscapeChar CHARACTER(1))
RETURNS FT StemmedWord
FOR FT StemmedWord
RETURN FT StemmedWord (sw, Language) .EscapeSpec (EscapeChar)

6.6.1 FT_Phrase Type

1. Rationale: Correct constructor method definitions.

Replace the <original method specification>s that begins with "METHOD FT_Phrase" in the(Definition with:

CONSTRUCTOR METHOD FT Phrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTER VARYING(FT MaxLanguageLength))
RETURNS FT Phrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

CONSTRUCTOR METHOD FT Phrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTER VARYING (E¥ MaxLanguageLength),
EscapeChar CHARACTER(1))
RETURNS FT_ Phrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INRUT

6.6.2 Contains Method

1. Rationale: Align semantics with FT_TextLiteral.

Replace Definition with}

CREATEYMETHOD Contains

(hext FullText)

RETURNS BOOLEAN

FOR FT_ Phrase

BEGIN
DECLARE tokarray FT TokenPosition ARRAY[FT MaxArrayLength];
DECLARE result BOOLEAN;
DECLARE lent INTEGER;
DECLARE tlen INTEGER;
DECLARE lenp INTEGER;

DECLARE plen INTEGER;
DECLARE canonicphr FT TokenPosition ARRAY[FT MaxArrayLength];
DECLARE nmsk INTEGER;
DECLARE i INTEGER;

SET tokarray = text.TokenizePosition ('WORDS') ;
IF tokarray IS NULL THEN

RETURN UNKNOWN;
END IF;

© ISO/IEC 2003 — All rights reserved

15

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

SET lent = CARDINALITY (tokarray):;
SET canonicphr = SELF.TokenizePosition();
IF (SELF IS NULL OR canonicphr IS NULL) AND
lent <> 0 THEN
RETURN UNKNOWN;

END IF;

SET lenp = CARDINALITY (canonicphr) ;
SET nmsk = 0;

SET i =1;

Ll: WHILE (i <= lenp) DO
IF canonicphr[i].token SIMILAR '$%+' ESCAPE 'S$' THEN
SET nmsk = nmsk + 1;
END IF;
SET 1 = 1 + 1;
END WHILE L1;
IF lent = 0 THEN
RETURN (FALSE = SELF.NOT_tag);
END IF;
IF lenp = 0 THEN

-- !l See Description

END IF;
SET tlen = tokarray[lent].position;
SET plen = canonicphr[lenp].position;

IF tlen < plen - nmsk THEN

RETURN (FALSE = SELF.NOT tag)’
END IF;
IF plen - nmsk = 0 THEN

RETURN (TRUE = SELF.NQT, ‘tag) ;
END IF;

SET result = (WITH RECURSIVE textrange (i) AS
(VALUES (1)
UNION
SELECT i +-.1
FROM textrange
WHERE: 1 < lent
)y
Temp(BasI) AS
(SELECT MAX (BasI)
FROM (VALUES (1) UNION
SELECT
CASE tokarrayl[i].position <=
tlen + 1 - (plen - nmsk) AND
matches (tokarray, i, lent, canonicphr, 1, lenp,
SELF.EscapeSpec, SELF.Language)
WHEN FALSE THEN 1
WHEN TRUE THEN 3
ELSE 2
END

FROM textrange AS tr (1)) AS TT(BaslI)
)
SELECT ARRAY[FALSE, UNKNOWN, TRUE] [BasI] FROM Temp

) ;
RETURN (SELF.NOT tag = result);
END
2. Rationale: Clean-up of stop word treatment.

Delete Description 4).

16 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

3. Rationale: Align semantics with FT_Tex{Literal.
Replace Description 6) c) with:

ISO/IEC 13249-2:2000/Cor.1:2003(E)

c) If the cardinality of TPL is zero then it is implementation-defined whether

i) toletR be false, or

i)

an exception condition is raised: SQL/MM Full-Text — effectively empty search expression.

4. Rationale: Fix distance between two tokens.

Delete Description 8).

6.6.5

1. Rationale: Wild card characters are preserved and treatment of stop words is implementation-defined.

Replace Description 2) with:

2)

6.6.6

1. Rationale: Correct constructor method definitions.

Replace the Definition with:

c.1) If TPL represents optional words only, then let R be true.

TokenizePosition Method

TokenizePosition() normalizes SELF.PhrasePart in an implementation-defined way. Any wild car
characters in SELF.PhrasePart are preserved in the ~result of TokenizePosition() an
SELF.EscapeSpec is used as the <escape representation character>. In addition, it
implementation-defined whether stop words are effectively.included in the result, and if so, how thg
are represented. However, a conforming implementation\must treat stop words in this method and
the FullText method TokenizePosition(FullText_Token)\in‘the same way.

FT_Phrase Methods

CREATE CONSTRUCTOR METHOD FT Phrase
(wl FullText Token™ARRAY[FT MaxArrayLength],
Language CHARAGTER VARYING (FT MaxLanguageLength))
RETURNS FT Phrase
FOR FT Phrase
BEGIN
DECLARE. i INTEGER;

IF\wl IS NULL THEN
RETURN SELF;
END IF;
SET SELF.Language = Language;
SET SELF.NOT tag = TRUE;
SET SELF.PhrasePart =
CAST (ARRAY[] AS FullText Token ARRAY[FT MaxArrayLength]);
-- This method expects a list of FullText tokens
where <doublequote symbol>s have not been
eliminated yet. Therefore, tokens in wl may contain
<doublequote symbol>s that have to be turned into

d
d
s
y
n

<double guote>s

SET i = 0;

Ll: WHILE (i < CARDINALITY(wl)) DO
SET SELF.PhrasePart = SELF.PhrasePart

|| ARRAY [EliminateDQS(wl([i + 171)71;

SET 1 = 1 + 1;

END WHILE L1;

RETURN SELF;

END

© ISO/IEC 2003 — All rights reserved 1

7

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

CREATE CONSTRUCTOR METHOD FT Phrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTER VARYING (FT MaxLanguageLength),
EscapeChar CHARACTER(1))
RETURNS FT Phrase
FOR FT Phrase
RETURN NEW FT Phrase (wl, Language) .EscapeSpec (EscapeChar)

6.7.1 FT_StemmedPhrase Type

~\

Rationale: Correct constructor method definitions.

eplace the <original method specification>s that begins with "METHOD FT_StemmedPhrase®/in the
efinition with:

0o

CONSTRUCTOR METHOD FT StemmedPhrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTER VARYING (FT MaxLanguageLength))
RETURNS FT_ StemmedPhrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT,

CONSTRUCTOR METHOD FT StemmedPhrase
(wl FullText Token ARRAY[FT MaxArraylLength],
Language CHARACTER VARYING (FT MaXDanguageLength),
EscapeChar CHARACTER(1))
RETURNS FT_ StemmedPhrase
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

6.7.2 Contains Method

~\

Rationale: Align semantics with.FT_StemmedWord.

v

eplace Definition with:

CREATE METHOD. Contains

(text (Eu¥lText)

RETURNS® BOOLEAN

FORN\FT StemmedPhrase

BEGTIN
DECLARE tokarray FT TokenPosition ARRAY[FT MaxArrayLength];
DECLARE result BOOLEAN;
DECLARE lent INTEGER;
DECLARE tlen INTEGER;
DECLARE lenp INTEGER;

DECTLARE piell INTEGER;
DECLARE nmsk INTEGER;
DECLARE canonicphr FT TokenPosition ARRAY[FT MaxArrayLength];
DECLARE i INTEGER;

SET tokarray = text.TokenizePositionAndStem() ;
IF tokarray IS NULL THEN

RETURN UNKNOWN;
END IF;

18 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

SET lent = CARDINALITY (tokarray);

SET canonicphr = SELF.TokenizePositionAndStem() ;

IF (SELF IS NULL OR canonicphr IS NULL) AND lent <> 0 THEN
RETURN UNKNOWN;

END IF;

SET lenp = CARDINALITY (canonicphr);
SET nmsk = 0;

SET i =1;

Ll: WHILE (i <= lenp) DO
IF canonicphr[i].token SIMILAR '$%+' ESCAPE 'S$' THEN
SET nmsk = nmsk + 1;
END IF;
SET 1 = 1 + 1;
END WHILE L1;
IF lent = 0 THEN
RETURN (FALSE = SELF.NOT_tag);
END IF;
IF lenp = 0 THEN

-- !l See Description

END IF;

SET tlen = tokarray[lent].positien;
SET plen = canonicphr[lenp].position;
IF tlen < plen - nmsk THEN

RETURN (FALSE = SELF.NQOI) ¥ag);
END IF;
IF plen - nmsk = 0 THEN

RETURN (TRUE = SELE»,NOT tag);
END IF;

SET result = (WITH'RECURSIVE textrange (i) AS
(VALUES (1)
UNION
SELECT\d =+ 1
FROM textrange
WHEREY 1 < lent
) 4
Temp (BasI) AS
(SELECT MAX (BasI)
FROM (VALUES (1) UNION
SELECT
CASE tokarrayl[i].position <=
tlen + 1 - (plen - nmsk) AND
matches (tokarray, i, lent, canonicphr, 1, lenp,
SELF.EscapeSpec, SELF.Language)
WHEN FALSE THEN 1
WHEN TRUE THEN 3
ELSE 2
END
FROM textrange AS tr(i)) AS TT(BasI)

)
SELECT ARRAY[FALSE, UNKNOWNN, NULL] [BaseI]
FROM Temp
)7
RETURN (SELF.NOT tag = result);
END

2. Rationale: Clean-up of stop word treatment.

Delete Description 4).

© ISO/IEC 2003 — All rights reserved 19

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

3. Rationale: Align semantics with FT_StemmedWord.
Replace Description 6) c) with:
c) If the cardinality of TPL is zero then it is implementation-defined whether
i) toletR be false, or

i) an exception condition is raised: SQL/MM Full-Text — effectively empty search expression.

c.1) If TPL represents optional words only, then let R be true.

EN

Rationale: Fix distance between two tokens.

Delete Description 8).

6.7.4 TokenizePositionAndStem Method

~\

Rationale: Treatment of stop words is implementation-defined.

vl

eplace Description 2) with:

2) TokenizePositionAndStem() normalizes and stem-reduces the sequefce of words represented by
SELF.PhrasePart in an implementation-defined way. In addition, it istimplementation-defined whether
stop words are effectively included in the result, and if so, how-they are represented. However, a
conforming implementation must treat stop words in this method and in the FullText method
TokenizePositionAndStem() in the same way.

6.7.5 FT_StemmedPhrase Methods

~\

Rationale: Correct constructor method definitions,

|

eplace the Definition with:

CREATE CONSTRUCTOR METHOD FT\ StemmedPhrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTERMNVARYING (FT MaxLanguageLength))
RETURNS FT StemmedPhrase
FOR FT_StemmedPhtase
BEGIN
DECLARE i&INTEGER;

IF wl TS NULL THEN
RETURN SELF;
END7ILE;
SE" SELF.NOT tag = TRUE;
SET SELF.PhrasePart =
CAST (ARRAY[] AS FullText Token ARRAY[FT MaxArrayLength]);
-- This method expects a list of FullText tokens
-- where <doublequote symbol>s have not been
-- eliminated yet. Therefore, tokens in wl may contain
-- <doublequote symbol>s that have to be turned into
—-— <double quote>s

SET i = 0;

Ll: WHILE (i < CARDINALITY(wl)) DO
SET SELF.PhrasePart = SELF.PhrasePart

| | ARRAY [EliminateDQS(wl[i + 171)71;

SET 1 = 1 + 1;

END WHILE L1;

RETURN SELF;

END

20 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

CREATE CONSTRUCTOR METHOD FT StemmedPhrase
(wl FullText Token ARRAY[FT MaxArrayLength],
Language CHARACTER VARYING (FT MaxLanguageLength),
EscapeChar CHARACTER(1))
RETURNS FT StemmedPhrase
FOR FT StemmedPhrase
RETURN NEW FT StemmedPhrase (wl, Language) .EscapeSpec (EscapeChar)

6.8.1 FT_Proxi Type

1. Rationale: Correct constructor method definitions.

Replace the <original method specification> that begins with "METHOD FT_Proxi" in the Definition with:

CONSTRUCTOR METHOD FT Proxi

(TokListl FT TextLiteral ARRAY[FT MaxArrayLengthl})
TokList2 FT TextLiteral ARRAY[FT MaxArrayLength],
DistanceValue INTEGER,

DistanceUnit FullText Token,

OrderIndicator FullText Token)

RETURNS FT Proxi

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

CALLED ON NULL INPUT

6.8.4 FT_Proxi Method

1. Rationale: Correct constructor method definitions.

Replace the Definition with:

CREATE CONSTRUCTOR METHOD FT Proxi
(TokListl FT TextLiteral ARRAY[FT MaxArrayLength],
TokList2 FT\TextLiteral ARRAY[FT MaxArrayLength],
DistanceValue INTEGER,
DistanceUnit FullText Token,
OrderFndicator FullText Token)
RETURNS) FT Proxi
FOR ET Proxi
RETURN SELF.TLI (TokListl) .TL2 (Toklist2).
dv (DistanceValue) .du(DistanceUnit) .
oi(OrderIndicator) .NOT tag (TRUE)

6.9:1 FT_Soundex Type

1. Rationale: Correct constructor method definitions.

Replace the <original method specification> that begins with "METHOD FT_Soundex" in the Definition with:

CONSTRUCTOR METHOD FT Soundex (snd FT_TextLiteral)
RETURNS FT_Soundex
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

© ISO/IEC 2003 — All rights reserved 21

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.9.4

FT_Soundex Method

1. Rationale: Correct constructor method definitions.

Replace the Definition with:

CREATE CONSTRUCTOR METHOD FT_Soundex
(snd FT TextLiteral)

N

2)

6(9.5

=

3)

6(10.1

=

ith:

=

6.10.4

RETURNS FT_Soundex
FOR FT_Soundex
RETURN SELF.spoken (snd) .NOT_ tag (True)

Rationale: Soundex facility is implementation-dependent.

eplace Description 2) with:

Though not enforced by this standard, snd is intended to represent a sound pattern) which is
potentially equivalent to a number of tokens. The equivalence is language ,dependent and
implementation-dependent.

GetSoundsSimilar Function

Rationale: Soundex facility is implementation-dependent.

eplace Description 3) with:

If the input parameter spoken or spoken.LitPart is .the” null value, then the result of
GetSoundsSimilar(FT_TextLiteral) is the null value. Further details of GetSoundsSimilar(FT_TextLiteral)
are implementation-dependent.

FT_BroaderTerm Type

Rationale: Correct constructor method definitions.

eplace the <original method specification> that, begins with "METHOD FT_BroaderTerm" in the Definition

CONSTRUCTOR METHOD ET. BroaderTerm

(thes name CHARACTER VARYING (FT ThesNameLength),
strt FT WordQOrPhrase,

thes exp count INTEGER)

RETURNS ET\BroaderTerm

SELF AS.\RESULT

LANGUAGE SQL

DETERMINISTIC

COGNTAINS SQL

CALLED ON NULL INPUT

FT/BroaderTerm Method

11 /Rationale: Correct constructor method definitions.

22

eptace the Defimitiomwittr:

CREATE CONSTRUCTOR METHOD FT_BroaderTerm

(thes name CHARACTER VARYING (FT ThesNameLength),
strt FT WordOrPhrase,

thes exp count INTEGER)

RETURNS FT BroaderTerm

FOR FT_ BroaderTerm

RETURN SELF.thesaurus (thes name).startingTerm(strt).

expansionCnt (thes exp count) .NOT tag (TRUE)

© |ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.10.5 GetBroaderTerms Function
1. Rationale: Correcting the semantics of expansion functions.
Replace the Definition with:

CREATE FUNCTION GetBroaderTerms
(thes name CHARACTER VARYING(FT ThesNamelLength),

startingTerm FT WordOrPhrase,
thes exp count INTEGER)
RETURNS FT WordOrPhrase ARRAY[FT MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN
DECLARE ret FT WordOrPhrase ARRAY[FT MaxArrayLengtH];
DECLARE strt FullText Token ARRAY[FT MaxArrayLength];
DECLARE strt termid INTEGER;
DECLARE local exp count INTEGER;

SET thes name = TRIM(BOTH ' ' FROM thes mame);
SET strt = startingTerm.getWordArray ()4

SET local exp count =
CASE
WHEN thes exp count IS NOT\NULL THEN
thes exp count
ELSE
1
END;

SET strt termid =
(SELECT TERMID
FROM TERM_DICTIONARY
WHERE EXPR.g€tWordArray() = strt
AND “PRIM(BOTH ' ' FROM THNAME_DIC) = thes_name
)7

SET ret=CAST (ARRAY[] AS FT WordOrPhrase
ARRAY JFT MaxArrayLength]) ;

L1:SFEOR elem AS
WITH RECURSIVE done so_ far (TERMID,NARROWER TERMID,LEVEL) AS
(SELECT TERMID, NARROWER TERMID, 0
FROM TERM HIERARCHY
WHERE NARROWER TERMID = strt termid

AND TRIM(BOTH ' ' FROM THNAME HRR) = thes name
AND local exp count >= 0
UNION
SELECT more.TERMID, more.NARROWER TERMID,
CASE

WHEN thes exp count IS NOT NULL THEN
B.LEVEL + 1
ELSE

0

END AS LEVEL

FROM done so far B, TERM HIERARCHY more

WHERE B.TERMID = more.NARROWER TERMID
AND TRIM(BOTH ' ' FROM more.THNAME HRR) = thes name
AND B.LEVEL < local exp count

)

(SELECT ARRAY[TD.EXPR] AS EXPRarrl
FROM TERM DICTIONARY TD, done so far £

© ISO/IEC 2003 — All rights reserved 23

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

WHERE TD.TERMID = f.TERMID
AND TRIM(BOTH ' ' FROM TD.THNAME_DIC) = thes_name)

UNION
(SELECT ARRAY[cl] AS EXPRarrl

FROM (VALUES (startingTerm)) AS tl(cl),

(VALUES (thes name)) AS t2(c2)

WHERE ¢l IS NOT NULL AND c2 IS NOT NULL)

DO -—-- for every row of the above guery result,

-- append the value of column EXPRarrl to the array

SET ret = ret || EXPRarrl;
END FOR L1;
RETURN ret;
END

Heplace Description 3) with:

3) GetBroaderTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns anmempty array if
the following is true:

a) Either startingTerm or thes_name is the null value.
Heplace Description 6) with:

6) The term startingTerm is included in the result.

6l11.1 FT_NarrowerTerm Type

~\

Rationale: Correct constructor method definitions.

vl

eplace the <original method specification> that begins with *METHOD FT_NarrowerTerm" in the Definition
ith:

=

CONSTRUCTOR METHOD FT NarrowgrTerm

(thes name CHARACTER VARYING(FT ThesNameLength),
strt FT WordOrPhrase,

thes exp count INTEGER)

RETURNS FT NarrowenTerm

SELF AS RESULT

LANGUAGE SQL

DETERMINISTIG

CONTAINS SQL

CALLED ON.NULL INPUT

6111.4 FT_NarrowerTerm Method

~\

Rationale=~Correct constructor method definitions.

vl

eplacexthe Definition with:

CREATE CONSTRUCTOR METHOD FT NarrowerTerm
(thes name CHARACTER \ARYTNG(PT_Thquampﬂpnnfh\

strt FT WordOrPhrase,
thes exp count INTEGER)
RETURNS FT NarrowerTerm
FOR FT NarrowerTerm
RETURN SELF.thesaurus (thes name) .
startingTerm(strt) .expansionCnt (thes exp count).
NOT_tag(TRUE)

24 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.11.5 GetNarrowerTerms Function
1. Rationale: Correcting the semantics of expansion functions.
Replace the Definition with:

CREATE FUNCTION GetNarrowerTerms
(thes name CHARACTER VARYING(FT ThesNamelLength),

startingTerm FT WordOrPhrase,
thes exp count INTEGER)
RETURNS FT WordOrPhrase ARRAY[FT MaxArrayLength]
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN
DECLARE ret FT WordOrPhrase ARRAY[FT MaxArrayLengthl;
DECLARE strt FullText Token ARRAY[FT MaxArrayLength];
DECLARE strt termid INTEGER;
DECLARE local exp count INTEGER;

SET thes name = TRIM(BOTH ' ' FROM thes mame);
SET strt = startingTerm.getWordArray ()4

SET local exp count =
CASE
WHEN thes exp count IS NOT\NULL THEN
thes exp count
ELSE
1
END;

SET strt termid =
(SELECT TERMID
FROM TERM_DICTIONARY
WHERE EXPR.g€tWordArray() = strt
AND TRIMY(BOTH ' ' FROM THNAME_DIC) = thes_name
)7

SET ret =\CAST(ARRAY[] AS FT WordOrPhrase
ARRAY | FT MaxArrayLength]) ;

L1:SFOR elem AS
WITH RECURSIVE done so_ far (TERMID,NARROWER TERMID,LEVEL) AS
(SELECT TERMID, NARROWER TERMID, 0
FROM TERM HIERARCHY
WHERE TERMID = strt termid

AND TRIM (BOTH ' " FROM THNAME HRR) = thes name
AND local exp count >= 0
UNION
SELECT more.TERMID, more.NARROWER TERMID,
CASE

WHEN thes exp count IS NOT NULL THEN
B.LEVEL + 1
ELSE

0

END AS LEVEL

FROM done so far N, TERM HIERARCHY more

WHERE more.TERMID = N.NARROWER TERMID
AND TRIM(BOTH ' ' FROM more.THNAME HRR) = thes name
AND N.LEVEL < local exp count

)

(SELECT ARRAY[TD.EXPR] AS EXPRarrl
FROM TERM DICTIONARY TD, done so far f

© ISO/IEC 2003 — All rights reserved 25

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

WHERE TD.TERMID = f.NARROWER_TERMID
AND TRIM(BOTH ' ' FROM TD.THNAME_DIC) = thes_name)
UNION
(SELECT ARRAY[cl] AS EXPRarrl
FROM (VALUES (startingTerm)) AS tl(cl),
(VALUES (thes name)) AS t2(c2)
WHERE ¢l IS NOT NULL AND c2 IS NOT NULL)

DO -—-- for every row of the above guery result,
-- append the value of column EXPRarrl to the array
SET ret = ret || EXPRarrl;
END FOR L1;
RETURN ret;

END

vl

eplace Description 3) with:

3) GetNarrowerTerms(CHARACTER VARYING, FT_WordOrPhrase, INTEGER) returns an_empty array
if the following is true:

a) Either startingTermt or thes_name is the null value.
Heplace Description 6) with:

6) The term startingTerm is included in the result.

6.12.1 FT_Synonym Type

~\

Rationale: Correct constructor method definitions.

vl

eplace the <original method specification> that begins with "METHOD FT_Synonym" in the Definition with:

CONSTRUCTOR METHOD FT_ Synonym
(thes name CHARACTER VARYING,(FT ThesNameLength),
strt FT WordOrPhrase)
RETURNS FT Synonym
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL.INPUT

6.12.4 FT_Synonym/Method

~\

Rationale.Cerrect constructor method definitions.

|

eplace the. Définition with:

€REATE CONSTRUCTOR METHOD FT_ Synonym
(thes name CHARACTER VARYING (FT ThesNameLength),
strt FT WordOrPhrase)

RETURNS FT_Synonym

FOR FT Synonym

RETURN SELF.thesaurus (thes name).startingTerm(strt).
NOT tag (TRUE)

26 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.13.1 FT_PreferredTerm Type

1. Rationale: Correct constructor method definitions.
Replace the <original method specification> that begins with "METHOD PreferredTerm" in the Definition with:

CONSTRUCTOR METHOD FT_PreferredTerm
(thes name CHARACTER VARYING (FT ThesNameLength),

strt FT WordOrPhrase)
RETURNS FT PreferredTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

6.13.4 FT_PreferredTerm Method

1. Rationale: Correct constructor method definitions.
Replace the Definition with:

CREATE CONSTRUCTOR METHOD FT_PreferredTerm
(thes name CHARACTER VARYING (FT ThesNam€Length),
strt FT WordOrPhrase)
RETURNS FT PreferredTerm
FOR FT PreferredTerm
RETURN SELF.thesaurus (thes name)idtartingTerm(strt).
NOT_tag(TRUE)

6.13.5 GetPreferredTerms Function

1. Rationale: Correct the semantics.
Replace the Definition with:

CREATE FUNCTION GetPreferredTerms
(thes name ,€HARACTER VARYING (FT ThesNameLength),
startingTerm FT WordOrPhrase)
RETURNS ®T'WordOrPhrase ARRAY[FT MaxArrayLength]
LANGUAGE ™ SQL
DETERMENISTIC
CONTAINS SOQL
CALLED ON NULL INPUT
STATIC DISPATCH
BEGIN
DECLARE ret FT WordOrPhrase ARRAY[FT MaxArrayLength];
DECLARE strt FullText Token ARRAY[FT MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes name = TRIM(BOTH ' ' FROM thes name);
SET strt = startingTerm.getWordArray () ;

[SRLEY DJ\:J_Jl:_Jl:CJ_lll.Jl_\J1 -
(SELECT TERMID
FROM TERM DICTIONARY
WHERE EXPR.getWordArray() = strt
AND TRIM(BOTH ' ' FROM THNAME DIC) = thes name
) ;

SET ret = CAST(ARRAY[] AS FT_WordOrPhrase
ARRAY [FT MaxArrayLengthl]) ;

© ISO/IEC 2003 — All rights reserved 27

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

Ll: FOR elem AS

WITH temp preferred (TERMID) AS
(SELECT PREFERRED TERMID
FROM TERM SYNONYM
WHERE TERMID = strt termid

AND TRIM(BOTH ' ' FROM THNAME SYN) = thes name
)
SELECT ARRAY[TD.EXPR] AS EXPRarrl

FROM TERM DICTIONARY TD, temp preferred
WHERE TD.TERMID = temp preferred.TERMID
AND TRIM(BOTH ' ' FROM TD.THNAME DIC) = thes name

DO -- for every row of the above query result,
-- append the value of column EXPRarrl to the array
SET ret = ret || EXPRarrl;
END FOR L1;
RETURN ret ||
CASE
WHEN startingTerm IS NULL OR
thes name IS NULL OR
CARDINALITY (ret) > 0 THEN
CAST (ARRAY[] AS FT WordOrPhrase
ARRAY [FT MaxArrayLength])
ELSE
ARRAY [startingTerm]
END;
END

Heplace Description 5) with:

5) The term startingTerm is included in the result if n@ corresponding preferred terms are found in
TERM_SYNONYM.

6.14.1 FT_RelatedTerm Type

~\

Rationale: Correct constructor method definitions.
eplace the <original method specification> that begins with "METHOD FT_RelatedTerm" in the Definition with:

vl

CONSTRUCTOR METHOD FT_RelatedTerm

(thes name CHARACTER VARYING (FT ThesNameLength),
strt FT WordOtPhrase)

RETURNS FI\RelatedTerm

SELF AS (RESULT

LANGUAGE,~SQL

DETERMINISTIC

CONTAINS SQL

CALTED ON NULL INPUT

6114.4 FT/RelatedTerm Method

11 ~ Rationale: Correct constructor method definitions.

eplace the berinition witn.

CREATE CONSTRUCTOR METHOD FT RelatedTerm
(thes name CHARACTER VARYING (FT ThesNameLength),
strt FT WordOrPhrase)
RETURNS FT RelatedTerm
FOR FT RelatedTerm
RETURN SELF.thesaurus (thes name).startingTerm(strt).
NOT tag (TRUE)

28 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

6.15.1 FT_TopTerm Type

1. Rationale: Correct constructor method definitions.
Replace the <original method specification> that begins with "METHOD FT_TopTerm" in the Definition with:

CONSTRUCTOR METHOD FT TopTerm
(thes name CHARACTER VARYING (FT ThesNameLength),

strt FT WordOrPhrase)
RETURNS FT TopTerm
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
CALLED ON NULL INPUT

6.15.4 FT_TopTerm Method

1. Rationale: Correct constructor method definitions.
Replace the Definition with:

CREATE CONSTRUCTOR METHOD FT TopTerm
(thes name CHARACTER VARYING (FT ThesNamelength),
strt FT WordOrPhrase)
RETURNS FT TopTerm
FOR FT TopTerm
RETURN SELF.thesaurus (thes name)~StartingTerm(strt).
NOT tag (TRUE)

6.15.5 GetTopTerms Function

1. Rationale: Correcting the semantics.of expansion functions.
Replace the Definition with:

CREATE FUNCTION.GetTopTerms

(thes name (CHARACTER VARYING (FT ThesNameLength),

startingTerm FT WordOrPhrase)

RETURNSWET WordOrPhrase ARRAY[FT MaxArrayLength]

LANGUAGE SQL

DETERMINISTIC

CONTAINS SQL

€ALLED ON NULL INPUT

STATIC DISPATCH

BEGIN
DECLARE ret FT WordOrPhrase ARRAY[FT MaxArrayLength];
DECLARE strt FullText Token ARRAY[FT MaxArrayLength];
DECLARE strt_termid INTEGER;

SET thes name = TRIM(BOTH ' ' FROM thes name);
SET strt = startingTerm.getWordArrav () ;

SET strt termid =
(SELECT TERMID
FROM TERM DICTIONARY
WHERE EXPR.getWordArray() = strt
AND TRIM(BOTH ' ' FROM THNAME DIC) = thes name
) ;
SET ret = CAST(ARRAY[] AS FT WordOrPhrase
ARRAY [FT MaxArrayLengthl]) ;
Ll: FOR elem AS

© ISO/IEC 2003 — All rights reserved 29

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

ISO/IEC 13249-2:2000/Cor.1:2003(E)

WITH RECURSIVE done_so_far (TERMID, NARROWER_TERMID) AS
(SELECT TERMID, NARROWER TERMID
FROM TERM HIERARCHY
WHERE NARROWER TERMID = strt_termid
AND TRIM(BOTH ' ' FROM THNAME_HRR) = thes_name
UNION
SELECT more.TERMID, more.NARROWER TERMID
FROM done so far B, TERM HIERARCHY more

WHERE more.NARROWER TERMID = B.TERMID

AND TRIM(BOTH ' ' FROM more.THNAME_HRR) = thes_name
)
SELECT ARRAY[TD.EXPR] AS EXPRarrl
FROM TERM DICTIONARY TD, done_so_far f
WHERE TD.TERMID = f.TERMID
AND TRIM(BOTH ' ' FROM TD.THNAME_DIC) = thes_name
AND NOT EXISTS
(SELECT *
FROM done so_ far d
WHERE d.NARROWER_TERMID = f.TERMID

)

DO -- for every row of the above query result,
-- append the value of column EXPRarrl, to the array

SET ret = ret || EXPRarrl;
END FOR L1;
RETURN ret ||
CASE
WHEN startingTerm IS NULL OR
thes name IS NULL OR
CARDINALITY (ret) > 0 THEN
CAST (ARRAY[] AS FT WordOrPhrase
ARRAY[FT MaxArtaylength])
ELSE
ARRAY [startingTerm]
END;
END

vl

eplace Description 4) with:
4) The term startingTerm is included in the result if no top terms are found in TERM_HIERARCHY.

6116.1 FT_IsAbout Type

Rationale: Correct constructor method definitions.
eplace the <original. method specification> that begins with "METHOD ST _IsAbout" in the Definition with:

1=

CONSTRUCTOR METHOD FT IsAbout (phr FullText)
RETURNS FT_ IsAbout
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC

CONTAINS SQL
CALLED ON NIILI INPIT

30 © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=6e417339871d3ea1c84adfcafa03449f

