

INTERNATIONAL STANDARD

ISO
4079-1

First edition
2001-09-01

Rubber hoses and hose assemblies — Textile-reinforced hydraulic types — Specification —

Part 1: Oil-based fluid applications

Tuyaux et flexibles en caoutchouc — Types hydrauliques avec armature de textile — Spécifications —

Partie 1: Applications pour fluide à base d'huile

STANDARDSISO.COM : Click to view the full PDF of ISO 4079-1:2001

Reference number
ISO 4079-1:2001(E)

© ISO 2001

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDSISO.COM : Click to view the full PDF of ISO 4079-1:2001

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Classification	2
4 Materials and construction	2
4.1 Hoses	2
4.2 Hose assemblies	2
5 Dimensions	2
5.1 Diameters and concentricity	2
5.2 Length	3
6 Requirements	4
6.1 Hydrostatic requirements	4
6.2 Minimum bend radius	4
6.3 Resistance to impulse	5
6.4 Leakage of hose assemblies	5
6.5 Cold flexibility	5
6.6 Adhesion between components	6
6.7 Vacuum resistance	6
6.8 Abrasion resistance	7
6.9 Fluid resistance	7
6.10 Ozone resistance	7
7 Designation	7
8 Marking	7
8.1 Hoses	7
8.2 Hose assemblies	8
Annex A (informative) Recommendations for lengths of supplied hoses and hose assemblies	9
A.1 Hoses	9
A.2 Hose assemblies	9
Bibliography	10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 4079 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 4079-1 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Hoses (rubber and plastics)*.

Together with ISO 4079-2 (in preparation), this part of ISO 4079 cancels and replaces ISO 4079:1991, which has been technically revised.

ISO 4079 consists of the following parts, under the general title *Rubber hoses and hose assemblies — Textile-reinforced hydraulic types — Specification*:

- *Part 1: Oil-based fluid applications*
- *Part 2: Water-based fluid applications*

Annex A of this part of ISO 4079 is for information only.

Rubber hoses and hose assemblies — Textile-reinforced hydraulic types — Specification —

Part 1: Oil-based fluid applications

1 Scope

This part of ISO 4079 specifies requirements for five types of textile-reinforced hydraulic hoses and hose assemblies of nominal bore from 5 to 100. They are suitable for use with hydraulic fluids HH, HL, HM, HR and HV in accordance with ISO 6743-4 at temperatures ranging from -40°C to $+100^{\circ}\text{C}$.

This part of ISO 4079 does not include requirements for end fittings. It is limited to requirements for the performance of hoses and hose assemblies.

NOTE It is the responsibility of the user, in consultation with the hose manufacturer, to establish compatibility of the hose with the fluid to be used.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 4079. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 4079 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 1402, *Rubber and plastics hoses and hose assemblies — Hydrostatic testing*

ISO 1817, *Rubber, vulcanized — Determination of the effect of liquids*

ISO 4671, *Rubber and plastics hose and hose assemblies — Methods of measurement of dimensions*

ISO 4672:1997, *Rubber and plastics hoses — Sub-ambient temperature flexibility tests*

ISO 6803, *Rubber or plastics hoses and hose assemblies — Hydraulic pressure impulse test without flexing*

ISO 6945, *Rubber hoses — Determination of abrasion resistance of the outer cover*

ISO 7233, *Rubber and plastics hoses and hose assemblies — Determination of suction resistance*

ISO 7326:1991, *Rubber and plastics hoses — Assessment of ozone resistance under static conditions*

ISO 8033:1991, *Rubber and plastics hose — Determination of adhesion between components*

3 Classification

Five types of hose are specified, distinguished by their construction, working pressure and minimum bend radius:

- Type 1TE: hoses with a single braid of textile reinforcement
- Type 2TE: hoses with one or more braids of textile reinforcement
- Type 3TE: hoses with one or more braids of textile reinforcement (higher working pressure)
- Type R3: hoses with two braids of textile reinforcement
- Type R6: hoses with a single braid of textile reinforcement

NOTE Type 1TE is not subjected to the impulse or vacuum resistance tests. Type R3 is not subjected to the vacuum resistance or abrasion resistance tests. Type R6 is not subjected to the impulse, vacuum resistance or abrasion resistance tests.

4 Materials and construction

4.1 Hoses

Hoses shall consist of a hydraulic-fluid-resistant rubber lining, one or more layers of suitable textile yarn, and an oil- and weather-resistant rubber cover.

Hoses shall be designed to enable end fittings to be assembled without removal of the cover.

4.2 Hose assemblies

Hose assemblies shall be manufactured with only those hose fittings whose functionality has been verified in accordance with subclauses 6.1, 6.3, 6.4 and 6.5 of this part of ISO 4079.

The manufacturer's instructions for proper preparation and fabrication of hose assemblies shall be followed.

5 Dimensions

5.1 Diameters and concentricity

When measured in accordance with ISO 4671, the inside and outside diameters of the hoses shall conform to the values given in Table 1.

When measured in accordance with ISO 4671, the concentricity of the hoses shall conform to the values given in Table 2.

Table 1 — Dimensions of hoses

Nominal bore	Inside diameter		Outside diameter									
	mm		mm									
	All types		Type 1TE		Type 2TE		Type 3TE		Type R6		Type R3	
	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
5	4,4	5,2	10,0	11,6	11,0	12,6	12,0	13,6	10,3	11,9	11,9	13,5
6,3	5,9	6,9	11,6	13,2	12,6	14,2	13,6	15,2	11,9	13,5	13,5	15,1
8	7,4	8,4	13,1	14,7	14,1	15,7	16,1	17,7	13,5	15,1	16,7	18,3
10	9,0	10,0	14,7	16,3	15,7	17,3	17,7	19,3	15,1	16,7	18,3	19,8
12,5	12,1	13,3	17,7	19,7	18,7	20,7	20,7	22,7	19,0	20,6	23,0	24,6
16	15,3	16,5	21,9	23,9	22,9	24,9	24,9	26,9	22,2	23,8	26,2	27,8
19	18,2	19,8	—	—	26,0	28,0	28,0	30,0	25,4	27,8	31,0	32,5
25	24,6	26,2	—	—	32,9	35,9	34,4	37,4	—	—	36,9	39,3
31,5	30,8	32,8	—	—	—	—	40,8	43,8	—	—	42,9	46,0
38	37,1	39,1	—	—	—	—	47,6	51,6	—	—	—	—
51	49,8	51,8	—	—	—	—	60,3	64,3	—	—	—	—
60	58,8	61,2	—	—	—	—	70,0	74,0	—	—	—	—
80	78,8	81,2	—	—	—	—	91,5	96,5	—	—	—	—
100	98,6	101,4	—	—	—	—	113,5	118,5	—	—	—	—

NOTE Nominal bores in this table and in Tables 2 to 6 are in accordance with ISO 4397.

Table 2 — Concentricity of hoses

Nominal bore	Maximum variation in wall thickness between internal diameter and outside diameter mm
Up to and including 6,3	0,8
Over 6,3 but less than or equal to 19	1,0
Over 19	1,3

5.2 Length

The length of supplied hoses and hose assemblies shall be the subject of agreement between the manufacturer and the purchaser.

NOTE Recommendations for supplied lengths of hoses and hose assemblies are given in annex A.

6 Requirements

6.1 Hydrostatic requirements

6.1.1 When tested in accordance with ISO 1402, the maximum working pressure, the proof pressure and minimum burst pressure of hoses and hose assemblies shall conform to the values given in Table 3.

6.1.2 When tested in accordance with ISO 1402, the change in length of hoses at the maximum working pressure shall be no greater than +2 % and no less than -4 % for hoses up to and including nominal bore 31, and no greater than +5 % and no less than 0 % for hoses above nominal bore 31.

Table 3 — Maximum working pressure, proof pressure and minimum burst pressure

Nominal bore	Maximum working pressure					Proof pressure					Minimum burst pressure				
	bar					bar					bar				
	Type					Type					Type				
	1TE	2TE	3TE	R6	R3	1TE	2TE	3TE	R6	R3	1TE	2TE	3TE	R6	R3
5	25	80	160	35	105	50	160	320	70	210	100	320	640	140	420
6,3	25	75	145	30	88	50	150	290	60	175	100	300	580	120	350
8	20	68	130	30	82	40	136	260	60	165	80	272	520	120	330
10	20	63	110	30	79	40	126	220	60	158	80	252	440	120	315
12,5	16	58	93	30	70	32	116	186	60	140	64	232	372	120	280
16	16	50	80	26	61	32	100	160	52	122	64	200	320	105	245
19	—	45	70	22	52	—	90	140	44	105	—	180	280	88	210
25	—	40	55	—	39	—	80	110	—	79	—	160	220	—	158
31,5	—	—	45	—	26	—	—	90	—	52	—	—	180	—	105
38	—	—	40	—	—	—	—	80	—	—	—	—	160	—	—
51	—	—	33	—	—	—	—	66	—	—	—	—	132	—	—
60	—	—	25	—	—	—	—	50	—	—	—	—	100	—	—
80	—	—	18	—	—	—	—	36	—	—	—	—	72	—	—
100	—	—	10	—	—	—	—	20	—	—	—	—	40	—	—

NOTE 1 bar = 0,1 MPa

6.2 Minimum bend radius

Use a test piece having a length at least four times the minimum bend radius. Measure the hose outside diameter with a pair of callipers in the straight-lay position before bending the hose. Bend the hose through 180° to the minimum bend radius and measure the flatness with the callipers.

When bent to the minimum bend radius given in Table 4, measured on the inside of the bend, the flatness shall not exceed 10 % of the original outside diameter.

Table 4 — Minimum bend radius

Nominal bore	Minimum bend radius				
	mm				
	Type 1TE	Type 2TE	Type 3TE	Type R6	Type R3
5	35	25	40	50	80
6,3	45	40	45	65	80
8	65	50	55	80	100
10	75	60	70	80	100
12,5	90	70	85	100	125
16	115	90	105	125	140
19	—	110	130	150	150
25	—	150	150	—	205
31,5	—	—	190	—	255
38	—	—	240	—	—
51	—	—	300	—	—
60	—	—	400	—	—
80	—	—	500	—	—
100	—	—	600	—	—

6.3 Resistance to impulse

6.3.1 The impulse test shall be in accordance with ISO 6803. The test fluid temperature shall be 100 °C.

6.3.2 For type 2TE hoses, when tested at an impulse pressure equal to 125 % of the maximum working pressure, the hose shall withstand a minimum of 100 000 impulse cycles.

For type 3TE and type R3 hoses, when tested at an impulse pressure equal to 133 % of the maximum working pressure for hoses of nominal bore up to and including 25, and at 100 % of the maximum working pressure for hoses of nominal bore greater than 25, the hose shall withstand a minimum of 200 000 impulse cycles.

6.3.3 There shall be no leakage or other malfunction before reaching the specified number of cycles.

6.3.4 This test shall be considered a destructive test and the test piece shall be discarded afterwards.

6.4 Leakage of hose assemblies

When tested in accordance with ISO 1402, there shall be no leakage or other evidence of failure. This test shall be considered a destructive test and the test piece shall be discarded afterwards.

6.5 Cold flexibility

When tested in accordance with method B of ISO 4672:1997 at a temperature of –40 °C, there shall be no cracking of the lining or cover. The test piece shall not leak or crack when subjected to a proof pressure test in accordance with ISO 1402 after regaining ambient temperature.

6.6 Adhesion between components

When determined in accordance with ISO 8033, the adhesion for hose types 1TE, 2TE and 3TE shall be in accordance with Table 5. For hose types R3 and R6, the adhesion between lining and reinforcement, and between cover and reinforcement, shall not be less than 1,4 kN/m.

Test pieces shall be type 5 for lining and reinforcement and type 2 or type 6 for cover and reinforcement as described in Table 1 of ISO 8033:1991.

Table 5 — Minimum adhesion between components

Nominal bore	Between lining and reinforcement		Between cover and reinforcement kN/m
	kN/m		
Up to and including 8	1,5		2,0
Over 8	2,5		2,5

6.7 Vacuum resistance

When tested in accordance with ISO 7233, hoses and hose assemblies shall conform to the values given in Table 6.

Table 6 — Degree of vacuum

Nominal bore	Negative gauge pressure (max.) bar	
	Type 2TE	Types 3TE and R3
5		
6,3		
8	-0,60	-0,80
10		
12,5		
16		
19		-0,60
25		
31,5		
38	-	
51		
60		
80		
100		

NOTE There is no vacuum resistance requirement for hoses of types 1TE and R6.

6.8 Abrasion resistance

When tested in accordance with ISO 6945 with a vertical force of $(25 \pm 0,5)$ N, the loss in mass after 2000 cycles shall be no greater than 1 g.

NOTE There is no abrasion resistance requirement for hoses of types R3 and R6.

6.9 Fluid resistance

6.9.1 Test pieces

Fluid resistance testing shall be carried out on moulded sheets of lining and cover compound having a minimum thickness of 2 mm and with a cure state equivalent to that of the hose.

6.9.2 Oil resistance

When determined in accordance with ISO 1817 by immersion in IRM 903 oil for 168 h at a temperature of 100 °C, the percentage change in volume ΔV_{100} of the lining shall be between 0 % and +25 % for type 1TE, type 2TE and type 3TE hoses and between 0 % and +100 % for type R6 and type R3 hoses (i.e. shrinkage is not permissible).

When determined in accordance with ISO 1817 by immersion in IRM 903 oil for 168 h at a temperature of 70 °C, the percentage change in volume ΔV_{100} of the cover shall be between 0 % and +100 % (i.e. shrinkage is not permissible).

6.10 Ozone resistance

When tested in accordance with method 1 or 2 of ISO 7326:1991, depending on the nominal bore of the hose, no cracking or deterioration of the cover shall be visible under $\times 2$ magnification.

7 Designation

Hoses shall be designated in accordance with the following example for a type 1TE textile-reinforced hydraulic hose of nominal bore 10:

EXAMPLE ISO 4079-1/1TE/10

8 Marking

8.1 Hoses

Hoses shall be marked with at least the following information, and the marking shall be repeated at least once every 760 mm:

- the manufacturer's name or identification, e.g. Man;
- a reference to this part of ISO 4079, i.e. ISO 4079-1;
- the type, e.g. 2TE;
- the nominal bore, e.g. 16;
- the quarter and the last two digits of the year of manufacture, e.g. 4Q01.

EXAMPLE Man/ISO 4079-1/2TE/16/4Q01

8.2 Hose assemblies

Hose assemblies shall be marked with at least the following information:

- a) the manufacturer's name or identification, e.g. Man;
- b) the maximum working pressure of the assembly in bars, with the units, e.g. 250 bar;¹⁾
- c) the last two digits of the month and year of assembly, e.g. 10/01.

EXAMPLE Man/250 bar/10/01

STANDARDSISO.COM : Click to view the full PDF of ISO 4079-1:2001

1) The maximum working pressure of a hose assembly is equal to the maximum working pressure of that one of its components having the lowest maximum working pressure.