
Information technology — MPEG video 
technologies —
Part 6: 
Tools for reconfigurable media coding 
implementations
Technologies de l'information — Technologies vidéo MPEG —
Partie 6: Outils d'implémentation du codage média reconfigurable

TECHNICAL 
REPORT

ISO/IEC TR
23002-6

First edition
2017-10

Reference number
ISO/IEC TR 23002-6:2017(E)

© ISO/IEC 2017

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ii� © ISO/IEC 2017 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

©  ISO/IEC 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form 
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior 
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of 
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TR 23002-6:2017(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)
﻿

Foreword...........................................................................................................................................................................................................................................v
Introduction.................................................................................................................................................................................................................................vi
1	 Scope.................................................................................................................................................................................................................................. 1
2	 Normative references....................................................................................................................................................................................... 1
3	 Terms, definitions and abbreviated terms................................................................................................................................. 1
4	 Overview........................................................................................................................................................................................................................ 3
5	 RVC-CAL........................................................................................................................................................................................................................... 3

5.1	 General............................................................................................................................................................................................................ 3
5.2	 Installing ORCC tools.......................................................................................................................................................................... 3

5.2.1	 Java Runtime Environment...................................................................................................................................... 3
5.2.2	 Eclipse........................................................................................................................................................................................ 4
5.2.3	 ORCC plug-in for Eclipse............................................................................................................................................ 4

5.3	 “Hello world”............................................................................................................................................................................................. 5
5.3.1	 Creating a new project................................................................................................................................................. 5
5.3.2	 Creating a new package.............................................................................................................................................. 7
5.3.3	 Creating a new actor...................................................................................................................................................... 7
5.3.4	 Creating a network.......................................................................................................................................................... 8
5.3.5	 Running simulation.....................................................................................................................................................12

5.4	 Simple actor............................................................................................................................................................................................. 15
5.4.1	 Structure of actors........................................................................................................................................................15
5.4.2	 Simplest actor...................................................................................................................................................................15
5.4.3	 Running the examples...............................................................................................................................................16
5.4.4	 Other simple actors.....................................................................................................................................................17
5.4.5	 Network of simple actors....................................................................................................................................... 19

5.5	 Non-determinism............................................................................................................................................................................... 20
5.6	 Guarded actions................................................................................................................................................................................... 20
5.7	 State variables....................................................................................................................................................................................... 23
5.8	 Scheduling................................................................................................................................................................................................. 25
5.9	 Priorities..................................................................................................................................................................................................... 28
5.10	 Repeat clause.......................................................................................................................................................................................... 29
5.11	 Control flow............................................................................................................................................................................................. 31

5.11.1	 General................................................................................................................................................................................... 31
5.11.2	 Data types............................................................................................................................................................................ 31
5.11.3	 Assignments....................................................................................................................................................................... 31
5.11.4	 If statement.........................................................................................................................................................................32
5.11.5	 While statement.............................................................................................................................................................33
5.11.6	 Foreach statement........................................................................................................................................................33

6	 Papify and Papify Viewer...........................................................................................................................................................................34
6.1	 General......................................................................................................................................................................................................... 34
6.2	 Using Papify............................................................................................................................................................................................. 34

6.2.1	 Papify activation.............................................................................................................................................................35
6.2.2	 Actor assessment...........................................................................................................................................................36
6.2.3	 Action assessment........................................................................................................................................................37
6.2.4	 Output folder.....................................................................................................................................................................37

6.3	 Papify Viewer......................................................................................................................................................................................... 37
6.3.1	 Chronological visualization.................................................................................................................................. 37
6.3.2	 Event histograms...........................................................................................................................................................40

7	 TURNUS........................................................................................................................................................................................................................41
7.1	 General......................................................................................................................................................................................................... 41
7.2	 Installing the TURNUS framework...................................................................................................................................... 42

7.2.1	 General................................................................................................................................................................................... 42
7.2.2	 Java Runtime Environment................................................................................................................................... 42

© ISO/IEC 2017 – All rights reserved� iii

Contents� Page

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)
﻿

7.2.3	 Eclipse..................................................................................................................................................................................... 42
7.2.4	 TURNUS plug-in for Eclipse.................................................................................................................................. 42

7.3	 Profiling an RVC-CAL HEVC video decoder.................................................................................................................. 43
7.3.1	 General................................................................................................................................................................................... 43
7.3.2	 Download the design and the conformance bit-streams............................................................43
7.3.3	 Import the HEVC design project in the Eclipse IDE workspace............................................44
7.3.4	 Static code profiling....................................................................................................................................................45
7.3.5	 Dynamic code programming............................................................................................................................... 49
7.3.6	 TURNUS ORCC dynamic interpreter profiler.........................................................................................50
7.3.7	 Algorithmic bottleneck analysis....................................................................................................................... 61
7.3.8	 Impact analysis................................................................................................................................................................62
7.3.9	 Buffer size minimization......................................................................................................................................... 63
7.3.10	 Partitioning......................................................................................................................................................................... 64

Bibliography..............................................................................................................................................................................................................................66

iv� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are 
members of ISO or IEC participate in the development of International Standards through technical 
committees established by the respective organization to deal with particular fields of technical 
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international 
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work. In the field of information technology, ISO and IEC have established a joint technical committee, 
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for 
the different types of document should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject 
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent 
rights. Details of any patent rights identified during the development of the document will be in the 
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to the 
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following 
URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC  JTC  1, Information technology, 
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

A list of all the parts in the ISO/IEC 23002 series can be found on the ISO website.

﻿

© ISO/IEC 2017 – All rights reserved� v

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

http://www.iso.org/iso/standards_development/processes_and_procedures/iso_iec_directives_and_iso_supplement.htm
http://www.iso.org/iso/standards_development/patents
http://www.iso.org/iso/foreword.html
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Introduction

This document provides a description of a set of tools that are intended to be helpful for developing 
reconfigurable media coding implementations based on ISO/IEC  23001-4, ISO/IEC  23002-4 and 
ISO/IEC 23002-5. The description includes the following guidelines:

—	 guidelines on good practices to implement specifications based on ISO/IEC 23001-4, ISO/IEC 23002-
4 and ISO/IEC 23002-5;

—	 guidelines on usage of a monitoring tool for specifications based on ISO/IEC 23001-4, ISO/IEC 23002-
4 and ISO/IEC 23002-5.

—	 guidelines on usage of a design exploration and optimization tool for specifications based on 
ISO/IEC 23001-4, ISO/IEC 23002-4 and ISO/IEC 23002-5.

﻿

vi� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

Information technology — MPEG video technologies —

Part 6: 
Tools for reconfigurable media coding implementations

1	 Scope

This document provides a description of a set of tools that are intended to be helpful for developing 
reconfigurable media coding implementations based on ISO/IEC  23001-4, ISO/IEC  23002-4 and 
ISO/IEC 23002-5.

2	 Normative references

There are no normative references in this document.

3	 Terms, definitions and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 IEC Electropedia: available at http://www.electropedia.org/

—	 ISO Online browsing platform: available at http://www.iso.org/obp

3.1	 Terms and definitions

3.1.1
Reconfigurable Video Coding
RVC
framework defined to support coding standards at the tool level while maintaining interoperability 
between solutions from different implementers

3.1.2
functional unit
FU
modular tool characterized by its input/output behaviour, consisting of a processing unit

Note 1 to entry: Also referred to as “actor”.

3.1.3
token
data entity exchanged among functional units (3.1.2), such that a functional unit performs operations on 
input tokens, produces output tokens and modifies its state

3.1.4
connection
link from output ports to input ports of functional units (3.1.2) that enable token (3.1.3) exchange 
between the corresponding functional units

TECHNICAL REPORT� ISO/IEC TR 23002-6:2017(E)

© ISO/IEC 2017 – All rights reserved� 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

http://www.electropedia.org/
http://www.iso.org/obp
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

3.1.5
functional unit network language
FU network language
FNL
language that describes a network of functional units (3.1.2)

3.1.6
functional unit network description
FU network description
FND
functional unit (3.1.2) connection (3.1.4) used to build a decoder and modelled using the functional unit 
network language (3.1.5)

3.1.7
RVC-CAL
dataflow specification language for specifying of functional units (3.1.2) and the reference software

3.1.8
video tool library
VTL
collection of functional units (3.1.2)

3.1.9
MPEG video tool library
video tool library (3.1.8) that contains functional units (3.1.2) drawn from existing MPEG standards

3.2	 Abbreviated terms

API 		  Application Programming Interface

BXDF 		  Buffer-size XML Dataflow Format

CAL 		  CAL Actor Language

DSE 		  Design Space Exploration

ETG 		  Execution Trace Graph

FIFO 		  First-In, First-Out

FSM 		  Finite State Machine

HEVC 		  High-Efficiency Video Coding

IDE 		  Integrated Development Environment

L1_DCM 	 L1 Data Cache Misses

NoL 		  Number of Lines

PAPI 		  Performance API

PMC 		  Performance Monitoring Counter

RMC 		  Reconfigurable Media Coding

TOT_INS 	 TOTal Number of INStructions

XDF 		  XML Dataflow Format

XML 		  eXtensible Markup Language

﻿

2� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

4	 Overview

This document describes a set of tools that are intended to be helpful for developing reconfigurable 
media coding implementations. Clause 5 describes how to implement an RVC-CAL specification using 
the Open RVC-CAL Compiler (ORCC)1) tool. Clause 6 details how to use Papify2) and Papify Viewer3). 
Papify is an implementation of an event-based performance monitoring tool integrated into ORCC. 
Papify Viewer is a visualization tool to monitor the actions of actors in RVC-CAL specifications. Fired 
actions can be analysed chronologically from different points of view. Finally, Clause 7 describes how 
to use TURNUS4), an open-source system design exploration and optimization framework especially 
tailored for CAL dataflow programs.

5	 RVC-CAL

5.1	 General

RVC-CAL is a standardized version of the CAL Actor Language which implements a dataflow model of 
computation.

All the examples in this document are written for and tested with the ORCC compiler infrastructure tools.

Open RVC-CAL Compiler (ORCC) is an open-source Integrated Development Environment (IDE) based 
on Eclipse and dedicated to dataflow programming. Eclipse5) is a software package which provides 
an integrated development environment for Java/C/C++ programs. The primary purpose of ORCC is to 
provide developers with a compiler infrastructure to allow software/hardware code to be generated 
from dataflow descriptions.

5.2	 Installing ORCC tools

First, all the tools needed for compiling and running the provided examples should be installed. 
The Open RVC-CAL Compiler (ORCC) requires the Eclipse platform. Therefore, in order to use it, it is 
necessary to install the Java™ Runtime Environment (JRE)6) and Eclipse IDE.

5.2.1	 Java Runtime Environment

ORCC requires JRE version 1.6 or higher. The latest JRE release is available at https://java.com/en/
download/. To use the Eclipse IDE for Java Developers edition, it is necessary to also install the Java™ 

1)	    Open RVC-CAL Compiler (ORCC) is an open-source IDE based on Eclipse. This information is given for the 
convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
Equivalent products may be used if they can be shown to lead to the same results.
2)	    Papify is an open-source tool available on GitHub. This information is given for the convenience of users of this 
document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used 
if they can be shown to lead to the same results.
3)	    Papify Viewer is an open-source visualization tool available on GitHub. This information is given for the 
convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
Equivalent products may be used if they can be shown to lead to the same results.
4)	    TURNUS is an open-source system published by IEEE.org. This information is given for the convenience of 
users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products 
may be used if they can be shown to lead to the same results.
5)	    Eclipse is an open-source software package published by the Eclipse Foundation (www.eclipse.org). This 
information is given for the convenience of users of this document and does not constitute an endorsement by ISO 
of the product named. Equivalent products may be used if they can be shown to lead to the same results.
6)	    Java Runtime Environment (JRE) is a trademark of a product supplied by Oracle. This information is given for 
the convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
Equivalent products may be used if they can be shown to lead to the same results.

﻿

© ISO/IEC 2017 – All rights reserved� 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://java.com/en/download/
https://java.com/en/download/
http://www.eclipse.org
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Development Kit (JDK)7), which can be downloaded from http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

5.2.2	 Eclipse

ORCC is compatible with Eclipse versions 4.3 and higher. The Eclipse IDE can be downloaded from 
https://www.eclipse.org/downloads/ (for which the Eclipse IDE for Java Developers edition is 
suggested). To install it, extract the archive into a local directory.

Eclipse should be configured to allocate at least 512 MB of memory for the heap. This can be done by 
adding the -Xmx512m parameter in the eclipse.ini file.

5.2.3	 ORCC plug-in for Eclipse

The Eclipse Software Update Manager can be used to install ORCC. The steps are as follows.

—	 In Eclipse, go to Help > Install New Software.

—	 Click Add to add an update site.

—	 Set its name (e.g. ORCC) and its URL to http://orcc.sourceforge.net/eclipse (see Figure 1).

Figure 1 — Repository setting during the installation of the ORCC plug-in for Eclipse

—	 Once this is done, select Open RVC-CAL Compiler or ORCC (see Figure 2).

7)	    Java Development Kit (JDK) is a trademark of a product supplied by Oracle. This information is given for 
the convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
Equivalent products may be used if they can be shown to lead to the same results.

﻿

4� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
http://orcc.sourceforge.net/eclipse
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 2 — Selection of the Open RVC-CAL Compiler during the installation of the ORCC plug-in 
for Eclipse

—	 Click Next, check and accept the licenses and then click Finish.

—	 Eclipse will prompt for a confirmation to install an unverified feature. Accept and restart Eclipse.

5.3	 “Hello world”

Make sure that the active perspective in Eclipse is Java™ EE8); otherwise, the menus will differ slightly 
and some menu items will not be in the illustrated places.

5.3.1	 Creating a new project

A new ORCC project should be created. In the menu File  >  New  >  Other, select ORCC  >  Orcc Project 
(see Figure 3).

8)	    Java EE (JEE) is a trademark of a product supplied by Oracle. This information is given for the convenience of 
users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products 
may be used if they can be shown to lead to the same results.

﻿

© ISO/IEC 2017 – All rights reserved� 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 3 — Wizard selection to create a new project

Specify the name of the project and click Finish (see Figure 4).

Figure 4 — Project name setting in ORCC

A default src directory will be added to the created project by this action.

﻿

6� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

5.3.2	 Creating a new package

Right-click on the src folder in the Project Explorer pane. Select New > Package (see Figure 5).

Figure 5 — Package setting in ORCC

5.3.3	 Creating a new actor

In the Project explorer pane, select the package that was just created. Then click menu File > New > File. 
Specify the name and the extension .cal (see Figure 6).

Figure 6 — New CAL file setting in ORCC

﻿

© ISO/IEC 2017 – All rights reserved� 7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

After file is created, add the following code and save it. Eclipse will automatically compile the file.

package net.sf.orcc.tutorial.HelloWorld; 
  
actor HelloWorld () int In ==> : 
   action ==> 
   do 
      print("Hello World!\n"); 
   end 
end

The code above implements the actor named HelloWorld(), which takes an input stream of tokens of 
type int.

The action within this actor always executes regardless of any input or other conditions and prints the 
string to the default output.

A detailed explanation of the syntax is given in the succeeding subclauses.

5.3.4	 Creating a network

RVC-CAL is a language that implements the dataflow paradigm. This means that in order to run the 
application, it will be necessary to build a network of actors. In this case, the network will consist of 
only one actor.

To build a network, it will be necessary to create a new .xdf file. Go to File > New > Other, then select 
Orcc > XDF Network (see Figures 7 and 8).

Figure 7 — Network setting in ORCC

﻿

8� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 8 — Network name setting in ORCC

After the empty XDF is created, it will then be necessary to add an instance of an actor (see Figure 9).

Figure 9 — Empty space for actor instance addition in ORCC

Click on Objects > Instance in the Palette, and then click on the .xdf file area to add an instance to the 
network (see Figure 10).

﻿

© ISO/IEC 2017 – All rights reserved� 9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 10 — Actor instance addition in ORCC

Name the instance “Hello”.

Now link this instance to the actor created. Right-click on the instance and select Set/Update Refinement 
(see Figure 11).

﻿

10� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 11 — Refinement of an actor instance to the corresponding CAL file in ORCC

Select the HelloWorld actor in the newly opened box (see Figure 12).

﻿

© ISO/IEC 2017 – All rights reserved� 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 12 — Selection of a CAL file during an instance refinement process in ORCC

After validation, the Hello instance should be displayed in blue (meaning that the instance is assigned to 
an actor). See Figure 13.

Figure 13 — Hello instance associated to the corresponding CAL file

5.3.5	 Running simulation

Right-click on the .xdf file and select Run As > Orcc simulation (see Figure 14).

﻿

12� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 14 — Simulation selection in ORCC

In the Select simulator window, click OK (see Figure 15).

Figure 15 — Interpreter and debugger selection for simulation in ORCC

In the Select input stimulus window, select a random file (it will not actually be used by the example). See 
Figure 16.

﻿

© ISO/IEC 2017 – All rights reserved� 13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 16 — Input stimuli selection for simulation in ORCC

In the Run configuration wizard, click on Run (see Figure 17).

Figure 17 — Simulation configuration in ORCC

﻿

14� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The following output (see Figure 18) should appear in the Eclipse console.

Figure 18 — Simulation console in ORCC

5.4	 Simple actor

5.4.1	 Structure of actors

Actors perform their computation in a sequence of steps called firings. In each of those steps, the actor

a)	 may consume tokens from its input ports,

b)	 may produce tokens at its output ports, and

c)	 may modify its internal state (this is described in further subclauses).

Describing an actor involves describing its interface, the ports, the structure of its internal state, as 
well as the steps it can perform, what these steps do (in terms of token production, consumption and 
actor state update) and how to select the step an actor will perform next.

5.4.2	 Simplest actor

The simplest actor just copies a token from the input to the output without changing its value.

package net.sf.orcc.tutorial.SimpleActor; 
  
actor ID () int In ==> int Out : 
   first: action In: [a] ==> Out: [a] end 
end

The first line specifies the package.

The main entity in RVC-CAL is an actor. In this example, the keyword actor is used followed by the 
name of the actor and the parameters in parentheses (an empty list in this example) to describe the 

﻿

© ISO/IEC 2017 – All rights reserved� 15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

actor. Input and output ports are specified before and after the ==> sign, respectively. RVC-CAL is a 
statically typed language, so it is necessary to explicitly define the type for each variable, i.e. in the line 
actor ID () int In ==> int Out : ports In and Out both are of type int. The colon at the end of the line 
marks the start of the actor body which is bounded by the keyword end from the other side.

Each actor has one or more actions within the body section, which execute ( fire) at one step each. 
Actions may (or may not) consume input tokens and produce output tokens at each step. The syntax to 
describe an action in RVC-CAL is the following:

actor <ActorIdentifier> () <input ports> ==> <output ports> : 
  [<ActionIdentifier>:] action <input pattern> ==> <output expression>

Input pattern specifies how many tokens to consume, from which ports the tokens are consumed and 
how to call these tokens in the rest of the action. The input pattern for the ID actor is In: [a]. It tells 
the action to consume one token from the input In and name it a within the action body. Input patterns 
realize the idea of pattern matching.

The expression following the ==> sign is an output expression. It defines the number and values of 
output tokens which will be produced on each output port by each firing of the action. In this example, 
Out: [a] is an output expression. It defines that exactly one token will be produced on the output port 
Out and the value of that token will be a.

It is important to understand the difference between input pattern and output expression. In the input 
pattern, the local variable a is declared and assigned to the value of the input token whenever the action 
is fired. The output expression uses that variable and send the value of a as a produced token to the 
output port at the end of the action firing.

5.4.3	 Running the examples

In the project, create a new package net.sf.orcc.tutorial.SimpleActor

Create new CAL file named ID.cal and copy the following code there.

package net.sf.orcc.tutorial.SimpleActor; 
  
actor ID () int In ==> int Out : 
   first: action In: [a] ==>  Out: [a] end 
end

In order to build a network, several additional actors are needed to produce data and print results to 
the console. This example uses Source and Printer actors as utilities. These can be downloaded from 
the GitHub repository (https://github.com/orcc/rvccaltut/tree/master/net.sf.orcc.tutorial/src/net/sf/
orcc/tutorial/utils) and added to the project.

Source actor is a counter which produces a continuous sequence of numbers. Parameters can be 
specified for the starting number (default is 1) and the counter upper bound (default is 10). To know 
how to do that, see 5.4.4.4.

Printer prints all the consumed tokens to the console. The name can be specified for each instance. 
That is useful when there are several of them printing to the same console simultaneously.

The network can be created as indicated in 5.3.

After adding instances of actors ID, Source and Printer, the Source output should be connected to the 
ID input, and the ID output to the Printer input.

Note that it is possible to drag-and-drop an actor file from the Project explorer pane to the XDF network 
diagram to add an instance of an actor.

Now the example can be run as described in 5.3 and the result can be seen in the console (see Figure 19).

﻿

16� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://github.com/orcc/rvccaltut/tree/master/net.sf.orcc.tutorial/src/net/sf/orcc/tutorial/utils
https://github.com/orcc/rvccaltut/tree/master/net.sf.orcc.tutorial/src/net/sf/orcc/tutorial/utils
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 19 — Simulation of a simple network of actors in ORCC

5.4.4	 Other simple actors

5.4.4.1	 Add

The next example shows how to make an actor which will be as simple as ID but at the same time will 
perform a real manipulation on the data

package net.sf.orcc.tutorial.SimpleActor; 
  
actor Add () int In1, int In2 ==> int Out : 
   action In1: [a], In2: [b] ==> Out: [a+b] 
   end 
end

This package has two input ports separated by a comma, int In1, int In2, in the actor declaration. 
Also, input pattern changed to In1: [a], In2: [b] which means that action will be fired only when both 
ports, In1 and In2, have a valid data on their inputs. Consumed tokens will then be assigned to a 
and b, respectively. Moreover, this example clarifies the difference between input pattern and output 
expression. Out: [a+b], the output expression, includes an actual expression (the sum of two variables), 
which is calculated after the action is finished and the result is sent to the output port.

5.4.4.2	 AddSeq

The example in 5.4.4.1 consumes two tokens from two input ports. The following example shows how 
to add two values with only one input port.

package net.sf.orcc.tutorial.SimpleActor; 
  
actor AddSeq () int In1 ==> int Out : 
   action In1: [a, b] ==> Out: [a+b] 
   end 
end

﻿

© ISO/IEC 2017 – All rights reserved� 17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

It can be observed that the input pattern In1: [a, b] consumes two tokens from the same input during 
single firing. It is important to note that the action will fire only when the data on the input will match 
the input pattern. And since the pattern consists of two tokens, action will fire only when there are two 
tokens available on the input.

It is also possible to put more than two tokens separated by commas in the input pattern.

5.4.4.3	 AddSubSeq

The output expression, as illustrated in this example, can also produce more than one token. These 
expressions are separated by commas within square brackets.

package net.sf.orcc.tutorial.SimpleActor; 
  
actor AddSubSeq () int In1 ==> int Out : 
   action In1: [a, b] ==> Out: [a+b,a-b] 
   end 
end

5.4.4.4	 Scale

The following example shows another operation the output expression can perform.

package net.sf.orcc.tutorial.SimpleActor; 
  
actor Scale (int k=1) int In ==> int Out : 
   action In: [a] ==> Out: [k*a] 
   end 
end

Note that the actor parameters field was not left empty. The expression int   k=1 has been used to 
introduce the parameter k which has the default value of 1.

The parameters can be modified after adding an instance of an actor to the XDF network. This is done 
by right-clicking on the instance rectangle and then choosing the Show properties item (see Figure 20).

Figure 20 — Actor parameter list in ORCC

In the Properties pane, click on the Arguments on the left to display a list of arguments. Click on Add 
button and specify Name k and Value 7 (see Figure 21).

﻿

18� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 21 — Actor parameter setting in ORCC

When the network is run, this particular instance of the actor will multiply the input token by 7.

Note that the parameters for the Source and Printer actors can be specified using files downloaded 
from the GitHub repository (see 5.4.3).

5.4.5	 Network of simple actors

After finishing all the examples in 5.4.4, a network similar to Figure 22 can be built.

Figure 22 — Network of simple actors

If no parameter name of the actor Printer is specified (as described in 5.4.4), it cannot be determined 
from the console output which actor prints what. And since this parameter is a string, it should be 
surrounded by quotation marks, e.g. “Printer1”.

﻿

© ISO/IEC 2017 – All rights reserved� 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

5.5	 Non-determinism

As mentioned in 5.4.4.1 to 5.4.4.4, actors may have multiple actions. So in the following example, there 
are two.

package net.sf.orcc.tutorial.Nondeterminism; 
  
actor NDMerge () int In1, int In2 ==> int Out : 
   action In1: [x] ==> Out: [x] end 
   action In2: [x] ==> Out: [x] end 
end

This actor merges two input streams into one output. The first action takes a token from the input In1 
and sends it to the output Out. The second one does the same but for the input In2. However, from the 
description, one cannot know how the actor will behave if there are tokens available on both input 
ports at the same time. The order of output tokens will be undefined. This behaviour is called non-
deterministic.

Generally, non-determinism means that the program can produce different output while processing the 
same input data. But in case of NDMerge, the output is actually defined by the timings of the input 
streams. The ability to leave this choice open was added to the CAL language on purpose. For example, 
if there is no available data on the first stream and there are data on the second stream, the actor does 
not have to wait. It will send further the token from the input whichever will have it first. And if the 
timings of the input data are known, this will help to avoid stalls and unnecessary delays.

However, an actor can be made which will be really non-deterministic even the timings of input data 
are known. The following example of NDSplit shows this.

package net.sf.orcc.tutorial.Nondeterminism; 
  
actor NDSplit () int In1 ==> int Out1, int Out2 : 
   action In1: [x] ==> Out1: [x] end 
   action In1: [x] ==> Out2: [x] end 
end

Here, there is one input and two outputs. Two actions always have a condition to fire at the same moment.

A network similar to Figure  23 can be built to simulate the non-deterministic behaviour. However, 
because of deterministic nature of simulator’s algorithms, the results will not look random.

Figure 23 — Network of simple actors to explain non-determinism

5.6	 Guarded actions

Non-determinism of multiple actions within one actor is introduced in 5.5. Even if one can exploit that 
property, it is generally undesirable to have such cases.

﻿

20� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

RVC-CAL provides options to restrict action firing conditions. One of them is using guards. This is a 
language construction which allows specifying additional requirements for an action to fire.

The following example illustrates how guards can be used.

package net.sf.orcc.tutorial.GuardedActions; 
  
actor Split () int In ==> int P, int N : 
  
   action In: [a] ==> P: [a] 
   guard a >= 0 end 
  
   action In: [a] ==> N: [a] 
   guard a < 0 end 
  
end

Line guard a >= 0 in the definition of the first action defines a condition that fires the action only when 
the data on the input In is greater than or equal to zero. Similarly for the second action, guard a < 0 
means that the action will fire only when data is less than zero.

It is important to note that it is the user’s responsibility to check that the guard conditions of all actions 
within an actor are exhaustive, i.e. that they cover all possible input. Otherwise, there will be cases 
when an actor will stall forever.

The next example (which is a wrong usage) shows what happens when not following this rule.

package net.sf.orcc.tutorial.GuardedActions; 
  
actor SplitDead () int In ==> int P, int N : 
  
   action In: [a] ==> P: [a] 
   guard a > 0 end 
  
   action In: [a] ==> N: [a] 
   guard a < 0 end 
  
end

The guard in the first action covers all the positive numbers and the guard in the second action covers all 
the negative ones. But if the input In is zero, this token will not cause any action to fire and it (therefore) 
will not be consumed, so no other tokens will come to the input In. The actor will stall forever.

Moreover, besides being exhaustive, guards in an actor should not have overlapped ranges. It can cause 
the errors explained in the following example.

package net.sf.orcc.tutorial.GuardedActions; 
  
actor SplitND () int In ==> int P, int N : 
  
   action In: [a] ==> P: [a] 
   guard a >= 0 end 
  
   action In: [a] ==> N: [a] 
   guard a <= 0 end 
  
end

﻿

© ISO/IEC 2017 – All rights reserved� 21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Here, there are two guards, one is guard a >= 0 and another is guard a <= 0. So the first action fires 
when there is a non-negative number on the input In and the second action fires when there is a non-
positive one. It can be observed that zero satisfies conditions for both. This means that in case of zero 
on the input, the same non-determinism problem which was described in 5.5 can occur.

A final and important fact about the guards is that when guarding conditions is not fulfilled, the action 
does not fire, i.e. the token is not consumed and remains on the input so it could be consumed by the next 
firing or another action. It can be illustrated in the following example.

package net.sf.orcc.tutorial.GuardedActions; 
  
actor Select () bool S, int A, int B ==> int Out : 
  
   action S: [sel], A: [x] ==> Out: [x] 
   guard sel end 
  
   action S: [sel], B: [x] ==> Out: [x] 
   guard not sel end 
  
end

The code above is similar to the NDMerge in 5.5 and has an additional input bool S, data from which 
is used to select action to fire. Thus, in the example here, when there are tokens available on all three 
inputs and token from input S is false, the first action checks it but does not consume it, then the second 
action can consume it, fire and send the data from input A to the output.

The following network can be built. For the Boolean input of the actor from the last example, a special 
source generator BoolGen will be needed. This can be downloaded from the GitHub repository (https://
github.com/orcc/rvccaltut/blob/master/net.sf.orcc.tutorial/src/net/sf/orcc/tutorial/utils/BoolGen.cal).

The BoolGen actor generates an infinite sequence of [true, false, true, false,...] (see Figure 24).

Figure 24 — Network of simple actors to explain guarded actions

﻿

22� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://github.com/orcc/rvccaltut/blob/master/net.sf.orcc.tutorial/src/net/sf/orcc/tutorial/utils/BoolGen.cal
https://github.com/orcc/rvccaltut/blob/master/net.sf.orcc.tutorial/src/net/sf/orcc/tutorial/utils/BoolGen.cal
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

5.7	 State variables

Previous sections have illustrated how actions are fired on external conditions, but there is nothing 
inside the specification of an actor which can affect subsequent firings.

The state variables represent the internal memory of an actor. Actions within an actor can change its 
internal state and thereby alternate subsequent firings.

The simplest example of using state variable is a Sum actor.

package net.sf.orcc.tutorial.States; 
  
actor Sum () int In ==> int Out : 
   int sum := 0; 
   action In: [a] ==> Out: [sum] 
   do 
      sum := sum + a; 
   end 
end

In the line int sum := 0;, the state variable sum is declared and initialized to zero. In this example, it can 
also be seen that an action can manipulate data within its body. In this case, the code between do and 
end updates the state variable sum, adding consumed token to it. Constructions like that are usually 
called accumulators. So here, it can be seen that an action not only consumes input token and produces 
output, but also modifies internal state of the actor, which will affect the output of the next firing.

It is important to notice here (although it was mentioned in previous subclauses) that the output 
expression is evaluated after action has been fired. The value of sum in output expression Out: [sum] is 
the one which has been updated by the action.

﻿

© ISO/IEC 2017 – All rights reserved� 23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The previous example does not clearly represent the meaning of state variables. To explain this, an actor 
will be introduced which selects the input stream according to its internal state and sends a consumed 
token to the output (also recall the Select actor in 5.6).

package net.sf.orcc.tutorial.States; 
  
actor IterSelect () bool S, int A, int B ==> int Out : 
   int state := 0; 
   action S: [sel] ==> guard state=0 
   do 
      if sel then 
         state := 1; 
      else 
         state := 2; 
      end 
   end 
  
   action A: [x] ==> Out: [x] 
   guard state=1 
   do 
      state := 0; 
   end 
  
   action B: [x] ==> Out: [x] 
   guard state=2 
   do 
      state := 0; 
   end 
  
end

Here, in the actor IterSelect, the state variable declaration int state:= 0; is found.

The first action consumes a token from the input S and does not produce any output. It only modifies 
the internal state. (Notice that there is no output expression after the ==> sign but a guard.)

So this action is fired if current state is 0 and changes the state value to 1 if there is true on the input S 
or to 2 if there is false.

The second action changes state to zero and copies a token from input A to the output but only fires 
when current value of the internal state variable state is 1. The third action does the same but only 
when state value is 2.

Select and IterSelect are almost, but not entirely, equivalent. First, IterSelect makes twice as many 
steps in order to process the same number of tokens. Second, it actually reads, and therefore consumes, 
the token from input S, irrespective of whether a matching data token is available on A or B. And unlike 
the previous examples, the IterSelect actor uses guards that depend on an actor state variable rather 
than on an input token.

﻿

24� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

It is possible to use combinations of state variables and input tokens in guards, which is illustrated in 
the following example.

package net.sf.orcc.tutorial.States; 
  
actor AddOrSub () int In ==> int Out : 
  
   int sum := 0; 
  
   action In: [a] ==> Out: [sum] 
   guard a > sum 
   do 
      sum := sum + a; 
   end 
  
   action In: [a] ==> Out: [sum] 
   guard a <= sum 
   do 
      sum := sum - a; 
   end 
  
end

Here, there are two actions: one of them adds the input token value to the state variable sum and 
another one subtracts the input from sum token, depending on whether or not the token is smaller than 
the value of sum itself.

A network similar to Figure 25 can be built to experiment with these actors.

Figure 25 — Network of simple actors to explain state variables

5.8	 Scheduling

The InterSelect example from 5.7 implements a commonly used software design pattern called finite 
state machines.

﻿

© ISO/IEC 2017 – All rights reserved� 25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

RVC-CAL provides special syntax to describe finite state machines. It is called schedules. The following 
example IterSelectFSM illustrates the use of schedules.

package net.sf.orcc.tutorial.Schedules; 
  
actor IterSelectFSM () bool S, int A, int B ==> int Out : 
   readT: action S: [sel] ==> guard sel end 
   readF: action S: [sel] ==> guard not sel end 
   copyA: action A: [x] ==> Out: [x] end 
   copyB: action B: [x] ==> Out: [x] end 
  
   schedule fsm init : 
      init (readT)  --> waitA; 
      init (readF)  --> waitB; 
      waitA (copyA) --> init; 
      waitB (copyB) --> init; 
   end 
end

Recall that every action can have an identifier or label, e.g. here readT: action S: [sel] ==> guard sel end 
the name of the action is readT. These labels are called action tags.

The block of code

schedule fsm init : 
   init (readT)  --> waitA; 
   init (readF)  --> waitB; 
   waitA (copyA) --> init; 
   waitB (copyB) --> init; 
end

describes the automaton. Basically, it is a textual representation of a finite state machine given as a list 
of possible state transitions. The states of that finite state machine are the first and the last identifiers 
(init, waitA and waitB) in those transitions represented with the ––> sign. Relating this back to the 
original version of IterSelect, these states are the possible values of the state variable, i.e. 0, 1, and 2. 
The initial state of the schedule is the one following schedule fsm. In this example, it is init.

Each state transition consists of three parts: the original state, a list of action tags in parenthesis, and the 
following state. For instance, in the transition init (readT) ––> waitA;, there is init as the original state, 
readT as the action tag, and waitA as the following state. The way to read this is that if the schedule is 
in state init and an action tagged with readT occurs, the schedule will subsequently be in state waitA.

The states init, waitA and waitB are imagined as circles, and the action tags readT, readF, copyA 
and copyB are imagined as arrows; an FSM diagram can be envisioned in the code, as illustrated in 
Figure 26.

Figure 26 — State transitions and the equivalent finite state machine

﻿

26� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The example above appears to show how to make implementation simpler and more readable. But in 
fact, it complicates the computation. In the original IterSelect actor, there were only three actions but 
here there are four.

A simpler example can be used to show how to avoid increasing complexity using schedules.

Actor AlmostFairMerge merges two streams almost fairly, as it is biased with respect to which input it 
starts reading from. But once it is running, it will strictly alternate between the two.

package net.sf.orcc.tutorial.Schedules; 
  
actor AlmostFairMerge () int In1, int In2 ==> int Out : 
  
   int state := 0; 
  
   action In1: [x] ==> Out: [x] 
   guard state=0 
   do 
      state := 1; 
   end 
  
   action In2: [x] ==> Out: [x] 
   guard state=1 
   do 
      state := 0; 
   end 
  
end

The actor clearly has two states. It can be implemented using schedules as follows:

package net.sf.orcc.tutorial.Schedules; 
  
actor AlmostFairMergeFSM () int In1, int In2 ==> int Out : 
  
   A: action In1: [x] ==> Out: [x] end 
   B: action In2: [x] ==> Out: [x] end 
  
   schedule fsm S1 : 
      S1 (A) --> S2; 
      S2 (B) --> S1; 
   end 
  
end

Here, two actions A, B and two states S1, S2 can be seen, which is the same as in the original actor.

A network can be created according to Figure 27.

﻿

© ISO/IEC 2017 – All rights reserved� 27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 27 — Network of simple actors to explain finite state machines

5.9	 Priorities

The previous subclauses have discussed guards, states and schedules. There is one more way to manage 
action firings in RVC-CAL.

In the case when conditions have been met for more than one action to fire, a higher priority can be 
given to some actions against others.

The following example illustrates how to use this in RVC-CAL.

package net.sf.orcc.tutorial.Priorities; 
  
actor BiasedMerge () int A, int B ==> int Out : 
  
   InA: action A: [x] ==> Out: [x] end 
   InB: action B: [x] ==> Out: [x] end 
  
   priority 
      InA > InB; 
   end 
  
end

Here, there are two actions labelled InA and InB. And the line InA > InB; in the priority ... end block 
tells the actor that InA has a higher priority than InB. So in the case when tokens will be available on 
both inputs A and B, the token from input A will always go to the output first.

﻿

28� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The following example illustrates how to give equal priorities to groups of actions.

package net.sf.orcc.tutorial.Priorities; 
  
actor FairMerge () int A, int B ==> int Out : 
  
   One.a:  action A: [x] ==> Out: [x] end 
   One.b:  action B: [x] ==> Out: [x] end 
   Both.a: action A: [x], B: [y] ==> Out: [x,y] end 
   Both.b: action A: [x], B: [y] ==> Out: [y,x] end 
  
   priority 
      Both > One; 
   end 
  
end

It is necessary to pay attention to the action tagging. Actions can be grouped by labelling them as One.a, 
One.b. So here, there is a group One. Similarly, two actions can be tagged to the group Both.

And finally, a higher priority is given to the group Both (see Figure 28).

Figure 28 — Network of simple actors to explain priorities

5.10	 Repeat clause

This subclause discusses input patterns and output expressions anew.

Earlier, it was shown that an input pattern of an action has two main functions: a) the input pattern 
defines the requirements for the action to be fired based on tokens available on the input; and b) the 
input pattern declares variables which will be used in the body of an action.

Simple cases that were discussed in the previous subclauses did not cover all the possible variants of 
input data. Another form of input is discussed in the following example.

package net.sf.orcc.tutorial.Repeat; 
  
actor Reduce () int In1 ==> int Out : 
  
   action In1: [a1,a2,a3,a4,a5,a6,a7] ==> Out: [a1,a2] 
   guard a1 mod 2=0 
   end 
  
end

﻿

© ISO/IEC 2017 – All rights reserved� 29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Here, seven tokens are read from the input and if the first one is an even number, the first two tokens 
are transferred further to the output Out.

It can be seen that having seven elements in the input pattern looks quite excessive. Larger numbers of 
elements, such as 64 or 1 024, would become unwieldy.

RVC-CAL has a special language construction called repeat clause.

package net.sf.orcc.tutorial.Repeat; 
  
actor ReduceRP () int In1 ==> int Out : 
  
   action In1: [a] repeat 15 ==> Out: [a] repeat 8 
   guard a[0] mod 2=0 
   end 
  
end

Using the keyword repeat, the action can be set up to consume a defined pattern multiple times. Here, 
15 tokens are read if the first one is even.

The consumed token a within the action's body can be referred to in an array, e.g. a[2]. So actually, 
In1: [a] repeat 15 here defines an array int a[15] and initializes it with 15 input tokens of type int.

Similar construction can be used with output expression. As discussed in 5.3, output expressions 
contain a list of expressions to compute the values of output tokens. In the example above, a repeat 
clause is added, the defined output token will not be just reproduced n times. But the first n elements of 
array a[15] are sent to the output.

Using a repeat clause can produce a complicated output behaviour. The following example shows one of 
these cases.

package net.sf.orcc.tutorial.Repeat; 
  
actor SplitRP () int In1 ==> int Out1, int Out2, int Out3 : 
  
   action 
      In1: [a,b,c] repeat 8 
      ==> 
      Out1: [a] repeat 8, 
      Out2: [b] repeat 8, 
      Out3: [c] repeat 8 
   end 
  
end

Here, the input pattern is [a,b,c]  repeat  8. This means that action will consume these three tokens 
eight times. So if the input has

[1,2,3,4,5,6,7,8,9,...,24]

then in the action, there will be arrays

a[8] = [1,4,7,...,22]

b[8] = [2,5,8,...,23]

c[8] = [3,6,8,...,24]

The output expressions of the example send all three arrays to three different outputs.

﻿

30� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Networks can be built for all these examples, and their behaviour can be observed using the actors 
Source and Print from the utils package.

5.11	 Control flow

5.11.1	 General

Previous subclauses illustrated dataflow abstractions in RVC-CAL such as actors, actions and XDF 
networks. But the language itself also contains elements of a procedural paradigm.

Control flow constructions and mutable variables can be used within each action.

5.11.2	 Data types

Before proceeding with imperative elements of the language, data types used in RVC-CAL are 
introduced.

Table 1 shows all predefined data types used in RVC-CAL.

Table 1 — List of predefined datatypes in RVC-CAL

Data type Example Description
Bool true Boolean
int −21 Integer
Uint 42 Unsigned integer
Float 237.2 Floating point numbers
String “Hello” Strings of characters
List(type: T, size = N) [1,2,3] Finite lists of N elements of type T

The first five of these predefined RVC-CAL data types should require no further explanation but the last 
one, List, requires some further discussion. RVC-CAL supports elements of a functional programming 
paradigm, which will be discussed in the following subclauses. Within the imperative paradigm, a List 
can be treated as arrays. Furthermore, RVC-CAL provides an alternative syntax for lists:

List(type: int, size = 64) foo is equivalent to int foo[64]

This format resembles that of an array.

5.11.3	 Assignments

A mutable variable can be defined within an action and it can be assigned an initial value and changed 
during the action execution.

   action ==> Out: [m,a[0]] 
   var 
      int m := 0, 
      int a[8] 
   do 
      m := 10; 
      a := [0,1,2,3,4,5,6,7]; 
      a[3] := m; 
   end

Every action can contain local variables which should be introduced in the block preceded by the 
keyword var just after the action declaration. Variables can also be initialized with values using 
operator :=. Definitions of different variables should be separated by commas.

﻿

© ISO/IEC 2017 – All rights reserved� 31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The values of variables can be changed using assignment statements within the body of action which is 
bounded by keywords do ... end. Each statement should be terminated with a semicolon.

A working example with assignments is shown here:

package net.sf.orcc.tutorial.ControlFlow; 
  
actor Fibonacci () ==> int Out : 
   int fib[2] := [0,1]; 
   int counter := 0; 
  
   action ==> Out: [fib[0]] 
   guard 
      counter < 20 
   var 
      int tmp 
   do 
      // Evaluate next Fibonacci number 
      tmp := fib[1]; 
      fib[1] := fib[0] + fib[1]; 
      fib[0] := tmp; 
  
      // Increment counter 
      counter := counter + 1; 
   end 
  
end

The actor in this example produces a sequence of Fibonacci numbers.

The following subclauses describe the control flow constructions of RVC-CAL.

5.11.4	 If statement

The first control flow statement that will be discussed is an “if” statement.

An if statement in RVC-CAL has the following syntax:

   if m > 0 
   then 
      m := m + n; 
   else 
      n := m + n; 
   end

The else part can be omitted when not needed, as in:

   if m != 0 
   then 
      m := m + n; 
   end

Table 2 provides a list of logical operators.

﻿

32� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Table 2 — List of logical operators in RVC-CAL

Operator Description
= equal

! = not equal
> greater then
< less then

>= greater or equal
<= less or equal

5.11.5	 While statement

The syntax for a “while” statement is as follows.

   while n < 10 
   do 
      n := n + m; 
   end

And the following example illustrates how to use while and if statements in actors:

package net.sf.orcc.tutorial.ControlFlow; 
  
actor SatDotProduct (int level=1024) int In ==> int Out : 
  
   action In: [x,y] repeat 8 ==> Out: [sum] 
   var 
      int i := 0, 
      int sum := 0 
   do 
      while i < 8 
      do 
         sum := sum + x[i]*y[i]; 
         if sum > level 
         then 
            sum := level; 
         end 
         i := i + 1; 
      end 
   end 
end

The actor SatDotProduct computes saturated dot-product of two vectors. This is using repeat clause in 
the input pattern to read two arrays of tokens as was explained in 5.10.

5.11.6	 Foreach statement

A “foreach” statement has the following syntax:

      foreach int i in 0 .. 7 
      do 
         sum := sum + n + i; 
      end

﻿

© ISO/IEC 2017 – All rights reserved� 33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

The next example shows how a dot product can be calculated using a foreach statement in RVC-CAL.

package net.sf.orcc.tutorial.ControlFlow; 
  
actor DotProduct () int In ==> int Out : 
  
   action In: [x,y] repeat 8 ==> Out: [sum] 
   var 
      int sum := 0 
   do 
      foreach int i in 0 .. 7 
      do 
         sum := sum + x[i]*y[i]; 
      end 
   end 
end

And the last example shows how to use nested foreach statements:

package net.sf.orcc.tutorial.ControlFlow; 
  
actor MatrixProduct () int In1, int In2 ==> int Out : 
  
   action In1: [x] repeat 8*8, In2: [y] repeat 8 ==> Out: [z] repeat 8 
   var 
      int z[8] 
   do 
      foreach int i in 0 .. 7 do 
      z[i] := 0; 
         foreach int j in 0 .. 7 
         do 
            z[i] := z[i] + x[i*8+j]*y[j]; 
         end 
      end 
   end 
end

Here, a repeat clause is used in the output expression in order to send an array of tokens to the output.

6	 Papify and Papify Viewer

6.1	 General

This subclause provides a detailed tutorial on how to use Papify, a tool that implements an event-based 
performance monitoring in RVC-CAL. Papify integrates the Performance API (PAPI) into the Open-
Source RVC-CAL Compiler (ORCC). Papify analyses in detail the performance of an implementation in a 
processor-based platform. Papify Viewer is a visualization tool to monitor the actions of actors in RVC-
CAL specifications. Fired actions can be analysed chronologically from either an actor or a partition 
point of view. In addition, Papify Viewer can also generate event histograms.

6.2	 Using Papify

Papify employs the annotation syntax defined in ISO/IEC  23001-4 to signal the instrumented actors 
and actions. Annotations are a common mechanism in the RVC-CAL language to drive the compiler 
behaviour. In addition, Papify can be employed to profile the video tool library (VTL) defined in 
ISO/IEC 23002-4.

﻿

34� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

In order to profile an actor, annotations of the form “@papify(ListOfEvents)” are employed, where the 
ListOfEvents is a non-empty, comma-separated sequence that comprises any of the preset events of the 
Performance API (PAPI).

To use Papify, installation of the Open RVC-CAL Compiler (ORCC) and PAPI are required. For installation 
of ORCC, see http://orcc.sourceforge.net/getting-started/install-orcc/. For installation of PAPI, which 
can be found at http://icl.cs.utk.edu/papi/, see the PAPI installation instructions at http://icl.cs.utk.
edu/projects/papi/wiki/Installing_PAPI. No additional software needs to be installed for Papify, as it 
is already included with ORCC.

6.2.1	 Papify activation

To activate Papify, the ordinary compilation process of ORCC needs to be followed. On the selected XDF 
network, right-click to get the menu Run As > Run Configurations (see Figure 29).

Figure 29 — Configuration setting to activate Papify in ORCC

Once the Run Configurations window is open, the C backend needs to be selected (see Figure 30).

Figure 30 — C backend selection to activate Papify in ORCC

Within the backend options, the last one needs to be checked: Papify: profile actors using PAPI. 
Additionally, the option Enable multiplex may be selected in case the number of PMC counters available 
on the objective platform is less than the number of configured events (see Figure 31).

﻿

© ISO/IEC 2017 – All rights reserved� 35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

http://orcc.sourceforge.net/getting-started/install-orcc/
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI
http://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 31 — Multiplex option selection to activate Papify in ORCC

Finally, click Apply and then Run to generate the C code with the PAPI function calls for the instrumented 
actors and actions.

6.2.2	 Actor assessment

To assess all actions of an actor, an annotation should be included before the actor interface declaration. 
The format of the annotation is the following:

@papify([event1], [event2], …, [eventn])

where each:

[eventi]

is a PAPI preset event. At least one event should always be included.

Figure  32 shows a network of three actors employed to rotate an image. The functionality of the 
specification is as follows:

—	 Actor Source begins to send luminance samples to actor Rotate, who changes the sample orientation 
to 90° and stores the rotated values internally.

—	 Once Source sends all samples of the image file, Rotate passes the rotated luminance pixels to actor 
Writer, who writes the samples into the rotated image file.

Figure 32 — Network of actors employed to rotate an image

In case the performance of the actor Rotate wants to be measured with, for instance, the events PAPI_
TOT_INS and PAPI_L1_DCM, the following statement should be included above the actor declaration:

1  @papify(PAPI_TOT_INS, PAPI_L1_DCM) 
2  actor Rotate() 
3  uint(size=8) Y ==> uint(size=8) YRot : 
4  /*(...)*/

To review the available events in a system, the following PAPI command can be utilized:

papi_avail

As a consequence of the available hardware resources in the objective platform, some events may not 
be mutually compatible during the execution of the implementation of an RVC-CAL specification. The 
command:

papi_event_chooser

This is a way to detect these conflicts. For instance, the command:

papi_event_chooser PRESET PAPI_TOT_INS PAPI_L1_DCM

﻿

36� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

will provide a list of events that can be merged in the same execution with PAPI_TOT_INS and PAPI_L1_
DCM.

6.2.3	 Action assessment

With Papify, it is possible to assess specific actions of an actor and remove the rest of them from the 
evaluation. To do so, the following annotation shall be included above the actions whose performance is 
required to measure:

@papify

Furthermore, to add the events to measure, the same annotation employed for the actor assessment 
shall also be included.

@papify([event1], [event2], …, [eventn])

In this way, the annotated actions can be instrumented with the events indicated at the actor level. For 
instance, below shows the performance measurement of the action Image_load of the actor Rotate with 
the events PAPI_TOT_INS and PAPI_L1_DCM.

1  @papify(PAPI_TOT_INS, PAPI_L1_DCM) 
2  actor Rotate() 
3  uint(size=8) Y ==> uint(size=8) YRot : 
4   
5  /* (...) */ 
6   
7   @papify 
8   Image.load: action Y:[pixel] ==> 
  
9   guard LoadUnload=true 
10    
11  /* (...) */

6.2.4	 Output folder

Once the execution of a specification instrumented with Papify has finished, a folder with the name 
papi-output is created. This folder is located in the folder /bin of the ORCC generated folders. Within the 
papi-output folder, the output files of each of the instrumented actors are written. These files are the 
input to the Papify Viewer tool.

6.3	 Papify Viewer

Papify Viewer is a tool written in Processing[4], a programming language for visual applications that 
helps in the analysis of the activity file created with Papify. Due to the enormous amount of information 
typically generated in the activity file, the use of visual tools is recommended to get an insight of the 
action traces obtained during the execution of an RVC-CAL specification. Papify Viewer can additionally 
generate per-actor, per-action and per-partition histograms of events.

6.3.1	 Chronological visualization

6.3.1.1	 Actor point of view

Papify Viewer offers the possibility to have a chronological view per actor of the activity of a 
specification. Figure 33 shows a network of three actors employed to rotate an image. The generated 
per-actor chronological trace can be seen. Time is shown advancing from left to right. The meaning 
of the trace can be interpreted as follows: actor Source (in blue) begins to send luminance samples 
to actor Rotate (in red), which changes the sample orientation to 90° and stores the rotated values 

﻿

© ISO/IEC 2017 – All rights reserved� 37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

internally. Once Source sends all samples of the image file, Rotate passes the rotated luminance pixels 
to actor Writer (in green), which writes the samples into the rotated image file.

Figure 33 — Per-actor chronological trace

6.3.1.2	 Partition point of view

In case an actor to core mapping file is provided to Papify Viewer (in an .xcf file), the tool can generate 
a per-partition chronological trace as shown in Figure 34. It can be seen that the Source and Writer 
actors are being executed in one core (Partition 1), while the Rotate actor is being executed in a 
different one (Partition 2).

Figure 34 — Per-partition chronological trace

6.3.1.3	 Zooming

Another possibility of Papify Viewer is to get a zoom in or out along the time axis. Figure 35 shows the 
zooming in on an interval in which the Source and Writer actors are being executed is applied to unveil 
the actual interleaving of actor actions. The time duration of these executions basically depends on the 
size of the FIFO queue and the number of actions needed to fill it or empty it.

Figure 35 — Per-actor zooming

6.3.1.4	 Action visualization

Papify Viewer can determine from a per-actor chronological trace the actions fired at each instant. 
As can be seen in Figure  36, when the cursor is located on one of the Rotate execution blocks, the 
corresponding executed action, Image_unload, is signalled.

﻿

38� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 36 — Actions fired in a per-actor chronological trace

In case a per-partition chronological trace is available, the cursor indicates the actor being executed 
instead of the action, as shown in Figure 37.

Figure 37 — Actions fired in a per-partition chronological trace

6.3.1.5	 Complex specifications

In complex specifications, the visualization of any of the two traces (per-actor or per-partition) can help 
to better understand the behaviour of the system.

Figure 38 shows a per-actor chronological trace.

Figure 38 — Per-actor chronological trace for an HEVC decoder specification

Figure  39 shows the per-partition chronological trace of a frame decoding in an example sequence 
“Kristen and Sara” (1280 × 720, 60 fps, qp = 27) using a Main profile HEVC decoder.

﻿

© ISO/IEC 2017 – All rights reserved� 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 39 — Per-partition chronological trace for an HEVC decoder specification

6.3.2	 Event histograms

6.3.2.1	 Actors

Figure 40 shows the per-actor PAPI_TOT_INS histogram resulting from the instrumentation of the actor 
network given in 6.2.3. It is worth noting that when the cursor is located on a bin of the histogram, 
the actual value of the event count is shown at the y-axis. Either a linear or log scale can be used to 
represent the data. Furthermore, the total event count of an actor is shown when the cursor is located 
on the corresponding bin of the histogram.

Figure 40 — Actor histogram for the PAPI_TOT_INS event

6.3.2.2	 Actions

Papify Viewer can show event histograms of the actions of a selected actor as shown in Figure 41. With 
Papify Viewer beside the event count shown in Figure 40, the average number of events per action firing 
can be shown. For instance, the action Image_unload is fired 65 536 times with an average number of 
instructions per fire (occurrences of the PAPI_TOT_INS event) of 262.

﻿

40� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 41 — Action histogram for the Rotate actor and the PAPI_TOT_INS event

6.3.2.3	 Partitions

Additionally, Papify Viewer can show per-partition event histograms. Figure 42 shows the PAPI_TOT_
INS event histogram of the partition discussed in 6.3.1.2 (Source and Writer in Partition 1 and Rotate 
actor in Partition 2).

Figure 42 — Partition histogram

7	 TURNUS

7.1	 General

TURNUS is an open-source system design exploration and optimization framework tailored for CAL 
dataflow programs. TURNUS provides an application programming interface (API) to profile CAL 
programs that is usable by third-party dataflow compilers, such as ORCC, with the capability to model 
heterogeneous parallel platforms and a collection of multidimensional design spaces explorations 
(DSE) optimization heuristics based on the execution trace graph (ETG) post-mortem scheduling. The 
TURNUS profiler is used in the first stages of the DSE for evaluating both the ETG and the high-level 
profiling information of a CAL program. Successively, the ETG is post-mortem scheduled in order to 
estimate the design performance and explore and optimize the design space of the program.

﻿

© ISO/IEC 2017 – All rights reserved� 41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Installation and use of the TURNUS framework is described in 7.2. An MPEG HEVC video decoder 
implemented with RVC-CAL dataflow language is used to describe the main design space exploration 
and optimization capabilities of the TURNUS framework.

7.2	 Installing the TURNUS framework

7.2.1	 General

The TURNUS framework is based on Java™9) 1.8 and its graphical user interface (GUI) is integrated 
within the Eclipse IDE platform.

7.2.2	 Java Runtime Environment

TURNUS requires the Java 1.8 (or higher) JRE. The latest JRE release can be downloaded from https://
java.com/en/download/. To use Eclipse IDE for the Java Developers edition, the Java Development Kit 
will also need to be installed. The JDK can be downloaded from http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

7.2.3	 Eclipse

TURNUS is compatible with Eclipse versions 4.4 (or higher). The Eclipse IDE can be downloaded from 
https://www.eclipse.org/downloads/ (Eclipse IDE for the Java Developers edition is suggested). To 
install, extract the archive into a local directory.

7.2.4	 TURNUS plug-in for Eclipse

To install TURNUS, the Eclipse Software Update Manager tool should be used. From the Eclipse ID:

a)	 Go to Help > Install New Software.

b)	 Click Add to add an update site.

c)	 Set its name (e.g. TURNUS) and its URL to http://eclipse.turnus.co (see Figure 43).

Figure 43 — Repository setting during the installation of the TURNUS plug-in for Eclipse

d)	 Once done, select all the plug-ins within the TURNUS plug-ins group (i.e. TURNUS analysis 
framework, TURNUS neo4j trace database and TURNUS ORCC CAL profilers). See Figure 44.

9)	    Java is a trademark of a product supplied by Oracle. This information is given for the convenience of users of 
this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be 
used if they can be shown to lead to the same results.

﻿

42� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://java.com/en/download/
https://java.com/en/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
http://eclipse.turnus.co
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 44 — Selection of the TURNUS framework during the installation of the TURNUS plug-in 
for Eclipse

e)	 Click Next, check and accept the licenses and then click Finish.

At this point, after restarting the Eclipse IDE, TURNUS and its required dependencies are installed.

7.3	 Profiling an RVC-CAL HEVC video decoder

7.3.1	 General

The HEVC decoder used in this document is the one available in the official RVC-CAL open-source 
applications (Orc-apps) repository. In the following subclauses, it is illustrated how the application can 
be statically and dynamically profiled. The following profilers are presented:

—	 TURNUS ORCC static code profiler;

—	 TURNUS ORCC dynamic code profiler.

7.3.2	 Download the design and the conformance bit-streams

The link to this repository is https://github.com/orcc/orc-apps. To download the source code, clone this 
Git10) repository:

$ git clone https://github.com/orcc/orc-apps.git

An input sequence is also needed in order to effectively simulate the design. Some of the 
supported conformance bit streams can be downloaded from ftp://ftp.kw.bbc.co.uk/hevc/hm-
10.0-anchors/bitstreams/lp_main/.

10)	   Git is a software configuration management package available on GitHub. This information is given for the 
convenience of users of this document and does not constitute an endorsement by ISO of the product named. 
Equivalent products may be used if they can be shown to lead to the same results.

﻿

© ISO/IEC 2017 – All rights reserved� 43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://github.com/orcc/orc-apps
https://github.com/orcc/orc-apps.git
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

7.3.3	 Import the HEVC design project in the Eclipse IDE workspace

From the Eclipse IDE, import the HEVC RVC-CAL project. In the menu File  >  Import, select 
General > Existing Projects into Workspace and select the path where the Orc-apps Git repository was 
previously cloned (see Figure 45).

Figure 45 — How to import the HEVC design project into the Eclipse IDE workspace

The following projects need to be selected:

—	 HEVC;

—	 System;

—	 RVC.

Click on the Finish button.

(Make sure that the active perspective in Eclipse is Java EE; otherwise, the menus could be different.)

At this point, all the imported projects are available in the Project Explorer viewer (see Figure 46).

﻿

44� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 46 — Project explorer viewer

The design that is used in the following subclauses is 

RVC/src/ org/sc29/wg11/mpegh/part2/Top_mpegh_part2_main_no_md5.xdf (see Figure 47).

Figure 47 — Top HEVC network of actors

7.3.4	 Static code profiling

With the TURNUS ORCC static profiler, basic information about the code complexity and maintainability 
of the design can be retrieved. This analysis is made without actually executing the program. The CAL 
code is analysed in order to provide information about its quality and maintainability according to 
some well-known static code analysis metrics (e.g. Halstead complexity measures).

To run this analysis, select and right-click on the .xdf file, then select Profile as > TURNUS static code 
analysis (see Figure 48).

﻿

© ISO/IEC 2017 – All rights reserved� 45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 48 — Static code analysis setting in TURNUS

Successively, the configuration options table is shown (see Figure 49).

Figure 49 — Configuration setting of the static analysis code in TURNUS

The program can be executed by clicking the Run button and the options described in Table 3 can be 
changed.

Table 3 — List of configuration options for static code analysis in TURNUS

Option Description
ORCC Project The CAL project which contains the design under test.
XDF The .xdf file which contains the top network description of the design under test.
Versioner The versioner used for versioning the CAL files of the design under test. By default, a Git 

versioner is used, which collects the following information: the Git commit identifier, the Git 
repository and the last modification date of each .cal file used in the design.

After running the analysis, a report file is generated containing all the profiling information 
(see Figure 50). This file is located in the project path under

<project>/turnus/profiling_code_analysis/<design_name>/<current_date>/<xdf_name>.cprof.

In this case, results are stored under

R V C / t u r n u s / p r o f i l i n g _ c o d e _ a n a l y s i s / o r g . s c 2 9 . w g 1 1 . m p e g h . p a r t 2 .
Top_mpegh_part2_main_no_md5/20150901185130/org.sc29.wg11.mpegh.part2.Top_mpegh_part2_
main_no_md5.cprof.

﻿

46� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 50 — Static code analysis data path (.cprof file)

The .cprof file can be opened with the TURNUS report viewer where a summary of the analysis data is 
available (see Figure 51).

Figure 51 — TURNUS report viewer

The information available in the TURNUS report viewer is summarized in Table 4.

Table 4 — List of items in the TURNUS report viewer

Data Description
NoL Number of Lines — indicates how many lines are contained in the file (or in the network). 

Lines with comments are not counted.
n Program vocabulary — defined as n = n1 + n2.
n1 The number of distinct operators.
n2 The number of distinct operands.

﻿

© ISO/IEC 2017 – All rights reserved� 47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Data Description
N Program length — defined as N = N1 + N2.
N1 The total number of operators.
N2 The total number of operands.
D The program difficulty.
V The program volume.
B The number of (potential) delivered bugs.

A .cprof can be exported to an .xls file. Select the .cprof file, right-click and select Export to XLS file. 
The exported file is fully compatible with the open-source tool available at https://www.openoffice.org 
(see Figure 52).

 

Figure 52 — Settings to export a .cprof file to an XLS file

The .xls file will appear as in Figure 53.

﻿

Table 4 (continued)

48� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://www.openoffice.org
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 53 — XLS file report view

For each CAL file, it is possible to obtain fine-grained information about the operand and operators that 
contribute to the static code complexity of the design.

7.3.5	 Dynamic code programming

With the TURNUS ORCC dynamic code profiler, the design is executed and the following profiling 
information is retrieved.

—	 The number of executed actions of each actor.

—	 The number of firings of each action.

—	 The operators executed by each actor and action.

—	 The number of produced and consumed tokens of each actor and action.

—	 The number of tokens that have been passed through a buffer of the design.

—	 The number of peeks, read misses, write misses for each actor and action and buffer.

Furthermore, during profiling, the execution trace graph (ETG) is generated, which is used during the 
design space exploration and optimization stages as described in 7.3.6.

The TURNUS framework provides two different ORCC dynamic code profilers.

—	 A code interpreter which collects the profiling information directly from the interpretation of the 
ORCC intermediate representation (IR) of the design.

—	 A profiled code generation and execution which generate a C++ representation of the design 
incorporating some profiling directives automatically captured by the TURNUS CAL code profiler 
during the binary execution.

The first approach (called TURNUS ORCC dynamic interpretation) is platform-independent and it is the 
most accurate way of profiling a CAL program. With the second one (called TURNUS ORCC dynamic 
execution), the profiling information can be biased by low-level source code optimization. However, 

﻿

© ISO/IEC 2017 – All rights reserved� 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

with both approaches, the generated ETGs are identical (i.e. using the same design and the same input 
sequence).

7.3.6	 TURNUS ORCC dynamic interpreter profiler

7.3.6.1	 General

To run this analysis, select and right-click on the .xdf file then select Profile as  >  TURNUS dynamic 
interpretation analysis (see Figure 54).

Figure 54 — Setting of the dynamic interpretation analysis in TURNUS

Figure  55 displays configuration options while Table  5 provides a list of configuration options for 
dynamic interpretation analysis in TURNUS.

Figure 55 — Configuration settings of the dynamic interpretation analysis in TURNUS

Table 5 — List of configuration options for dynamic interpretation analysis in TURNUS

Option Description
ORCC Project The CAL project that contains the design under test.
XDF The .xdf file that contains the top network description of the design under test.
Use an input stimulus This checkbox should be checked if an input sequence needs to be used.
Input stimulus This option appears when the “Use an input stimulus” option is checked. It is used 

to define the input file used by the network design.

The second step is to define the location of the input stimulus sequence. First of all, the Use an input 
file stimulus checkbox should be ticked and the input stimulus should be selected using the Browse 
button on the right of the Input stimulus option. The input sequence used in this example is the 

﻿

50� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

RaceHorses_416x240_30_qp37.bin conformance sequence retrieved from the following link: ftp://ftp.
kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/.

Now the program can be executed by clicking on the Run button and the other options available in the 
two configuration tables can be changed: Advanced Options and Buffer size Options.

In the Advanced Options window, it is possible to specify the following configuration options 
(see Table 6).

Table 6 — List of advanced configuration options for dynamic interpretation analysis in TURNUS

Option Description
Scheduler This is used during the interpretation. By default, round robin is used.
Versioner This is used for versioning the CAL files of the design under test. By default, a 

Git versioner is used, which includes the following collected information: the Git 
commit identifier, the Git repository and the last modification date of each .cal 
file used in the design.

Export the execution 
trace graph

This checkbox should be ticked to generate the execution trace graph file during 
the profiled simulation.

Compress the execution 
trace graph

This checkbox should be ticked to export the execution trace graph in a com-
pressed file. If checked, the file will have a .trycez extension; otherwise, it will 
have .trace. Both are compatible with the analyses provided by the TURNUS 
framework.

Export the Gantt chart This checkbox should be ticked to export the execution Gantt chart. If checked, a 
.vcd file is exported.

Stack protection This checkbox should be ticked to enable the stack protection.
Shared variables support This checkbox should be ticked to enable the shared variables support.
Constant folding This checkbox should be ticked to enable the constant folding IR transformation.
Constant propagation This checkbox should be ticked to enable the constant propagation IR trans-

formation
Dead code elimination This checkbox should be ticked to enable the dead code elimination IR trans-

formation.
Expression evaluation This checkbox should be ticked to enable the expression evaluation IR trans-

formation.
Variable initializer This checkbox should be ticked to enable the variable initializer IR transformation.
To N bit This checkbox should be ticked to enable the type resize to N-bit IR transforma-

tion of all the variables.
To 32 Bit This checkbox should be ticked to enable the type resize to 32-bit IR transforma-

tion of all the variables.

In the Buffer size Options window, it is possible to specify the following configuration options 
(see Table 7).

Table 7 — List of buffer size options for dynamic interpretation analysis in TURNUS

Option Description
Default buffer size The default buffer size (i.e. in terms of tokens) is used for each buffer when a 

specific size is not defined.
Buffer size The actual buffer size (i.e. in terms of tokens) of each buffer.
Load from XDF Load the actual buffer size configuration from the .xdf file.
Load from BXDF Load the actual buffer size configuration from a BXDF file configuration 

(i.e. generated by the TURNUS buffer size analysis).
Clear all Clear all buffer size configurations and use the default one.

﻿

© ISO/IEC 2017 – All rights reserved� 51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

During the program interpretation, a display frame is opened where the decoded frames are displayed. 
In case of errors or warnings, messages are printed in the Eclipse IDE output console (see Figure 56).

Figure 56 — Execution of the HEVC decoder project for dynamic interpretation analysis

After running the analysis, the resulting output files are located in the project path under

<project>/turnus/profiling_dynamic_analysis/<design_name>/<current_date>/.

In this case, results are stored under

R V C / t u r n u s / p r o f i l i n g _ d y n a m i c _ a n a l y s i s / o r g . s c 2 9 . w g 1 1 . m p e g h . p a r t 2 .
Top_mpegh_part2_main_no_md5/20150901185130/.

The files contained in this folder are discussed in 7.3.6.2.

7.3.6.2	 TURNUS ORCC dynamic execution profiler

To run this analysis, select and right-click the .xdf file, then select Profile as  >  TURNUS dynamic 
execution analysis (see Figure 57).

Figure 57 — Setting of the dynamic execution analysis in TURNUS

Figure 58 displays the configuration setting, while Table 8 provides a list of configuration options for 
the dynamic execution analysis in TURNUS.

﻿

52� © ISO/IEC 2017 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b


﻿

ISO/IEC TR 23002-6:2017(E)

Figure 58 — Configuration setting of the dynamic execution analysis in TURNUS

The second step is to define the location of the input stimulus sequence. First of all, the Use an input 
file stimulus checkbox should be ticked and the input stimulus should be selected using the Browse 
button on the right of the Input stimulus option. The input sequence used in this example is the 
RaceHorses_416x240_30_qp37.bin conformance sequence retrieved from the following link: ftp://ftp.
kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/.

Table 8 — List of configuration options for dynamic execution analysis in TURNUS

Option Description
ORCC Project The CAL project that contains the design under test.
XDF The .xdf file that contains the top network description of the design under test.
Use an input stimulus This checkbox should be ticked if an input sequence needs to be used.
Input stimulus This option appears when the “Use an input stimulus” option is checked. It is used to 

define the input file used by the network design.

The program can be executed by clicking the Run button and the other options available in the two 
configuration tables can be changed: Advanced Options and Buffer size Options.

In the Advanced Options configuration window, it is possible to specify the following options 
(see Table 9).

Table 9 — List of advanced configuration options for dynamic execution analysis in TURNUS

Option Description
Versioner This is used for versioning the CAL files of the design under test. By 

default, a Git versioner is used, which includes the following collect-
ed information: the Git commit identifier, the Git repository and the 
last modification date of each .cal file used in the design.

Export the execution trace graph This checkbox should be ticked to generate the execution trace 
graph file during the profiled simulation.

Compress the execution trace graph This checkbox should be ticked to export the execution trace graph 
in a compressed file. If checked, the file will have a .tracez extension; 
otherwise, it will have .trace. Both are compatible with the analyses 
provided by the TURNUS framework.

﻿

© ISO/IEC 2017 – All rights reserved� 53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 23
00

2-6
:20

17

ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
https://iecnorm.com/api/?name=4e62823f97cb6077b6834f28bb14423b

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	4 Overview
	5 RVC-CAL
	5.1 General
	5.2 Installing ORCC tools
	5.2.1 Java Runtime Environment
	5.2.2 Eclipse
	5.2.3 ORCC plug-in for Eclipse
	5.3 “Hello world”
	5.3.1 Creating a new project
	5.3.2 Creating a new package
	5.3.3 Creating a new actor
	5.3.4 Creating a network
	5.3.5 Running simulation
	5.4 Simple actor
	5.4.1 Structure of actors
	5.4.2 Simplest actor
	5.4.3 Running the examples
	5.4.4 Other simple actors
	5.4.5 Network of simple actors
	5.5 Non-determinism
	5.6 Guarded actions
	5.7 State variables
	5.8 Scheduling
	5.9 Priorities
	5.10 Repeat clause
	5.11 Control flow
	5.11.1 General
	5.11.2 Data types
	5.11.3 Assignments
	5.11.4 If statement
	5.11.5 While statement
	5.11.6 Foreach statement
	6 Papify and Papify Viewer
	6.1 General
	6.2 Using Papify
	6.2.1 Papify activation
	6.2.2 Actor assessment
	6.2.3 Action assessment
	6.2.4 Output folder
	6.3 Papify Viewer
	6.3.1 Chronological visualization
	6.3.2 Event histograms
	7 TURNUS
	7.1 General
	7.2 Installing the TURNUS framework
	7.2.1 General
	7.2.2 Java Runtime Environment
	7.2.3 Eclipse
	7.2.4 TURNUS plug-in for Eclipse
	7.3 Profiling an RVC-CAL HEVC video decoder
	7.3.1 General
	7.3.2 Download the design and the conformance bit-streams
	7.3.3 Import the HEVC design project in the Eclipse IDE workspace
	7.3.4 Static code profiling
	7.3.5 Dynamic code programming
	7.3.6 TURNUS ORCC dynamic interpreter profiler
	7.3.7 Algorithmic bottleneck analysis
	7.3.8 Impact analysis
	7.3.9 Buffer size minimization
	7.3.10 Partitioning
	Bibliography

