INTERNATIONAL ISO/IEC
STANDARD 11756

First edition
1992-12-15
~.._/”/
g

/‘I/d

Information technology — Programming languages -
MUMPS

Technologies de I'information — kangages de programmation — MUMPS

N
|

Reference number
ISO/IEC 11756:1992 (E)

I“m'”“ ”“Im””
“"ﬂlnn ; nnlllmu
“m”‘%' "””H[”
| I”|Iﬂum..,..,..m mil”m

w
w

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Table of Gentents
Part 1: MUMPS$ Language Specification
1 Static Syntéax Metalanguage L 2
2 Static Syntax and Semantics L e e 3
21 BasicAlphabet e e T 3
2.2 Expression Atomexpratom O N 3
221NaMeNaMeot i D 4
222Variables N 4
2221 Local Variable Name ilvn05 ... e 4
2222 Global Variable Name gvn 5
2223 Varigble Handling ON. oo 6
2224 Variable Contexts00 e 9
223 Numeric Literal numlit 0 . o g
2231 NumericDataValues0n ... oo 10
2232 Meaningofnumlit %\ ... 10
2.2.4 Numeric Interpretationof Data .5\ 11
2.2.4.1 Integer Interpretation'c. L 12
2.2.42 Truth-Value Interpretation i 12
225 8tring Literal strlit 0T . 12
2.2.6 Intrinsic Special VarighleName svno o oo 13
2.2.7 Intrinsic Functionsfunction 15
2.2 7 SASCH . e 15
2272 8CHAR 16
2273 8DATA e 16
2.2 7.4 8EXTRACT ... e 17
2278 8FIND ... 17
2276 $FNUMBER e 18
2277 BGET . .. e 19
2278 BJUSTIFY . .. e 19
2279 8LENGTH 20
— 2 27 i PN 20
22711 80RDER e 21
22712 8PIECE e 21
22718 3QUERY e 22
22714 8RANDOM . .. e 24

© ISO/EC 1992

All rights reserved. No part of this publicat'ion may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 66 ® CH-1211 Genéve 20 e Switzerland .
Printed in Switzerland

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

22715 $SELECT e 24

2 2716 STEXT .o e 24
22748 8VIEW .. P 25

2. 2. 749 8 25

2.28 Unary Operator unaryopcovvv e nnnnn. e . .25
2.2.9 Extrinsic Special Variable e 25
2210 Extrinsic Function e i 26
2.3 EXPressions @XPr ... A 26
2.3.1 Arithmetic Binary Operators P e e 27
2.3.2 Relational Operators o e e 27
2321 NumericRelationso, 28

2322 String Relations . 28

233 Patternmatch e O 28
234 LlogicalOperators 29
2.3.5 Concatenation Operator§NZ ... 30
24Routines O e 31
241 Routine Structure A L e 31
2.4.2 Routine Execution Yy e 31
25 Generalcommand Rules T 32
251 PostConditionalsU .. T P 33
2528pacesinCommands ;0 e iaie e 34
2530C0MmMeNnts e e e e 34
254 formatin READ and WRITE & N7 e 34
2.5.5 Side Effectson $Xand $Y,. O T PO 34
256Timeout N 35
257 LlineReferences O e 35
2.5.8 Command Argument Indirection ™. i foieenin - 36
2.5.9 Parameter Passing00 oo Y 37
2.6 Command Definitions0 ...t R O ¥ 2
26.1 BREAK ... e 39
26,2 CL0OSE ... e e e e 39
26.3D0 ... e 39
2.6.4 ELSE ... e DRI R .40
2B 5 FOR ... S e e e e 41
266 GOTO . 0ot et e e S I L. 4
2B 7 HALT e 43
2B BHANG e e . 43
2 B9 N e e 43
26000 J0B e e 44
2B AT KILL . e 44
28,12 LOCK .. e e 45
2B 13 NEW . e 46
2.6.14 OPEN ... e e e 48
2615 QUIT . ot e 49
2816 READ ... e e 49
2t S - ... 51
2.B8. 18 USE . .. e e e e 52
2810 VIEW e e e 53
2.8, 20 WRITE ... it e e e e e e e e e 54
2.6.21 XECUTE .. it e e et e e e 54
2.8.22 Z . e e e e e e e s 55

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Part 2: MUMPS Portability requirements

Introduction P T 61
1 Expression Elements L 62
11 Names P PITIP 62

1.2 Local Variables ST e 62

1.3 Global Variables EEEE TR 62

1.4 DataTypes e e 63

1.5 NumberRange i e 63

16 Integers PR 64

1.7 i 64

1.8 64

64

64

64

64

1 64

3.2 Number of Command Lines NN 65

3.3 NumberofCommandsC~7. e EERE 65

34 labels S N e e 65

3.5 Numberoflabels N @ A [65

3.6 NumberofRoutines~%..... R 85

4 IndireCtion | AN e 65
5 Storage Space Restrictions @, E 65
6 Nesting .| R 66
7 Other Portability ReqUIrements«uooiuinnnnne i 66
Appendix A: ASCIl Character Set (ANSI X3.4-1986). RS 67
Appendix B: Metalanguage Elements., . *... e 71
Index\ ..o S 81

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Foreword

ISO (the International Organization for Standardization) andJEC (the International
Electrotechnical Commission} form the specialized- system [for worldwide
standardization. National bodies that are members ¢f1SO or IEC participate in
the development of International Standards through technidal committees
established by the respective organization to\deal with particular fields of
technical activity. ISO and IEC technical committees collabordte in fields of
mutual interest. Other international organijzations, governmeptal and non-
governmental, in liaison with 1ISO and IEC; also take part in the woyk.

In the field of information technology, 1ISO and IEC have established a joint
technical committee, ISO/IEC JTC 4, Draft International Standards [adopted by the

joint technical committee are circulated to national bodies for vot
as an International Standard\requires approval by at least 756 %
bodies casting a vote.

International Standard“SO/IEC 11756 was prepared by Ame
Standards Institute (ANSI) (as ANSI/MDC X11.1-1990) and was ad
special "fast-track“procedure”, by Joint Technical Committee

Information technology, in parallel with its approval by nationa
and |EC.

ng. Publication
of the national

rican National
opted, under a
ISO/IEC JTC1,
bodies of ISO

Appendices A and B of this International Standard are for information only.

Terminology and conventions

The text of American National Standard Institute ANSI/MDC X11.1
approved for publication, without deviation, as an International §
terminology and certain conventions are not in accordance wi
Directives Part 3: "Drafting and presentation of International Stand
is especially drawn to the following:

Wherever the word "standard" appears, referring to this Internatio
should be read as "International Standard".

Cross reference

-1990 has been
tandard. Some
th the ISQ/IEC
ards”; attention

nhal Standard, it

American National c ing ional Standard
Standard

ANSI X3.4-1986

ISO/IEC 646:1991, 'Information technology - ISO 7-bit

coded character set for information interchange.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

INTERNATIONAL STANDARD ISO/IEC 117

56:1992 (E)

UMPS

Part 1: MUMPS Language Specification

introduction

Part 1 consists of two sections that describe the MUMPS language. Section 1
metalanguage used in the remainder of Part 1 for the static syntax. Section 2 desc
syntax and overall semantics of the language. The distinction between "static" and “d
is as follows. The static syntax'describes the sequence of characters in a routine a
a tape in routine interchange or on a listing. The dynamic syntax describes th
characters that would be encountered by an interpreter during execution of the routin
requirement that MUMPS actually be interpreted). The dynamic syntax takes into ac
of control and values produced by indirection.

:\I;formation technology - Programming languages -

describes the
ribes the static
ynamic" syntax
5 it appears on
b sequence of
b, (There is no
count transfers

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1 Static Syntax Metalanguage

The primitives of the metalanguage are the ASCII characters. The metalanguage operators are defined as

follows:

Operator Meaning
b definition
option
grouping
optional indefinite repetition
list
value

—p—
—_——

<i:

space

The following visible representations of ASCIl characters required.in the defined syntactic objects-are
8P (space),|CR (carriage-return), LF (line-feed), and FF (form-feed).

In general, defined syntactic objects will have designators which are underlined names spelled with lower
letters, e.g.| name, expr, etc. Concatenation of syntactic objects is expressed by horizontal juxtapos
choice is eXpressed by vertical juxtaposition. The ::= symbol denotes a syntactic-definition. An op

Lised:

case
ition,
fional

element is gnclosed in square brackets [], and three dots ... denote that the prévious element is optignally

repeated any number of times. The definition of name, for example, is written:

— -
name ::= ‘ % { ' digit ‘ e
alpha L_algha_J

The vertical|bars are used to group elements or to make a choice of elements more readable.

Special care]is taken to avoid any danger of confusing the'square brackets in the metalanguage with the
graphics } ahd [. Normally, the square brackets will stand for the metalanguage symbols.

The unary Inetalanguage operator L denotes_a“list of one or more occurrences of the syntactic ¢
immediately(to its right, with one comma between each pair of occurrences. Thus,

me is equivalent to name{ ;name]

satisfies the syntax)of the syntactic object to its right. For example, one might define the s
tical EXAMPLE ‘command with its argument list by

expmplecommand ::= EXAMPLE SP L examplearqument

where

ASCII

bject

have
yntax

| expr l

exampreargument—— <= - T
| @ expratom V L exampleargument |

This example states: after evaluation of indirection, the command argument list consists of any number of

exprs separated by commas. In the static syntax (i.e., prior to evaluation of indirection), occurrences

of @

expratom may stand in place of nonoverlapping sublists of command arguments. Usually, the text
accompanying a syntax description incorporating indirection will describe the syntax after all occurrences of

indirection have been evaluated.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2 Static Syntax and Semantics

2.1

Basic Alphabet

The routine, which is the object whose static syntax is being described in Section 2, is a string made up of the
following 98 ASClt symbols.

The 95 printable characters, including the space character represented as SP, and also,
the carriage-return character represented as CR,
the line-feed character represented as LF,

the form-feed character represented as FF.

Ses

The

2.2

The

2.4 for the definition of routine.
syntactic types graphic, alpha, digit, and nonquote are defined here informally in otder to save space.
graphic := any of the class of 95 ASCII printable chatracters,|including
SP.
nonquote ::= any of the characters in graphic except the quote ¢haracter.
alpha = any of the class of 52 upper and-lower case letters: A-2Z,
a-=2z2.
digit = any of the class of 10 digits: 0-9.
Expression Atom expratom
expression, expr, is the syntactic element which denotes the execution of a value-producing calculation;

& definition of

it is|defined in 2.3. The expression atom, expratom, is the basic value-denoting object of which expressions
are |puilt; it is defined here.
lvn |
expratom = gvn
expritem
Sed 2.2.2.1 for the definition of-lvn. See 2.2.2.2 for the definition of gvn.
svn
function
exfunc
exvar
expritem = numlit
strlit
(exgr)
unaryop expratom
See2-2-6-forthedefinitiomof SV See 227 forthedefmitonof furctior—See—2-2-+0—forth
exfunc. See 2.2.9 for the definition of exvar. See 2.2.3 for the definition of numlit. See 2.2.5 forthe definition
of strlit. See 2.3 for the definition of expr.

unaryop

| (Note: apostrophe)

(Note: hyphen)

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC

11756:1992 (E)

2.2.1 Name name

— -
name 1i= | % ‘ l digit I .
alpha a'Lpha__I

See 2.1 for the definition of alpha and digit.

2.2.2 Variables

The MUMPS standard uses the terms focal varrab/es and g/oba/ varlab/es somewhat ‘differently from their

the routin
variables
secondal
cease to
they may

MUMPS ({ises the term local variable to denote variables that are created) for use during a single

activation
routines €
and parar]
See 2.2.2

A global

has been
disappean
executed

2.2.2.1 Lg

See 2.2 {(

See 2.2.1

routine, or set of routines, runs in the context of an operating system process. During:its ex

will create and modify variables that are restricted to its process. it can alsg/aecess-(or|
hat can be shared with other processes. These shared variables will normally be st
peripheral devices such as disks. At the termination of the process, the process-specific v
xist. The variables created for long term (shared) use remain on auxiliany storage devices
be accessed by subsequent processes.

These variables are not available to other processes. Howgver, they are generally availal
xecuted within the process’ lifetime. MUMPS does include certain constructs, the NEW cg
heter passing, which limit the availability of certain variables to specific routines or parts of r
3 for a further discussion of variables and variable énvironments.

ariable is one that is created by a MUMPS process, but is permanent and shared. As so
created, it is accessible to other MUMPS processes on the system. Global variables
when a process terminates. Like local vatiables, global variables are available to all
within a process.

cal Variable Name lvn

lvn 1e= l rlyn l

r the definition of @xpratom. See section 1 for the definition of V.

Flvn 11= Iname[(L E)]
€ lnamingd @ (expr)

for the definition of name. See 2.3 for the definition of expr. See section 1 for the definiti

ns used

beution,
create)
bred on
Briables
5 where

Drocess
le to all
mmand
butines.

on as it
do not
outines

pn of L.

inamind Ti= rexpratom V. 1vn

See section 1 for the definition of V.

| rlvn | !

rexpratom ::= rqvn 3
expritem i

i

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.2.2 for the definition of rgvn. See 2.2 for the definition of expritem.

A local variable name is either unsubscripted or subscripted; if it is subscripted, any number of subscripts
separated by commas is permitted. An unsubscripted occurrence of lvn may carry a different value from any
subscripted occurrence of jvn.

When Inamind is present it is always a component of an rivn.

Ivn,

then some of its subscripts may have originated in the Inamind. In this case, the subscrip

If the value of the rlvn is a subscripted form of

ts contributed

by the Inamind appear as the first subscripts in the value of the resulting rivn; separated by a comma from the
(non-empty) list of subscripts appearing in the rest of the rivn.

2.2

Sed

Ses¢

See

The
sub)
forn
and
An

Wh

co
Co

Eve
has

of gvn, then some of its subscripts may have originated in the gnamind. In this case, {
nF

2.2 Global Variable Name gvn
l rgvn ‘

gvn si=
| @ expratom V gvn |

2.2 for the definition of expratom. See section 1 for the definition of V-
| ~(L expr) |
rgvn 1= ‘ “name [(L expr)] ’
€ gnamind @ (L expr)

gnamind ::= | rexpratom V gvn |,

section 1 for the definition of V.

prefix * uniquely denotes a global variable.hame. A global variable name is either uns
scripted; if it is subscripted, any number of'subscripts separated by commas is permitted. A
 of subscripted gvn is permitted, called-the naked reference, in which the prefix is present
an initial (possibly empty) sequence of subscripts is absent but implied by the value of the ng
insubscripted occurrence of gvn may carry a different value from any subscripted occurre

Bn gnamind is present it is"always a component of an rgvn. If the value of the rgvn is a sut

ributed by the gnamind appear as the first subscripts in the value of the resulting rgvn, s
ma from the (non-empty) list.of subscripts appearing in the rest of the rgvn.

ry executed occurrence of gvn affects the naked indicator as follows If for any posmve inte
the nonnaked form : ;

NV, vy oy V)

2.3 for the definition of expr. See 2.2.1 for the definition of-name. See section 1 for the gefinition of L.

ubscripted or
n abbreviated
but the name
iiced indicator.

nce of gvn.
bscripted form

he subscripts
bparated by a

;er m, the gvn

ther

Al -
rthemtupte N Vv v

subsequent naked reference of the form

"8y 854 ey §;) (/ positive) . -

results in a "global reference of the form

NV, , oy oo s Vit 5 804 S50 o, S))

e is made. A

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

after which the m+i-1-tuple N, v, , v, , ..., 5., is dplaced into the naked indicator. Prior to the first executed
occurrence of a nonnaked form of gvn, the value of the naked indicator is undefined. It is erroneous for the
first executed occurrence of gvn to be a naked reference. ‘A nonnaked reference without subscripts leaves
the naked indicator undefined.

The effect on the naked indicator described above occurs regardless of the context in which gvn is found; in
particular, an assignment of a value to a global variable with the command SET gvn = expr does not affect
the value of the naked indicator untit after the right-side expr has been evaluated. The effect on the naked
indicator of any gvn within the right-side expr will precede the effect on the naked indicator of the left-side gvn.

For convenience, glvn is defined so as to be satisfied by the syntax of either gvn or lvn.

| lvn |
See 2.2.2.1 for the definition of lvn.

2.2.2.3 Varjiable Handling

ripted
ferred

MUMPS hds no explicit declaration or definition statements. Local and global variables, both non-subs
and subscr{pted, are automatically created as data is stored into them, and their data contents can be rg
to once information has been stored. Since the language has only one data\type - string - there is nq need
for type detlarations or explicit data type conversions. Array structures can be multidimensional with data
simultaneoysly stored at all levels including the variable name level, Subscripts can be positive, negative,
and/or noninteger numbers as well as nonnumeric strings (other tham empty strings).

setting
into a
P data
e and

in general, the operation of the local variable symbol table canbe'viewed as follows. Prior to the initial
of information into a variable, the data value of that variable is said to be undefined. Data is stored
variable with commands such as SET, READ, or FOR. Subsequent references to that variable return th
value that was most recently stored. When a variable:is killed, as with the KILL command, that variab
all of its arfay descendants (if any) are deleted, and«their data values become undefined.

No explicit [syntax is needed for a routine or subroutine to have access to the local variables of its [caller.

Except wh
callee) has
subroutine,
completion

The NEW (¢
variables tg
the current

ommand providesscoping of local variables. it causes the current values of a specified

n the NEW command or parameter passing is being used, a subroutine or called routin
the same set of variable values as its caller and, upon completion of the called rout
the caller resumes execution with the same set of variable values as the callee had

be saved. The\variables are then set to undefined data values. Upon returning to the ¢4
routine or subroutine, the saved values, including any undefined states, are restored to

e (the
ne or
at its

set of
ller of
those

variables. Parameter.passing, including the DO command, extrinsic functions, and extrinsic variables, pllows
parameters

names use

to be passed into a subroutine or routine without the callee being concerned with the variable
H by the caller for the data being passed or returned.

The formal eptual

model. This

The value of a MUMPS variable may be described by a relationship between two structures: the NAME-
TABLE and the VALUE-TABLE. (In reality, at least two such table sets are required, one pair per executing
process for process-specific local variables and one pair for system-wide global variables.) Since the value
association process is the same for both types of variables, and since issues of scoping due to parameter

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

passing or nested environments apply only to local variables, the discussion that follows will address only local
variable value association. It should be noted, however, that while the overall structures of the table sets are
the same, there are two major differences in the way the sets are used. First, the global variable tables are
shared. This means that any operations on the global tables, e.g., SET or KILL, by one process, affect the
tables for all processes. Second, since scoping issues of parameter passing and the NEW command are not
applicable to global variables, there is always a one-to-one relationship between entries in the global NAME-
TABLE (variable names) and entries in the global VALUE-TABLE (values).

The NAME-TABLE consists of a set of entries, each of which contains a name and a pointer. This pointer
represents a correspondence between that name and exactly one DATA-CELL from the VALUE-TABLE. The
VALUE-TABLE consists of a set of DATA-CELLs, each of which contains zero or more tuples of varying
degrees. The degree of a tuple is the number (possibly 0). of elements or subscripts in the tuple list. Each
tuple present in the DATA-CELL has an associated data vaiue.

The|[NAME-TABLE entries contain every non-subscripted variable or array name (name) knewn, or accessible,
by the MUMPS process in the current environment. The VALUE-TABLE DATA-CELLs contain the set of tuples
that|represent all variables currently having data-values for the process. Every name (entry) ih the NAME-
TAHLE refers (points) to exactly one DATA-CELL, and every entry contains a unigue name. Sgveral NAME-
TABLE entries (names) can refer to the same DATA-CELL, however, and 'thus there is a|many-to-one
relalionship between (al) NAME-TABLE entries and DATA-CELLs. A name is said to be|bound to its
corrpsponding DATA-CELL through the pointer in the NAME-TABLE éatry. Thus the pointer is used to
represent the correspondence and the phrase change the pointer i§ the equivalent to saying change the
cornespondence so that a name now corresponds to a possible different DATA-CELL (value). NAME-TABLE
entrles are also placed in the PROCESS-STACK (see 2.2.2.4).

The|value of an unsubscripted lvn corresponds to the tuple©f degree 0 found in the DATA-CELL]|that is bound
to the NAME-TABLE entry containing the name of the lvh. The value of a subscripted lvn (afray node) of
degfee n also corresponds to a tuple in the DATA-CELL that is bound to the NAME-TABLE en ry containing
the hame of the lvn. The specific tuple in that DATA-CELL is the tuple of degree n such that epch subscript
of the Ivn has the same value as the corresponding-element of the tuple. If the designated tuplg doesn’t exist
in tHe DATA-CELL then the corresponding lvn, is said to be undefined.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

In the following figure, the variables and array nodes have the designated data values.

VAR1 = "Hello"
VAR2 = 12.34
VAR3 = "abc"

VAR3("Smith","John",1234)=123
VAR3("Widget","red") - '56

Also, the variable DEF existed at one time but no longer has any data or array valus, and the variable. XYZ
has been bound through parameter passing to the same data and array information as the variable VAR2.

NAME-TABLE VALUE-TABLE DATA-CELLS

VAR]~emm—a———— > ()="Hello"

AR e ——— o —mimm > ()=12.34

bg <
<
(]
]
)
|
1
|
]
1
|
[}
f
1
v

VAR3w—m e e > ()="abc"
("Smith","John",1234)=123
("Widget", "red")=-56

The initial| state of a MUMPS process prior to execution of any MUMPS code consists of an empty [NAME-
TABLE and VALUE-TABLE. When information is to be stored (set, given, or assigned) into a variabje (lvn):

al If the name of the lvn does not already appear in an entry in the NAME-TABLE, an entry i3 added
d the NAME-TABLE which contains the’name and a pointer to a new (empty) DATA-CELL. The
corresponding DATA-CELL is added to\the VALUE-TABLE without any initial tuples.

—t

b] Otherwise, the pointer in‘the NAME-TABLE entry which contained the name of thg ivn is
xtracted. The operations jifnstep ¢. and d. refer to tupies in that DATA-CELL referred to|by this
ppinter.

[o]

c] If the lvn is unsubscripted, then the tuple of degree 0 in the DATA-CELL has its dath value
placed by the new data value. If that tuple did not already exist, it is created with the ngw data
value.

-

d| If the.Jun)is subscripted, then the tuple of subscripts in the DATA-CELL (i.e., the tuple crepted by
dropping.the name of the lvn; the degree of the tuple equals the number of subscripts) has fts data
valug replaced by the new data value. If that tuple did not already exist, it is created with the new
dtta value.

When information is to be retrieved, if the name of the lvn is not found in the NAME-TABLE, or if its
. corresponding DATA-CELL tuple does not exist, then the data value is said to be undefined. Otherwise, the
data value exists and is retrieved. A data value of the empty string (a string of zero iength) is not the same
as an undefined data value.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

Wh

ISO/IEC 11756:1992 (E)

en a variable is deleted (killed):

a. If the name of the lvn is not found in the NAME-TABLE, no further action is taken.

b. If the lvn is unsubscripted, all of the tuples in the corresponding DATA-CELL are

c. If the lvn is subscripted, let N be the degree of the subscript tuple formed by remo
from the lvn. All tuples that satisfy thé following two conditions are deleted from the
DATA-CELL:

1. The degree of the tuple must be greater than or equal to N, and

In{
no
red

2.2

Th
do

vatli
unc frames, exvar frames, NEW frames, and parameter frames:

exi

2.2

b organization of multiple variable contexts requires the use of a PROCESS-STACK. This is
vn stack, or last-in-first-out (LIFO) list, used to save and restore items which control the ex

Thf intégér literal syntax, intlit, which is a nonempty string of digits, is defined here.

2. The 1irst N arguments of the [upie must equal the correspond g SubsTri]

his formal language model, even if all of the tuples in a DATA-CELL are deleted, neither th
the corresponding names in the NAME-TABLE are ever deleted. Their continued existeng
uired as a result of parameter passing and the NEW command.

2.4 Variable Contexts

able environment. Five types of items, or frames, will be placed on the PROCESS-STAC

a. DO frames contain the execution level and.the execution location of the doargumg
of the argumentless DO, the execution level; the execution location of the DO commar]
value of $T are saved. The executiondceation of a MUMPS process is a descriptor
of the command and possible argument currently being executed.” This descript
minimum, the routinename and the; character position following the current command

b.
location.

Exfunc and exvar frames) contain saved values of

$T, the execution level, and

c. NEW frames cofitain a NEW argument (newargument) and a set of NAME-TABL

d. Parameterframes contain a formallist and a set of NAME-TABLE entries.

.3 Numeric Literal numlit

deleted.

ving the name
corresponding

ts of the lvn.

e DATA-CELL
e is frequently

g simple push-
bcution flow or
K, DO frames,

nt. In the case
ld and a saved
of the location
r includes, at
or argument.

the execution

E entries.

intlit digit ...

See 2.1 for the definition of digit.

The numeric literal numilit is defined as follows.

numlit ::= mant [exp]

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

mant 1= intlit [. intlit)
. intlit
— ™1 .

exp 3:= E ’ i intlit
L

The value of the string denoted by an occurrence of numilit is defined in the following two subsections.

2.2.3.1 Numeric Data Values

All variabIeL, local, global, and special, have values which are either defined or undefined. If defing
values may| always be thought of and operated upon as strings. The set of numeric values is a subset
set of all dgta values. .

Only numb
values. A

a.

b.

e.

f.

representation of the positive number which. is\the absolute value of the negative number. (Thy

foll

g.
h.
dig
i.
po
of

Note that th
of this is th

rs which may be represented with a finite number of decimal digits are representable as nu
ata value has the form of a number if it satisfies the following restrictions.

It may contain only digits and the characters "-" and ".".
At least one digit must be present.
“." occurs at most once.
The number zero is represented by the one-characierstring "0".
The representation of each positive number contains no "-".
The representation of each negative number contains the character "-" followed b

bwing restrictions describe positive numbers only.)

The representation of each positive integer contains only digits and no leading zero.

|t string with no trailing zero. (This is called a fraction.)

The representation of each positive noninteger greater than 1 consists of the representatio
itive integer (called the infeger part of the number) followed by a fraction (called the fractic
e number).

mapping-between representable numbers and representations is one-to-one. Animportant

d, the
of the

meric

y the
s, the

The representation of each positive number less than 1 consists of a "." followed by a nonpmpty

n of a
n part

result

t string* equality of numeric values is a necessary and sufficient condition of numeric equality.

2.2.3.2 Meaning of numlit

Note that numlit denotes only nonnegative values. The process of converting the spelling of an occurrence
of numilit into its numeric data value consists of the following steps.

10

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

2.2.

Ce

intefpretation is a mapping from the set of all data values into the set of all'\numeric values, des
following algorithm. Note that the numeric interpretation maps numeric values into themselves

ISO/IEC 11756:1992 (E)

a. If the mant has no ".", place one at its right end.

b. If the exp is absent, skip step c.

c. If the exp has a plus or has no sign, move the "." a number of decimal digit positions to the right

in the mant equal to the value of the intlit of exp, appending zeros to the right of

the mant as

necessary. If the exp has a minus sign, move the "." a number of decimal digit positions to the left
in the mant equal to the value of the intlit of exp, appending zeros to the left of the mant as necessary.

d. Delete the exp and any leading or trailying zeros of the mant.

e. If the rightmost character is ".", remove it.

. If the result is empty, make it "0".

i Numeric Interpretation of Data

in operations, such as arithmetic, deal with the numeric interpretations-of their operands.

(Note: The head of a string is defined to be a substring which contains an identical sequence

in t
hea

Con

Firs{,

Sec

e string to the feft of a given point and none of the characters in the string to the right of
i may be empty or it may be the entire string.)

sider the argument to be the string S.

apply the following sign reduction rules to:S\as many times as possible, in any order.
a. If Sis of the form + T, then remove the +. (Shorthand: + T— T)
b. -+ T—--T
c. --T—>T

bnd, apply one of the following, as appropriate.

description of numlit. Then apply the algorithm of 2.2.3.2 to the result.

b. Jf S'is of the form - T, apply step a. above to 7 and append a "-" to the left of the
result is "-0", change it to "0".

The numeric
cribed by the

of characters
that point. A

a. If the leftmost character of S is not "-", form the longest head of S which satisfigs the syntax

result. If the

¢ in a syntax

description serves to indicate that the numeric mterpretatlon of its value is to be taken when it is executed.

See

numexpr ::= expr

2.3 for the definition of expr.

1

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.4.1 Integer Interpretation

Certain functions dea! with the integer interpretations of their arguments. The integer interpretation is a
m.apping from the set of all data values onto the set of all integer values, described by the following algorithm.

Flrst take the numeric interpretation of the argument. Then remove the fraction, if present If the result is

empty or *-

" change it to "0".

The integer expression intexpr is defined to have the same syntax as expr. Its presence in a Syntax definition
serves to indicate that the integer interpretation of its value is to be taken when it is executed.

i

See 2.3 fo

2.2.4.2 Tn

The truth-vialue interpretation is a mapping from the set of all data values onto the two intéger values 0
and 1 (trug), described by the following algorithm. Take the numeric interpretation.) If the result is 1
make it "1'). .

The truth-

definition serves to indicate that the truth-value interpretation of its valué.is to be taken when it is exe

See 2.3 fo

2.2.5 String Literal strlit

See 2.1 fo

In words;

guotes ocqur inside the string Ilteral they .occur in adjacent pairs. Each such adjacent quote pair den

single quo

denates itgelf. An emptystring is denoted by exactly two quotes.

12

tivexpr :: = expr

ntexpr ::= expr

the definition of expr.

th-Value Interpretation

the definition of expr.

— M

trlit " ees "
LnonguoteJ

the definition of nonguots.

(false)
o* IlO n ,

ralue expression tvexpr is defined to have the same syntax as’gxpr. Its presence in a kyntax

cuted.

string literal is bounded by quotes and contains.any string of printable characters, except that when

in the value'denoted by strlit, whereas any other printable character between the bounding

otes a
fjuotes

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 117

2.2.6 Intrinsic Special Variable Name svn

56:1992 (E)

Intrinsic special variables are denoted by the prefix $ followed by one of a designated list of names. Intrinsic
special variable names differing only in the use of corresponding upper and lower case letters are equivalent.

The

Unu
enh

The
of 2

Any

standard contains the following intrinsic special variable names:

H{OROLOG }
1[0]
J[OB]
S[TORAGE)
T[EST]

X

Ty

ed instrinsic special variable names beginning with an initial letter other than Z are(rgsen
ncement of the standard.

formal definition of the syntax of svn is a choice from among all of the individual svn synt
2.6.

[syntax of $HOROLOG intrinsic speciaX variable l
syntax of $I0 intrinsic special variable

l syntax of $Y intrinsic specidl variable {

ed for future

ax definitions

implementation of the language must be able to recognize both the abbreviation and the full spelling of
each intrinsic special variable name.

Syntax Definition

SH[OROLOG] $H gives date and time with one access. Its value is D, S where D|is an integer
value counting days since an origin specified below, and S is an {nteger value
modulo 86,400 counting seconds. The value of $H for the first second|of December
31, 1840 is defined to be 0,0. Sincreases by 1 each second and S clgars to 0 with
a carry.into D on the tick of midnight.

$1[0] $) identifies the current I/O device (see 2.6.2 and 2.6.18).

$J[OB] Each executing MUMPS process has its own job number, a positive integer which
is the value of $J. The job number of each process is unigue to that process within
a domain of concurrent processes defined by the implementor. $J is constant
throughout the active life of a process.

$S[TORAGE] Each implementation must return for the value of $S an integer which is the number
of characters of free space available for use. The method of arriving ﬂt the value of

$TIEST] $T contains the truth value computed from the execution of an IF command
containing an argument, or an OPEN, LOCK, JOB, or READ command with a
timeout (see 2.2.9, 2.2.10, and 2.6.3).

$X $X has a nonnegative integer value which approximates the value of a carriage or

horizontal cursor position on the current line as if the current /O device were an

13

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

14

ASCII terminal. It is initialized to zero by input or output of control. functions
corresponding to CR or FF; input or output of each graphic adds 1 to $X (see 2.5.5

and 2.6.18). ~

$Y

$Z[unspecified]

$Y has a nonnegative integer value which approximates the line number on the
current I/O device as if it were an ASCII terminal. It is initialized to zero by input or
output of control functions corresponding to FF; input or output of control functions
corresponding to LF adds 1 to $Y (see 2.5.5 and 2.6.18).

Z is the initial letter reserved for defining non-standard intrinsic special variables.
The requirement that $Z be used permits the unused initial letters to be reserved for
future enhancement of the standard without altering the execution of existing routines

which observe the rules of the Standard.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7 Intrinsic Functions function

Intrinsic functions are denoted by the prefix $ followed by one of a designated list of hames, followed by a
parenthesized argument fist. Intrinsic function names differing only in the use of corresponding upper and

lower case letters are equivalent. The standard contains the following function names:

A[SCII]
C[HAR]
D[ATA]
E[XTRACT]
F[IND])
FN[UMBER]
G[ET

J{USTIFY]
L{ENGTH]
N[EXT]
O[RDER]
P[IECE]
Q[{UERY]
R{ANDOM]
S[ELECT]
T{EXT]

TR{ ANSLATE]
V[IEW]
Z{unspecified]

Unused function names beginning with an initial letter other than Z-are reserved for future enhang
stangard.

ement of the

The [formal definition of the syntax of function is a choice from among all of the individual fugction syntax

definitions of 2.2.7

syntax of $ASCII function
syntax of $CHAR function

function ::= .

syntax of $VIEW function

Any jmplementation of the Janguage must be able to recognize both the abbreviation and the filll spelling of

each function name.

2.2.7.1 SASCH

$AISCH) (expr)

See Z3Tor the definition of expr.
This form produces an integer value as follows:

a. -1if the value of expr is the empty string.

b. Otherwise, an integer n associated with the leftmost character of the value of expr, such that

SA(SC(M) = n.

15

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

$A[SCII] (expr , intexpr)

See 2.3 for the definition of expr. See 2.2.4.1 for the definition of intexpr.

This form is similar to $A(expr) except that it works with the intexprth character of expr instead of the first.
Formally, $A(expr,intexpr) is defined to be $A(SE(expr,intexpn)).

2.2.7.2 $CHAR
$CIHAR] tintexpr)
See 2.2.4.1 for the definition of intexpr. See section 1 for the definition of L.

This form
values. B

of $C.

2.2.7.3 §I
$DIATA]
“See 2.2.3

This form
where:

DATA

gvn)

= 1

10

returns a string whose length is the number of argument expressions which have noni
ach j ntexg r in the closed interval [0,127] maps into the ASCII character whose\code is the
intexpr; this mapping is order-preserving. Each negative-valued intexpr maps into no character in 1

.2 for the definition of glvn.

retums a nonnegative integer which is a characterization of the givn. The value of the intege

egative
value of
e value

Fis p+d,

if the glvn has a defined value; ‘€., the NAME-TABLE entry for the name of the glvi exists,

and the subscript tuple of the gli_ has a correspondmg entry in the associated DATA
otherwise, d=<0.

if the variable has descendants; i.e., there exnsts at least one tuple in the glv s DAT
which satisfies the following: condmons ; . o

a. The.degree of the tuple is greater than the degree of the glvn, and

\-CELL,

A-CELL

b. the first N arguments of the tuple are equal to the corresponding subscnptls of the

glvn where N is the number of subscripts in the givn.

If no NAME-TABLE entry for the glvn exists, or no such tuple exists in the associatéqg
CELL, then p=0.

.DATA-

16

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

T 2.2.7.4 $EXTRACT
$E[XTRACT] (expr)
See 2.3 for the definition of expr.

This form returns the first (leftmost) character of the value of expr. If the value of expr is the empty string, the
empty string is returned.

$E[XTRACT] (expr , intexpr)

See 2.3 for the definition of expr. See 2.2.4.1 for the definition of intexpr.

Let|s be the value of expr, and let m be the integer value of intexpr. $E(s,m) returns the mith-¢haracter of s.
If np is less than 1 or greater than $L(s), the value of $E is the empty string. (1 corresponds to the leftmost
chgracter of s; $L(s) corresponds to the rightmost character.)

$EIXTRACT] (expr , intexpr, , intexpr,)

Se¢ 2.3 for the definition of expr. See 2.2.4.1 for the definition of intexpr.

Let|n be the integer value of intexpr,. $E(s,m,n) retumns the string (between positions m ang n of s. The
follpwing cases are defined:

am>n. Then the valuevofb $E is the empty §tring.

b.m=n. $E(s,m,n) = $E(s,m).

c.m<n’> $L(s).
$E(s m,n) = $E(s, m) concatenated with $E(s,m+1,n).
That is, using the concatenation operator _ of 2.3.5, $E(s,m,n) =
$E(s,m)_$E(s,msd)_..._$E(s,m+(n-m)).

d. m < nand $L(s) <n
$E(s,m,n)= $E(s,m3L(s)).

2.2{7.5 $FIND

$F{IND] (expr, .eXpr,)

Seg 2.3 for the deﬁnition of expr.

This form searches for the leftmost occurrence of the vatue of expr, in the value of expr,. If none is found,

i the character
position immediately to the right of the rlghtmost character of the found occurrence of e expr, in expr,. In
particular, if the value of expr, is empty, $F returns 1.

$F[IND] (expr, , expr, , intexpr)

:See 2.3 for the definition of expr. See 2.2.4.1 for the definition of intexg‘ r.

17

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Let a be the value of expr,, let b be the value of expr,, and let m be the value of intexpr. $F(a,b,m) searches
for the leftmost occurrence of b in a, beginning the search at the max(m,1) position of a. Let p be the value
of the result of $F($E(a,m,$L(a)),b). If no instance of b is found (i.e., p=0), $F returns the value 0; otherwise,
$F(a,b,m) = p + max(m,1) - 1.

2.2.7.6 SFNUMBER

$FN[UMBER] (numexpr , fncodexpr)

See 2.2.4 for the definition of numexpr.

2l

nicodexpr ::= expr V fncode

See 2.3 folf the definition of expr. See section 1 for the definition of V.

fhcode = fncodatom ...
H
T .
fncodatom ::= |, (note, comma)
+

returns a value which is an edited form of numexpr. Each fncodatom is-applied to numexpr in formatting the
results by the following rules (order of processing is not significant): '

| (note, hyphen)

fngodatom Action

P Represent negative numexpr values in parentheses. Let A be the absolute value of
numexpr. Use of fncode "P".Will tesult in the following:

1. If numexpr <.07the result will be "("_A_")".

2. If numexpr ‘<0, the result will be " "__A__"

T Represent numexpr with a trailing rather than a leading "+" or "-" sign. Note: [if sign
suppression-is.in force (either by default on positive values, or by design using the

“." fncodatomy, use of fncode "T" will result in a trailing space character.

Insert comma delimiters every third position to the left of the decimal (prejent or
assumed) within numexpr. Note: no comma shall be inserted which would rgsult in
aleading comma character. o

L Force a plus sign ("+") on positive values of numexpr. Position of the "+" (leading
or trailing) is dependent on whether or not fncodatom of "T" is specified.

3 Suppress the negative sign "-" on negative values of numexpr

If fncodexpr equals an empty string, no special formatting is performed and the result of the expression is the
original value of numexpt.

More than one occurrence of a particular fncodatom within a single fncode is identical to a single occurrence
of that fncodatom. Erroneous conditions are produced when a fncodatom "P" is present with any of the sign
suppression or sign placement fncodatoms ("T+-").

18

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

$FN[UMBER] (numexpr , fncodexpr , intexpr)

See 2.2.4 for the definition of numexpr. See 2.2.4.1 for the definition of intexpr.

This form is identical to the two-argument form of $FN, except that numexpr. is rounded to intexpr fraction
digits, including possible trailing zeros, before processing any fncodatoms. If intexpr is zero, the evaluated
numexpr contains no decimal point. Note: if (-1 <.numexpr < 1), the result of $FN has a leading zero ("0") to

the le

2.2.7.

ft of the decimal point.

7 $GET

$GIET] (glvn)

See 2.2.2.2 for the definition of givn.

This
cases

2.2.718 $JUSTIFY

$J[US
See 4

This {
value

$J[UY

See 2

are defined:

a. $D(glvn)#10 = 1
The value returned is the value of the variable specified by glvn.

b. Otherwise, the value returned is the empty string.

bTIFY] (expr , intexpr)

.3 for the definition of expr. See 2.2.4 @ for the definition of intexpr.

of intexpr. The following cases are defined:
a. m'<n. Then the value returned is expr.

b. Otherwise,(the value returned is S(n-m) concatenated with expr,, where S(x) is &
spaces.

bTIFY] (numexpr , intexpr, , intexpr,)

.2.4/or.the definition of numexpr. See 2.2.4.1 for the definition of intexpr.

This

orm returns the value of the specified glvn depending on its state, defined by. $3D(glvn). The foliowing

orm returns the value of éxgr right-justified in a field of intexpr spaces. Let m be $L(expr) gnd n be the

string of x

rounding to

iintexpr, fraction digits, including possible trailing zeros. (If intexpr, is the value 0, r contains no decimal point.)
The value returned is $J(r, intexpr,). Note that if -1 < numexpr < 1, the result of $J does have a zero to the
left of the decimal point. Negative values of intexpr, are reserved for future extensions of the $JUSTIFY
function.

19

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.9

SLENGTH

$LIENGTH] (expr)

See 2.3 for the definition of expr.

This form returns an integer which is the number of characters in the value of expr. If the value of expr is the
empty string, $L(expr) returns the value 0.

SLIENGTH] (expr, , expr,)

See 2.3 for the definition of expr.

This for

2.2.7.10 $NEXT'
$NIEXT] (glvn)
See 2.212.2 for the definition of glvn.

This for
place of

$N retu

is speci

CO(s,1)

Let mai

strings

in word
strings,

M is included for backward compatibility. The use of the $ORDER function is strongly enco
ins a value which is a subscript according to a subscript ordering sequence. This ordering

is defined, for strings s and ¢, as follows:

When t follows s in the ordering sequence, CO(s,!) returns t.
Otherwise, CO(s,1} returns s.

vhich do not satisfy this definition. The following cases define the ordering sequence:

a. Co(",8) = s.

b. CO(m,n) = n if-n > m; otherwise, CO{m,n) = m.
c. CO(m,u).=w.

d. CO(uM e vif v] u; otherwise, CO(u,v) = u

nd’ nonnumeric strings are ordered by the conventional ASCIl collating sequence. .

m returns the number plus one of nonoverlapping occurrences of expr, in expr,. f the value of expr,
is the empty string, then $L returns the value 0.

uraged in

$NEXT, as the two functions perform the same operation_except for the different starting and ending
condition of $NEXT.

bequence

ied below with the aid of a function, CO, which is\Used for definitional purposes only, to estabhsh the
collating sequence.

hd n be strings satisfying the definition of numeric data values (see 2.2.3.1), and v and v be nonempty

hnumeric

Ta’ all(strings follow the empty string, numerics collate in numeric order, numerics precede no

Only subscripted forms of lvn and gvn are permitted. Let ivn or g__ n be of the form Name(s,, sg,
is -1, let A be the set of all st subscripts. If s, is not -1, let A be the set of all subscripts that follow s,,, that is,
for all sin A:

'$N

- 20

EXT may not be included in the next version of ISO/IEC 11756.

,,) Ifs

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

a. CO(s,, s) =sand
b. $D(Name(s,, s,, ..., §,., 8)) is not zero.

Then $N(Name(s,, s,, ..., 8,)) returns that value tin A such that CO(t,s) = s for all s not equal to t; that is, all
other subscripts which follow s, also follow t.

If no such t exists, -1 is returned.

Note that $N will return ambiguous results for lvn and gvn arrays whlch have negatuve numeric subscript
values.

2.2]7.11 SORDER

$O[RDER] (glvn)

Seg 2.2.2.2 for the definition of givn.
This form returns a value which is a subscript according to a subscript.ordering sequence. |This ordering
sequence is specified below with the aid of a func’uon CO which is used’for defmltlonal purposes -only; to
establish the collating sequence. . :

COfs,?) is defined, for strings s and t, as follows:

When t follows s in the ordering sequence, CO(s;t) returns t.
Otherwise, CO(s,t) returns s.

Let|m and n be strings satisfying the definition of numieric data values (see 2.2.3.1), and v.and ¥ be nonempty
strings whlch 'do not satlsfy this definition. The foIIowmg cases defme the ordermg sequence

a. CO(".s) = 8.

b. CO(mn) = nif n > m; otherwise, CO(m,n) = m.
¢c. CO(mu) =wu

d. CO(u,v) = vif v] u; otherwise, CO(u,v) = u.

In words, all strings follow the‘empty string, numerics collate in numeric order, numerics precede nonnumeric
strings, and nonnumeric_strings are ordered by the conventlonal ASCII collating sequence

Only subscripted forms of lvn and gvn are permltted Let Ivn or g__ n be of the form Name(s,, 52 .., 8,) where
-8, may be the empty stnng Let Abe the'set of subscnpts that follow s,. That is, for all sin:4:

a. \'CO(s,,s) = sand
b.\"$D(Name(s,, s,, ..., S,.1, 8)) is not zero.

Then $O(Name(s, s, s)) returns that value ¢in A such that CO(ts) = s for all s not equal tb ¢t; that is, all
other subscripts which follow s, also follow t. - ' ' :

If no such t exists, $O returns the empty string.

2.2.7.12 $PIECE

$P[IECE] (expr, , expr,)

21

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

'ISO/IEC 11756:1992 (E)

See 2.3 for the definition of expr.

This form is defined here with the aid of a function, NF, which is used for definitional purposes only, called flnd
the position number following the mth occurrence.

NF(s,d,m) i

s defined, for strings s, d, and integer m, as follows:

When dis the empty string, the result is zero.

When m '> 0, the result is zero.

When dis not a substring of s, i.e., when $F(s,d) =

Ot

For

0, then the result is $L(s) + $L(d) + 1

nerwise, NF(s,d,1) = $F(s,d).

m > 1, NF(s,dm) = NF($E(s,$F (s,d),$L(s)),d.m-1} + $F(s,d) - 1.

That is, NF extends $F to give the position number of the character to the right of the mth occufrence

of

Let s be the value of expr,, and let d be the value of expr,. $P(s,d) returns the substring of s bounded

right but ng

$P(s.d)

$PIIECE] (

See 2.3 for

Let m be the integer value of intexpr. $P(s,d,m) returns the substring of s bounded by but not includi

m-1th and

$P(s,dm) =

$PIECE] (
See 2.3 for
Let n be th
including th

in s.

$P(s,d,m,n)

Note that $P(s,d,m,m) =

= §E(s,0,NF(s,d,1) - $L(d) - 1).

he string din s.

t including the first (leftmost) occurrence of d.

[expr, , expr, , intexpr)
the definition of expr. See 2.2.4.1 for the definition of intexpr.

he mth occurrence of d.

$E(s,NF(s,d,m-1),NF(s,d,m) - $L(d) - 1).

expr, , expr, , intexpr, , intexpr,)

the definition of expr"See 2.2.4.1 for the definition of intexpr.

integer value.of intexpr,. $P(s,d,m,n) returns the substring. of s bounded on the left b
m-1th occurrence of d in s, and bounded on the right but not including the nth occurrenc

=8E(s,NF(s,d,m-1),NF(s,d,n) - $L(d) -1).

bn the

hg the

Lt not
e of d

$P(s,d,m), and that $P(s,d,1) = $P(s,q).

2.2.7.13 SQUERY

$Q[UERY]

22

(givn)

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.2.2 for the definition of glvn.
Let givn, = "A(i}, ky, ..., [,) and glvn, = "A(jy, for - fy)

Then a collating relation exists between glvn, and glvn,. Glvn, is said to follow glvn, when for any pair (i, ji)
when:

a. p<gqandj, = jforall kin the range (0 < k’> p).
or
b. p=0andg>0.
or
¢.. k>0and k'> min{p,) and
there exists some |/, '= j, and
no n exists with 0 < n < kand i, '= j, and
the function CO(i,, j,), as defined in 2.2.7 (definition of $ORDER), is equal to j.
In less formal terms, when the first index that is different, collates in glvn, after the.corresponding one
in glvn,.

For tIe purpose of this discussion a function CQ(glvn,, glvn,) is defined that would'yield glvn, whep, according
to the above definition, glvn, would be said to follow glvn,.

namevalue ::= expr

See 2.3 for the definition of expr.
A namevalue has the syntax of a glvn with the following restrictions:
a. The glvn is not a naked reference.

b. Each subscript whose value has the fofm of a number as defined in 2.2.3.1 appears|as a numlit,
spelled as its numeric interpretation.

¢. Each subscript whose value does not have the form of a number as defined in 2.213.1 appears
as a sublit, defined as follows: |

sublit ::= " | 33 |
| sobnonquote |...

where subnonquote‘is defined as follows:

subnonquote ::= any character valid in a subscript, excluding the quote
symbol,

Then|the valug of the function $QUERY can be defined as follows:

the value of SQUERY/(glvn,) is a namevalue that conforms to glvn, if and only if:

CQ (glvn,, glvn,) = glvn,
and no glvn, exists so that

CQ (glvn,, glvn,) = givn,

and
CQ (givn,, givn,) = givn,

23

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

the value of $QUERY (glvn,) will be the empty string when no glvn, exists so that

2.2.7.14

cQ (gvn,, gvn,) = givn,

$SRANDOM

$RIANDOM] (intexpr)

See 2.2.4.1 for the definition of intexpr.

2.2.7.15

$S[ELE(

L.

refurns a rangom or pseudo-T
e value of intexpr is less than 1, an error will occur:

$SELECT

pT) (L | tvexpr @ expr |)

This form returns the value of the leftmost expr whose corresponding tvexpr is.true. The process of e

consists
is true. T
$S. An
‘is-the .on

2.2.7.16

$T[EXT

of evaluating the tvexprs, one at a time in left-to-right gtder, until the first one is found whg
he expr corresponding to this tvexpr (and no other) is/evaluated and this value is made the
brror will occur if all tvexprs are false. Since only orie expr is evaluated at any invocation o
ly expr which must have a defined value.

STEXT

+ intexpr
()
| entryref |

See 2.2.4.1 for the definition otintexpr. See 2.5.7 for the definition of entryref.

This forn

 returns a string whose value is the contents of the line specified by the argument. - Spacifi

entire li

e, with eol deleted, is returned.

ument of $T is an nt[yref the line denoted by the nt[y ref is spéciﬁed If entryref does ng
5N the line denoted is the first Jine of the routme If the argument is +, ntexg two cases. arg

), intexpr

See 2.2.4.2 for the definition of tvexpr. See 2.3 for the definition of expr. See section 1-for the. definition of

aluatlon
se-value
value of
$S, that

ically, the

¥ contain
defined.
intexpr is

If no such line as that specified by the argument exists, an empty stnng IS retumed If the y_ngspe
is amblguous the results are not defined. :

24

ess than

cification

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.17 $STRANSLATE
$TRIANSLATE] (expr, , expr,)
See 2.3 for the definition of expr.

Let s be the value of expr,, $TR(expr,,expr,) returns an edited form of s in which all characters in s whuch are
found in expr, are removed.

$TRIANSLATE] (expr, , expr, , expr,)
See 2.3 for the definition of expr

—

Let k be the value of expr,, $TR(expr1,expr,,exprQ) returns an edited form of sin which all characters in s which
are [found in expr, are replaced by the positionally corresponding character in expr,\If a gharacter in s
apppars more than once in expr, the first (leftmost) occurrence is used to positionallylocate the translation.

Translation is performed once for each character in s. Characters which are injs that are not in|expr, remain
- unchanged. Characters in expr, which have no correspondmg character inrexpr, are deleted fom s (this is
the fase when expr, is shorter than expr,). ‘

Notg: If the value of expr, is the empty string, no translation is_performed and s is returned unghanged.

2.2.7.18 SVIEW
$V[IEW] (unspecified)

Thig form makes available to the implementor a<call for examining machine-dependent informatipn. It is to be
understood that routines containing occurrences of $V may not be portable.

-~

S

2.2.7.19 $Z
$Z[Unspecified] (unspecified)

This| form is the initial letter reserved for defining nonstandard intrinsic. functions, This requirement permits the
unuged function names to be reserved for future use. : :

2.2.8 Unary Operator unaryop

Th O gieoy bhapoy o 4 o P U B PR LY Lo Lot AY
ere-are-tnree—tH |ouy upwlcuuno LULL"/Y P g \plue;, ar lu \lluuuo)

Not mverts the truth value of the exgratom |mmed|ately to its nght The value of ‘expratom is-1 if the
truth-value interpretation of e expratom is O; otherwise its value is 0. Note that ” performs the truth-value
interpretation.

Plus is merely an explicit means of taking a numeric interpretation. The value of +expratom is the numeric
interpretation of the value of expratom.

25

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC

11756:1992 (E)

Minus negates the numeric interpretation of expratom. The value of -expratom is the numeric interpretation
of -N, where N is the value of expratom.

Note that the order of application of unary operators is right-to-left.

2.2.9 Extrinsic Special Variable

exvar ::= $$ labelref

See 2.5.7

for the definition of labelref.

Extrinsic ipecial variables are denoted by the prefix $$ followed by a labelref. Extrinsic special va

invoke a
value of $7
PROCESS

Execution
to a levelli

Upon retuin from the subroutine the value of $T and the execution level is restored, and the value

argument
An extrinsi
$9

Note that |

UMPS subroutine to return a value. When an extrinsic special variable is executed)fhe
[, the current execution level, and the current execution location are saved in an exvarframeg
B-STACK.

he is erroneous.

bf the QUIT command that terminated the subroutine is returned-as the value of the exvar
¢ special variable whose labelref is x is identical to the extrinsic function:

x()

abel x must have a (possibly empty) formallist.

2.2.10 Exrnsic Function’

See 2.5.7

gxfunc ::= $$ labelref actuallist

”»

for the definition of labelref. "See 2.5.9 for the definition of actuallist.

Extrinsic f

Extrinsic fynctions invoke a MUMPS subroutine to return a value. When an extrinsic function is execut
current value of $T, the currént execution level, and the current execution location are saved in an

frame on t

Execution
contain a |
actuallist.

e PROCESS-STACK. The actuallist parameters are then processed as described in 2.5.

continues-at the first command of the formalline specified by the labelref. This formallin
ormallist in which the number of names is greater than or equal to the number of nameg
Execution of an exfunc to a levelline is erroneous.

riables
current
on the

continues at the first command of the formalline specified by the labelref."Execution of af exvar

of the

nctions are denoted<bythe prefix $$ followed by a labelref followed by an actuallist of parameters.

ed, the
exfunc
D.

P must
in the

Upon return from the subroutine the value of $T and the execution level are restored, and the value of the
argument of the QUIT command that terminated the subroutine is returned as the vaiue of the exfunc.

26

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.3 Expressions expr

Expressions are made up of expression atoms separated by binary string, arithmetic, or truth-valued operators.

expr ::= expratom [exprtail]

See 2.2 for the definition of expratom.

} binaryop expratom
exprtail [’] truthop
pattern |

See 2[ZTor the definition XD :

- ’ (Note: underscore)
+
- (Note: hyphen)
binaryop = *
/
\
|
truthop = relation
logicalop
. [
relation = <
}
>
logicalop ::= &
]

The ofder of evaluation is as follows:
a. Evaluate the left-hand expratom.

b. If an exprtail is present immediately to the right, evaluate its expratom or pattern apd apply its
operator.

c. Repeat step b..as necessary, moving to the right.

In thg language of opérator precedence, this sequence implies that all binary string, arithmetic, and
truth-yalued operators: are at the same precedence level and are applied in left-to-right order.

Any altempt ta evaluate an expratom containing an Ivn, gvn, or svn with an undefined value is erroneous.

2.3.1 Arithmetic-Binary-Operators

The binary operators + - * / \ # are called the arithmetic binary operators. They operate on the numeric
interpretations of their operands, and they produce numeric (in one case, integer) results.

+ produces the algebraic sum.

- produces the algebraic difference.

27

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

* produces the algebraic product.

/ produces the algebraic quotient. Note that the sign of the quotient is negative. if and only if
one argument is positive and one argument is negative. Division by zero is erroneous.

\ produces the integer interpretation of the result of the algebraic qubtient. |

produces the value of the left argument modulo the right argument. It is defined only for

nonzero values of its right argument, as follows.

A# B=A- (B*floor(A/B))
where floor (x) = the largest integer "> x.

2.3.2 Relational Operators

The oprators = < > | [produce the truth value 1 if the relation between their arguments which tHey express
is true,|land 0 otherwise. The dual operators 'relation are defined by: ‘

A 'relation B has the same value as '(A relation B).

2.3.2.1|Numeric Relations

The ingqualities > and < operate on the numeric interpretations of their operands; they denote the copventional
algebrdic greater than and less than.

2.3.2.2|String Relations
The relations =] [do not imply any numeric |nterpretat|on of either of their operands

The relation = tests string ldentlty If.the operands are not known to be numeric and numenc equal y is to be
tested, [the programmer may apply an appropriate unary operator to the nonnumeric operandsg. !f both
argumants are known to be in numeric form (as would be the case, for- example, if they resulted from the
application of any operatop-except _), application of a unary operator is not necessary. The uniquerjess of the
numeri¢ representation guarantees the equivalence of string and numeric equality when both opgrands are
numerit. Note, however, that the division operator / may produce inexact results, with the usuall problems
attenddnt to inexact.arithmetic.

The relption [sis'called contains. A [B is true if and only if Bis a substring of A; that is, A [B has fhé sarhe
value jE "$F(A,B). Note that the empty string is a subsiring of every string.

The relation] is called follows. A1 B is true if and only if A follows B in the conventionél ASC VI coIIat‘ir‘ig
sequence, defined here. A follows B if and only if any of the following is true. , :

a. Bis empty and Ais not.

b. Neither Anor B is empty, and the leftmost character of A follows (i.e., has a numencally greater
ASCIi code than) the leftmost character of B. :

28

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

¢. -There exists a positive integer n such that A and B have identical heads of length n, (i.e.,
$E(A,1,n) = $E(B,1,n)) and the remainder of A follows the remamderofB(le $E(A n+1,$L(A)) follows

$E(B.n+1,3L(B))).

2.3.3 Pattern match

The pattern match operator ? tests the form of the string which is its left-hand operand. S 7? P is true if and

only

if S is a member of the class of strings specified by the pattern P.

A pattern is a concatenated list of pattern atoms.

See 2.2 for the definition of expratom. See section 1 for the definition of V.

subs

such
each

Each

Assure that pattern has n patatoms. S ? pattern is true if and only if there exists a partition

| patatom ... |

pattern ::=
¢ expratom V pattern

ings
$=S,8,..8,

that there is a one-to-one order-preserving correspondence between the S, and the pattern
S, satisfies its respective pattern atom. Note that some-of the S, may be empty.

pattern atom consists of a repeat count repcount,followed by either a pattern code patcodp

of Sinto n

atoms, and

b or a string

literal strlit. A substring S, of S satisfies a pattern atomif it, in turn, can be decomposed into f number of

concatenated substrings, each of which satisfies theassociated patcode or strlit.

See 2.2.5 for the definition of strlit.

See 2.2.3 for the definition of intlit.

‘ ‘ patcode }
patatom - ::= repcount

| strlit |

| intlit l
repcount ::=
[intlit,] . [intlit,]

HOoEYoZOQ

patcode ::= I
I

29

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC

11756:1992 (E)

Patcodes differing only in the use of corresponding upper and lower case letters are equivalent. Each patccde
is satisfied by any single character in the union of the classes of characters represented, each class denoted

by its own patcode letter, as follows.

C 33 ASCII control characters, including DEL

N

P

10 ASCII numeric characters

33 ASCIl punctuation characters, including SP

A 52 ASCII alphabetic characters

L

E

All other]nused patcode letters for class names are reserved.

Each striit

Ul 26 ASCII upper-case alphabetic characters

[~ 26 ASCIT Tower-case alphabetic characiers

Everything (the entire set of ASCII characters)

is satisfied by, and only by, the value of strlit.

If repcount has the form of an indefinite multiplier ".", patatom is satisfied by a concatenation of any pumber

of S, (inclyding none), each of which meets the specification of patatom.

If repcount has the form of a single intlit, patatom is satisfied by a€oncatenation exactly intlit S, each g
meets the[specification of patatom. In particular, if the value of(intlit is zero, the corresponding S is

If repcount has the form of a range, intlit,.intlit,, the first intlit gives the lower bound, and the second |
upper bound. It is erroneous if the upper bound is less-than the lower bound. If the lower bound is ¢
so that thg range has the form .intlit, , the lower bound-is taken to be zero. If the upper bound is omi
that the range has the form intlit,. , the upper bound-is taken to be indefinite; that is, the range is at leg
occurrences. Then patatom is satisfied by the\concatenation of a number of S, each of which me
bn of patatom, where the numbet. Must be within the expressed or implied bounds of the specified
range, inclusive.

specificati

The dual pperator ’? is defined by:

2.3.4 Logical Operators

The opera’tors hand & are called logical operators. (They are given the names or and and, respectively

operate o

A

A

30

Al? B = (A?B)

f which
pmpty.

hilit the
mitted,
ted, so
St intlit,
ets the

.) They

the truth-value interpretations of their arguments, and they produce truth-value results.

{ B= (0 if both Aand B have the value 0)
(1 otherwise)

& B= (1ifboth Aand B have the value 1)
(0 otherwise)

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

The dual operators '& and 'l are defined by:

23.5

A'&B="(A&B)
AN B= '(AlB)

Concatenation Operator

The underscore symbol _ is the concatenation operator. It does not imply any numeric interpretation. The
value of A_B is the string obtained by concatenating the values of A and B, with A on the lefl.

24 H

The)
whic
the

See

See

2.4.1

The

preceeded by an optional label and formallist. Thels is followed by zero or more |i (level-indicatg

follov
from

outines

P.2.1 for the definition of name.

Routine Structure

outine is the unit of routine interchange. In routine interchange, each routine begins with its |

routinehead,

p contains the identifying routinename, and the routinehead is followed by the foutinebody, which contains
ode to be executed. The routinehead is not part of the executed code.

routine ::= routinehead routinebody
P.4.1 for the definition of routinebody.

routinehead ::= routinename eol

routinename ::= name

foutinebody is a sequence of lines terminated by an eor. Each line starts with one Is which may be

ed by zero or more commands and a terminating eol. One or more spaces may separate
the last command of a line~” The LEVEL of a fine is the number plus one of |i.

line ... eor

routinebody s

line 1=

| formalline |
| levelline |

label formallist ls linebody

formalline ::

r) which are
ne comment

levelline = [label } 1s [li J ... linebody
[—commands [cs comment]_]
linebody 1= l l eol
comment
See 2.5.3 for the definition of comment.
formallist ::= ({ L name])

31

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC

See 2.2.1

11756:1992 (E)

for the definition of name. See section 1 for the definition of L.

label 1= ‘ name l

See 2.2.1

intlit

for the definition of name. See 2.2.3 for the definition of intlit.

commands ::= command [cs command]

See 2.5 for the definition of command.

is ::= SP

H 52—}
£s ::= SP

gol ::= CR LF
gor 1= CR FF

Each occlirrence of a label to the left of Is in a line is called a defining occurrence-of label. No two-defining
occurrences of label may have the same spellmg in one routinebody. A formallist may only be prese

line whos

LEVEL is one, i.e., does not contain an |i.

2.4.2 Routine Execution

MUMPS r
the instan
ofaseto
exfunc, ol

butines are executed in a sequence of blocks. Each block is dynamically defined and is invq
ce of an argumentless DO command, a doargument, an exfunc, or an-exvar.Each block ¢
lines that all have the same LEVEL; the blogk begins with the line reference implied by t

exvar and ends with an implicit or explicit QUIT command. If no |abel is specified

doargume

nt, exfunc, or exvar, the first line of the routinebody is used. The execution level is defined

LEVEL of
level are i
than the

the line currently being executed. Lings which have a LEVEL greater than the current ex
gnored, i.e., not executed. An implicit' QUIT command is executed when a line with a LEV
current execution level or the edr-is encountered, thus terminating this block (see 2.6.1

descriptiop of the actions of QUIT). The- initial LEVEL for a process.is one. The argumentless DO col

increases

Within a g
starting w
execution
flow comn
variables,
right orde
resolution
this docun

the execution level by one. {See also the DO command and GOTO comman)

th the line specified by the invoked labe! or first iine. of the routine > if no Iabel is-given. “Withi
beglns at the leftmiost command and pr proceeds left to right from command to command.
hands DO, ELSE, FOR, GOTO, IF, QUIT, XECUTE,-exfunc and exvar extrinsic functio
provide exteption to this execution flow. Within a command, all expratoms are evaluated in g
with all .expratoms that occur to the left of the expratom being evaluated, including the cq
of any indirection, prior to the evaluation of that expratom, except as explicitly noted elsew
nent. The expratom is formed by the longest sequence of characters that satisfies the defir

nt on a

ked by
onsists
ne DO,
in the
as the
ecution
EL less
5 for a
nmand

iven routine or subroutine execution proceeds sequentially from line to lme in top to bottom order,

N aline
Routine
ns and
left-to-
mplete
here in
ition of

expratom

It is an error to begin execution of any formallihe unless that formalline has just been reached as.a result of

an exvar,

an exfunc, or a DO command doargument that-contains an actuallist.

- 32

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.5 General command Rules

Every command starts with a command word which dictates the syntax and interpretation of that command
instance.. Command words differing only in the use of ‘corresponding upper and lower case letters are

equiv

alent. The standard contains the following command words.

B[REAK]
C{LOSE]
D[O]
E[LSE]
F[OR] .
G(OTO]
H[ALT)

Unus

The {ormal definition of the syntax of command is a choice from among all of fhe individﬁal comi

- defin

Any Implementation of the language must be able to recognize both the initial letter abbreviatior

HANG]

I[F]

J[OB]
K[ILL]

L{OCK]

N[{EW]

O[PEN]

Q{UIT]

R[EAD]

S[ET)

U[SE]

V[IEW]
W[RITE]

- X{ECUTE] v
Z[unspecified]

ed initial letters of command words are reserved for future enhancement of the standard.

tions of 2.6.

| syntax of BREAK command |

I syntax of .CLOSE command y
command ::= ! 'w

l i

syntax of XECUTE command

mand syntax

and the full

spelling of each command'word. When two command words have a common initial ietter, their argument

synta

For 4

is eqpuivalent in execution to

xes uniquely distinguish them.
Il commands.allowing multiple arguments, the form

command word arg,, arg, ...

command word arg, command word arg, ...

33

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.5.1 Post Conditionals

All commands except ELSE, FOR, and.IF may be made conditional as a whole by following the command
word immediately by the post-conditional postcond.

postcond ::= [: tvexpr]
See 2.2.4.2 for the definition of tvexpr.

If the postcond is absent or the postcond is present and the value of the tvexpr is true, the command is
executed. If the postcond is present and the value of the tvexpr is false, the command word and its arguments
are passed over without execution.

The postcdnd may also be used to conditionalize the arguments of DO, GOTO, and XECUTE. in such cases
the argumpnts’ expratoms that occur prior to the postcond are evaluated prior to the evaluation |of the

postcond.

2.5.2 Spades in Commands
Spaces are significant characters. The following rules apply to their use in lines.

a.| There may be a space immediately preceding gol only if the line ends with a':comment. [(Since
Is may immediately precede eol, this rule does not apply to,the space which may stand for Is{

~—

b. | If a command instance contains at least one argument, the command word or postcond is fofllowed
bylexactly one space; if the command is not the last of.the line, or if a comment follows, the comimand
is Tollowed by one or more spaces.

c. | ¥ a command instance contains no argument and it is not the last command of the ling,|or if a
comment follows, the command word or pestcond is followed by at least two spaces; if it is the last
command of the line and no comment foliows, the command word or postcond is immediately followed
by|eol. :

2.5.3 Comments

if a semicojon appears in the- command word initial-letter position, it is the start of a comment. The remlainder
of the line to eo! must consist of graphics only, but is otherwise ignored and nonfunctional.

cpmment ~::= ; [graphic }
See 2.1 foy the definition of graphic.

2.5.4 format in READ and WRITE

The format, which can appear in READ and WRITE commands, specifies output format control. The
parameters of format are processed one at a time, in left-to-right order.

34

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

| ... [? intexpr] '
| ? intexpr |
See 2.2.4.1 for the definition of intexpr.

The parameters, which need not be separated by commas when occurring in a single instance of format, may
take the following forms.

I causes a new line operation on the current device. Its effect is the equivalent of writing CR LF on
a pure ASCII device. In addition, $X is set to 0 and 1 is added to $Y. ~

causes a top of form operation on the current device. lts effect is the equivalent-ofwriting CR FF
on a pure ASCI! device. In addition, $X and $Y are set to 0. When the current devicq is a display,
the screen is blanked and the cursor is positioned at the upper left-hand corper. '

? intexpr produces an effect similar to tab to column intexpr. If $X is greater than or equal to intexpr,
there is no effect. Otherwise, the effect is the same as writing (intexpr™>.$X) spaces. (Note that the
leftmost column of a line is column 0.) ,

2.5.% Side Effects on $X and $Y

As HEAD and WRITE transfer characters one at a time, certdincharacters or character combinatigns represent
devite control functions, depending on the identity of thé.current device. To the extent that the supervisory
function can detect these control characters or character sequences, they will alter $X and $Y ps follows.

~graphic : add 1 to $X
backspace : set $X = max($X-1,0)
line feed : add 1 to $Y
carriage return :set$X =0
form feed : set$Y =0,86X =0

2.5.6 Timeout

The |OPEN, LOCK, JOB;and READ commands employ an optional timeout specification, assocjated with the
testing of an external.condition.

timeout ::= : numexpr

See(2.2.4 for the definition of numexpr.

If the—opti i i , i i tiorT; i ; b definition of
the command, is satisfied; otherwise, it will wait until the condition is satisfied and then proceed.

$T will not be alteredyif the timeout is absent.

If the optional timeout is present, the value of numexpr must be nonnegative. If it is negative, the value 0 is
used. Numexpr denotes a t-second timeout, where ¢ is the value of numexpr. :

35

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

If t = 0, the condition is tested. If it is true, $T is set to 1; otherwise, $T is set to 0. Execution
proceeds without delay. :

If tis positive, execution is suspended until the condition is true, but in any case no Ionger than t
seconds. If, at the time of resumption of execution, the condition is true, $T is set to 1; otherwuse ST
is setto 0. . SN

2.5.7 Line References

The DO and GOTO commands extnnsuc functlons and extrmsm varlables as well as the sTEXT functnon
contain in S - ifs scribes the
means for|making line references.

Any line in a given routine may be denoted by mention of a label which.occurs in a defining ‘oc'cUr‘y,rence on
or prior to the line in question. D

, 1 label '
dlabel 1= ‘) l

@ expratom V dlabel

See 2.4.1 [for the definition of label. See 2.2 for the definition of expratom. See section 1 for the definition
of V.

routinename

I

outineref ::=

'@ expratom V routineref

See 2.4 fgr the definition of routinename. See 2.2 for the definition of expratom. See section 1-for the
definition gf V.

The total line specification in DO and GOTO is in the ferm of entryref.

entryref 1=

~

’ dlabel [+“intexpr] [" routineref | l

routineref

See 2.2.4.[1 for the definition of inte'xgr.

PaS

If the delimiter * is absent, the routine being executed is implied. [f the line reference (dlabel [+intekpr]) is
absent, the first line is implied:

When the PO or JOB commands or exfunc or exvar include parameters to be passed to the specified nouting,
the +intexpr form of entryref is not permitted and the specified line must be a formallme The line specijication
labelref is used instead:

label [" routinename]

=)

abélref ::=
' — " routinename —

See 2.4.1 for the definition of label. See 2.4 fo:; the definition df ro4utinenar>r‘1e.

If + intexpr is absent, the line denoted by dlabel is the one containing label in a defining occurrénce. If +
intexpr is present.and has ‘the value n’< 0, the line denoted is the nth line ne after the one containing label in a
defining occurrence. A negative value of intexpr is erroneous. When label is an instance of mtht leading
zeros are significant to its spelling.

+36

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

in the context of DO or GOTO, either of the following conditions is erroneous.

a. A value of intexpr so large as not to denote a line within the bounds of the given

routine.

b. A spelling of label which does not occur in a defining occurrence in the given routine.

In any context, reference to a particular spelling of |abel WhICh occurs more than once in a defining occurrence
in the given routine will have undefined results.

DO, GOTO, and JOB commands, as well.as the $TEXT function, can refer to a line in a routine other than that
in which they occur; this requires a means of specifying a routinename.

2.5

Ind
cof

Typically, where a command word carries an argument list, as in

the|

Sei

of L. See section 1 for the definition of L&

Thig formulation expresses the following properties of argument indirection.

Un
all

25

8 Command Argument Indirection

rection is available for evaluation of either individual command arguments or contigug

COMMANDWORD SP L argument

argument syntax will be expressed as
\ | individual argument syntax |
argument ::=
| @ expratom V L argument l

p 2.2 for the definition of expratom. See section 1 for the definition of V.. See section 1 fof

a. Argument indirection may be used recursively.

b. A single instance of argument indirection may evaluate to one complete argument
of complete_arguments.

ess the opposite is explicitly stated, the text of each command specification-describes the ar
ndirection-has been evaluated.

9‘Parameter Passing

us sublists of

hmand arguments. The opportunities for indirection are shown in the syntax defmmons accompanying the
compmand descriptions.

the definition

or to a sublist

guments after

Parameter passing is a method of passing informationin a controlled manner to and from a subroutine as the

res

ult of an exfunc, an exvar, or a DO command with an actuallist.

actuallist ::= ([L actual])

See section 1 for the definition of L.

37

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

. actualname l

.
]

actual
| expr |

See 2.3 for the definition of expr.

| name |
actualname ::=
@ expratom V actualname

See 2.2.1 for the definition of name. See 2.2 for the definition of expratom. See section 1 for the definition
of V.

When paranjeter passing occurs, the jormalling designated by the 1apelret must contain a formattfstimwhich
the number of names is greater than or equal to the number of actuals in the actuallist. The correspondgnce
between actlial and formallist name is defined such that the first actual in the actuallist corresponds-tothe first
name in thel formallist, the second actual corresponds to the second formallist name, etc. - Similarly} the
correspondehce between the parameter list entries, as defined below, and the actual or formatiist names is
also by positjon in left-to-right order. If the syntax of actual is .actualname, then it is saidithat the actuallis of
call-by-refergnce format; otherwise, it is said that the actual is of the call-by-value format.

When paramjeter passing occurs, the following steps are executed:

a. |Process the actuals in left-to-right order to obtain a list of [DATA-CELL pointers calleq the
pargmeter list. The parameter list contains one item per actual. - The parameter list is crgated
accqgrding to the following rules:

1. [fthe actual is call-by-value, then evaluate thé@xpr and create a DATA-CELL with afzero
tuple value equal to the result of the evaluation. The pointer to this DATA-CELL ig the
parameter list item.

2. If the actual is call-by-reference, search the NAME-TABLE for an entry containing the
actuallist name. If an entry is found;the parameter list item is the DATA-CELL pointer in this
NAME-TABLE entry. If the actuallist name is not found, create a NAME-TABLE entry
containing the name and a.pointer to a new (empty) DATA-CELL. This pointer ig the
parameter list item.

b. [reate the parameter frame/on the PROCESS-STACK containing the 'formallist.

c. For each name in the formallist, search the NAME-TABLE for an entry containing the name and
if the entry exists, copy'the NAME-TABLE entry into the parameter frame and delete it fron} the
NAME-TABLE. This step performs an implicit NEW on the formallist names.

o

. For each item in the parameter list, create a NAME-TABLE entry containing the corresponding
formiallist iame and the parameter list item (DATA-CELL pointer). This step binds the formallist

nampes/to-their respective actuals.

As a result of these steps, two (or more) NAME-TABLE entries may point to the same DATA-CELL. As long
as this common linkage is in effect, a SET or KILL of an lvn with one of the names appears to perform an
implicit SET or KILL of an lvn with the other name(s). Note that a KiLL does not undo this linkage of multiple
names to the same DATA-CELL, although subsequent parameter passing or NEW commands may.

Execution is then initiated at the first command following the Is of the line specified by the labelref. Execution
of the subroutine continues until an eor or a QUIT is executed that is not within the scope of a subsequently

38

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

executed doargument, xargument, exfunc, exvar, or FOR.

mus

ISO/IEC 11756:1992 (E)

t be terminated by a QUIT with an argument.

In the case of an exfunc or exvar, the subroutine

At the time of the QUIT, the formallist names are unbound and the original variable environment is restored.

See

2.6.15 for a discussion of the semantics of the QUIT operation.

2.6 Command Definitions

The

specifications of all commands follow.

2.6.

See

BRH
argy

2.6.

See

See
V. §

See

The
of tH
prog

BREAK

B{REAK] postcond | [SP]
argument syntax unspecified |

2.5.1 for the definition of postcond.

AK provides an access point within the standard for nonstandard programming aids. BH
ments suspends execution until receipt of a signal, not specified here, from a device.

| expr |

([[expxr] ¢] ... expr)

deviceparameters ::=

2.3 for the definition of expr.

value of the first expr of each closearqument identifies a device (or file or data set). The
e valtue of this expr is left to the implementor. The deviceparameters may be used to speci

EAK without

P CLOSE

C[LOSE]} postcond SP L closearqument
2.5.1 for the definition of postcond. See section 1 for the definition of L.

; expr [: deviceparameters]
closeargqument o=
|~ expratom V L closearqument |

2.3 for the definition of expr. ‘See 2.2 for the definition of expratom. See section 1 for th¢ definition of
bee section 1 for the definition-of L.

interpretation
y termination
implementor

edures or other information associated with relinquishing ownership, in accordance with

inter

PN PR YN
’Jl CLativig.

Each designated device is released from ownership. If a device is not owned at the time that it is named in
an argument of an executed CLOSE, the command has no effect upon the ownership and the values of the
associated parameters of that device. Device parameters in effect at the time of the execution of CLOSE are
retained for possible future use in connection with the device to which they apply. If the current device is
named in. an argument of an executed CLOSE, the implementor may choose to execute implicitly the

39

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

commands OPEN P USE P, where P designates a predetermined default device. If the :mplementor chooses
otherwise, $10 is given the empty value.

2.6.3 DO

D[O] postcond !

SP]

SP L doargument |

See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

dpargument =
@ expratom V L doargument
See 2.5.7 for the definition of entryref. See 2.5.1 for the defmmon of postcond. See)2.5.7 for the de

of labelref.
the definiti

An argumehtless DO initiates execution of an inner block of lines. If Qostcbnd is‘present and its tvexpr is

| entryref postcond

labelref actuallist postcond !

See 2.5.9 for the definition of actuallist. See 2.2 for the definition of expratom. See sectio
n of V. See section 1 for the definition of L.

inition

-1 for

false,

the executipn of the command is complete. If postcond is absent, or the postcond is present and its ftvexpr
is true, the|DO places a DO frame containing the current execution location, the current execution level, and

the curreny value of $T on the PROCESS-STACK, increases the €xecution level by one, and continues

execution
encounteri
xargument

t the next line in the routine. (See 2.4.2 for an explanation of routine execution.)
g an implicit or explicit QUIT not within the scopeof a subsequently executed doarg
exfunc, exvar, or FOR, execution of this block is.terminated (see 2.6.15 for a description

actions of

DO with a

doargumen
doargumern

If the actua
by labelref
actuals in t

Each doarqument is executed, one at a time in lefi-to-rigit order, in the following steps.

a.

b.

QUIT). Execution resumes at the command (if’any) following the argumentless DO.

t.
t to a line whose LEVEL is not one.is erroneous.

list is present in an executed.doargument, parameter passing occurs and the formalline desig
must contain a formallist in"which the number of names is greater than or equal to the num
he actuallist.

guments is a generalized call to the subroutine specified by the entryref, or labelref, in
The fine specified by the entryref\or labelref, must have a LEVEL of one. Executio

Evaluate the-expratoms of the doargument.

If postcond is present and its tvexpr is false, execution of the doargument is complete: fp_g_s ~
is absent, or postcond is present and its tvexg is true, proceed to the step c. :

When

ment,

of the

each

h of a

nated
ber of

C.

lDF{OCESS STACK

d.

e.

40

If the actuallist is present, execute the sequence of steps described in 2.5.9 Parameter Pa

ssing.

Continue execution at the first command following the Is of the line specified by entryref or
labelref. Execution of the subroutine continues until an gor or a QUIT is executed that is not within
the scope of a subsequently executed FOR, argumentless DO, doargument, xargument, exfunc, or

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

exvar. The scope of this doargument is said to extend to the execution of that QUIT or gor. (See
2.6.15 for a description of the actions of QUIT.) Execution then returns to the first character [position

following the doargument.

2.6.4 ELSE

E[LSE] [SP)

If the value of $T is 1, the remainder of the line to the right of the ELSE is not executed. If the value of $T

is 0, execution continues normally at the next command.

| 8P lvn = L forparameter |

Sde 2.2.2.1 for the definition of lvn. See section 1 for the definition of £/

» | expr |
forparameter ::= numexpr,; : nNuUmexpr, ¢ umexpr,
numexpr, : numexpr,

See 2.3 for the definition of expr. See 2.2.4 for the definition of numexpr.

The scope of this FOR command begins at the next. command following this FOR on the samg line and ends

jugt prior to the eol on this line.

Thie FOR with arguments specifies repeated\execution of the commands within its scope for Iifferent values

of the local variable lvn, under successive,control of the forparameters, from left to right. A
ocgurringin lvn, such as might occur in subscripts or indirection, are evaluated once per execut
pripr to the first execution of any forparameter.

Fof each forp_aramete controhof the execution of the commands in the scope is specmed as
that A, B, and C are hidden temporaries.)

a. If the forparameter is of the form expr,.
1. -Set lvn = expr. /
2. Executethe commands in the scope once.

3. Processing of this forparameter is complete.

b. If the forparameter is of the form numexpr1 nuMexpr., : NUMexpr.,

| " and pumexpr, is nonnegative

y expressions
on of the FOR,

follows. (No‘te

Set A = numexpr

Set B = humexpr,.

Set C= umexgr3 :
Set lvn =

If Ivn > C processmg of this forgaramete is complete.

OO AN

Execute the commands in the scope once; an undefined value for lvn is erroneous.

41

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

c. Ifthe forparameter is of the form numexpr, :

7. Iflvn > C-B, processing of this orgaramete is complete
8. Otherwise, set lvn =lvno + B.
9. Gotob.

numexpr, : numexpr,

and numexpr, is negative.
1. Set A = numexpr,.
2. Set B = numexpr,.
3. Set C = numexpt,.
4. Set I_v_q = A
5. If lvn < C, processing of this forparameter is complete.
6. Execute the commands in the scope once; an undefined value Tor [vn IS erroneous.
7. If lvn < C-B, processing of this forparameter is complete.
8. Otherwise, set lvn = lvn + B.
9. Goto 6.

d. [|f the forparameter is of the form numexpr, : numexpr,.
1. Set A = numexpr
2. Set B = numexpt,.
3. Setlvn = A
4. Execute the commands in the scope once; an undefined-value for lvn is erroneous.
5. Setlvn=lvn + B.
6. Goto 4.

if the FOR gommand has no argument.

a. |Execute the commands in the scope once; since no lvn has been specified, it cann

refgrenced.

b. Goto 1.

Note that fofm d. and the argumentiess FORy specify endless loops. Termination of these loops must

by execution of a QUIT or GOTO within thescope of the FOR. These two termination methods are ava

within the sq
scope; they,
executed.

Note that if
commands
correspondi

Execution o

a. ltterminates that particular execution of the scope at the QUIT; commands to the right of the

are

ope of a FOR independent-ofthe form of forparameter currentiy in control of the execution
are described below. Note also that no forparameter to the right of one of form d. c3

the scope of a FOR (the outer FOR) contains an inner FOR, one execution of the sco
pof the outer FOR encompasses all executions of the scope of commands of the inner
ng to one cGmiplete pass through the inner FOR command’s forparameter list.

a QUIT within the scope of a FOR has two effects.

bt be

bccur
lable
bf the
n be

pe of
FOR

QUIT

not executed.

b. It causes any remaining values of the forparameter in control at the time of execution of the QUIT,
and the remainder of the forparameters in the same forparameter list, not to be calculated and the
commands in the scope not to be executed under their control.

42

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 117

56:1992 (E)

In other words, execution of QUIT effects the immediate termination of the innermost FOR whose scope
contains the QUIT.

Execution of GOTO effects the immediate termination of all FOR comrhands in the Iuﬁ éontainir’\g the GOTO,
~and.it transfers execution control to the point specified. Note that the execution of a QUIT within the scope
of a FOR does not affect the variable environment, e.g., stacked NEW frames are not removed or processed.

2.6.6 GOTO

G[OTO) postcond SP L gotoargument

Sed

See

of M.

GO

Eac
is ei
is'n
the
if th
LEV

confaining the GOTO and the line specified by the-gotoargument must be in the same routine.

See

2.5.1 for the definition of postcond. See section 1 for the definition of L.

| entryref postcond |

gotoargumr.at ::=
@ expratom V L gotoargument

2.5.1 for the d rinition of postcond. See 2.2 for the definition of expratom. See section 1 for
See sectic « 1 for the definition of L.

[O is a yeneralized transfer of control. If provision for a return of(control is desired, DO m
h gotoargument is examined, one at a time in left-to-right ordef;.until the first one is found wh
ther absent, or whose postcond is present and its tvexpr is trire. If no such gotoargument is
bt transferred and execution continues normally. if such a'gotoargument is found, executior
b LEVEL of the line containing the GOTO is greatet-than one, there may be no lines of oy

EL between the line specified by the gotoargument and the line containing the GOTO.

2.6.5 for a discussion of additional effects of GOTO when executed within the scope of F

the definition

by be used. .

pse postcond
ound, control
continues at

eft of the line it specifies, provided the line has the same LEVEL as the line containing th¢ GOTO and,

ver execution
Aiso, the line

DR.

2.6.7 HALT
H{ALT] postcoend [SP]
See| 2.5.1 for the definition of postcond.
First, LOCK with‘no*arguments is executed. Then, execution of this process is.terminated.
2.6.8.HANG
H[ANG] postcond SP L hangargument
See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

numexpr

hangargqument ::=
| @ expratom V L hangargument |

43

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.4 for the definition of numexpr. See 2.2 for the definition of expratom. See section 1 ‘for the definition

of V.- See

Let t be the value of numexpr.

seconds.

269 IF

sect»on 1 for the defmmon of L.

it t'> 0, HANG has no effect.

Otherwise, execution is 'suspended for t

See sectio

e

See 2.2.4.9
of V. See

In'its argun
to the righ
command.

If exactly 9
is performe

IF with n an

arguments
arguments

2.6.10 JOK

J

See 25.11

3

section 1 for the definition of L.

h 1 for the definition of L.

LE] { 2]

SP L ifarqument

lm

| tvexpr
| ¢ expratom V L ifargument |

farqument

for the definition of tvexpr. See 2.2 for the definition of expratomSee section 1 for the de

of the IF is not executed.

ne argument is present, the value of tvexpr is placed into $T; then the function described
d.) S

guments is equivalent in execution-to n |F:-commands, each with one argument, with the resq
in the same order. This may be thought of as an implied and of the conditions expressed

g
(OB] postcond.'SP L jobargqument
or the definition of postcond. See section 1 for the definition of L.

entryref [: jobparameters]

bbarqument
labelref jobactuallist |

: jobparameters]

inition

nentless form, IF is the inverse of ELSE. That is, if the value of $T is O, the remainder of the line
If the value of $T is 1,.execution continues normally at the

next

above

ective
by the

|
|

a N
T A] TC

See 2.5.7 for the definition of entryref and labelref. See 2.2 for the definition of expratom. See section 1 for
the definition of V. See section 1 for the definition of L.

jobactuallist

(expr)

See 2.3 for the definition of expr. See section 1 for the definition of L

- 44

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

Se

Se

For each jobargument, the JOB command attempts to-initiate another MUMPS.

Th
job
fro
wit
link
val

The
de

if 4
pre
in
img

2.6/

S

[0

Seg 2.2.2:2:or the definition of glvn. See 2.2 for the definition of expratom. See section 1 fof

of

ISO/IEC 11756:1992 (E)

processparameters [timeout] l

jobparameters =
| timeout l
e 2.5.6 for the definition of timeout.
| expr |
processparameters = ‘ I
([[expr]] . expr)

e 2.3 for the definition of expr.

rocess.
resent in a jgbargument, the formalline designated by labelref must contain a formallist in wh
names is greater than or equal to the number of exprs in the jobactuallist.

e JOB command initiates this MUMPS process at the hne specnfned by the entryref or |

If the jobactuallist

ch the number

ibelref. If the

actuallist is present, the process will have certain variables i initially defined. These variable
m the formallist of the formalline designated by the Jabelref. Formallist names will be crea

age between the started process and the process that initiated it; jobactuallist exprs are p
le. [f the jobactuallist is not present, the process will have no variables initially defined.

P processparameters can be used in an implementation- specmc fashion to indicate partition,
ice, and the like.

timeout is present, the condition reported by $T is the. success of initiating the process.
sent, the value of $T is not changed, and process execution is suspended until the MUMPS
he jobargument is successfully initiated. The meaning of success in elther context is
Iementatron

11 KILL

Im
g

e |

K[ILL] postcond
| SP L killargument |

e 2.5.1 for the definition of postcond. See section 1 for the definition of L.
| glvn |
killargument ::= \ (L lname) ’
@ expratom V L killarqument

Y. See section 1 for the definition of L.

h the values of the jobactuallist exprs for as many exprs as are present.in the jobactuallis}.”

s will be taken
ed and paired
There is no
assed only by

size, principal

no timeout is

I
E{rocess named

efined by the

the definition

name

lname
: [& expratom V name |

See 2.2.1 for the definition of name. See 2.2 for the defi nmon of e xgratom See sectlon 1 for the definition
of V.

The three argument forms of KILL are given the following names.

45

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See section

a. glvn: Selective Kill.
b. (L Iname): Exclusive Kill.
c. Empty argument list: Kill All.

1 for the definition of L.

KILL is defined using a subsidiary function K(V) where Vis a glvn.

1. Search for the name Vin the NAME-TABLE. If no such entry is found, the function is completed.
Otherwise, extract the DATA-CELL pointer and proceed to step 2.

2. |

f Vis unsubscripted, delete all tuples in the DATA-CELL.

3.

CEL

Note that as
The actions
a.

b.

C.

If & variable
not the only

from 11 to 1;

2.6.12 LOC

L{

See 2.5.1 g

Selective Kill

Exclusive Kill

Citt Al

OCK] postcond l

|
lockargument ::= l
i

f V has subscripts, then let N be the number of subscripts in V. Delete all tuples in the 0}
L which have N or greater subscripts and whose first N subscripts are the same ag those

a result of procedure K, $D(V)=0, i.e., the value of Vis undefined, and V has'ne descend

of the three forms of KILL are then defined as:
- apply Kto the specified glvn.

- apply K'to all names in the NAME-TABLE’except those in the argy
list. Note that the names in the argumentlist of an exclusive kill may 1
subscripted.

- apply Kto all names in the NAME-TABLE.

N, a descendant of M, is killed, the killing of N affects the value of $D(M) as follows: if A
descendant of M, $D(M) is unchanged; otherwise, if M has a defined value $D(M) is chg
if M does not have a defined value $D(M) is changed from 10 to O.

SP] l

[
L lockargument ‘

sp

r the definition of postcond. See section 1 for the definition of L.

[timeout]

ATA-

in V.

ants.

ment
ot be

was
nged

I
|
|
I
!

nd
TC

See 2.6.12 for the definition of nref.

See 2.5.6 for the definition of timeout. See 2.2 for the definiti

expratom. See section 1 for the definition of V. See section 1 for the definition of L.

nr

46

II”IL‘“G[(L%E)]

| @ expratom V nref

ef

on of

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.1 for the definition of name. See 2.3 for the definition of expr. See 2.2 for the definition of expratom.
See 2.6.12 for the definition of nref. See section 1 for the definition of V. See section 1 for the definition of
L. o

- LOCK provides a generalized interlock facility available to concurrently executing MUMPS processes to be
used as appropriate {o the applications being programmed. Execution of LOCK is not affected by, nor does
it directly affect, the state or value of any global or local variable, or the value of the naked indicator. Its use
is not required to access globals, nor does its use inhibit other processes from accessing globals. It is an
interlocking mechanism whose use depends on programmers establishing and following conventions.

Each lockargument specifies a subspace of the total MUMPS name space for which the executing process
seeks to make or release an exclusive claim; the details of this subspace specification are given below.

For

resol
each

he purposes of this discussion, name space is herein defined as the union of all possib
ution of all indirection. There exists a table, called the locktable, which contains zerG)or n
MUMPS process. A given nref may appear more than once for the same process.and it ma

e nrefs after
ore nrefs for
y not appear

for n space of the

total

hultiple processes. Each nref represents a claim on a portion of the name space:“The sul
name space claimed by each pref in the locktable is as follows:

a. If the occurrence of nref is unsubscripted, then the subspace is the set of the following points: one
point for the unsubscripted variable name nref and one point fot/each subscripted variable name
N(s,....,s)) for which N has the same spelling as nref.

ce is the set
nd one point

b. If the occurrence of nref is subscripted, let the nref be N(s,}s,,...,s,). Then the subsp
of the: following points: one point for each of N, N(s,), N(8,,5,):...,N(5,,...,s), where i’> n,
for each descendant (see 2.2.7 $DATA function for-addefinition of descendant) of nref.

if the LOCK command is argumentless, LOCK removes all' nrefs in the locktable that are associated with this
process. ’

Exegution of lockargument occurs in the following order:
a. Any expression evaluation invdlved in processing the lockargument is performed.
bvaluating or

ble that are
if an initial +

b. When the form of lockargument does not include an initial + or - sign, then prior to
executing the rest of the-fockargument, LOCK first removes all nrefs in the locktz
associated with this process. For the rest of the discussion, this form acts the same as
sign were present.

c. If an explicit or implicit leading + sign is present, then:
fined by the
ent does not
ktable for all

1.\ ‘A test is made to see if this process can claim the entire subspace de
fockargument. This subspace can be claimed if each nref of the lockargum
intersect the union of the subspaces claimed at this instant by nrefs in the log
other processes.

2. If the test performed above indicates that the process cannot claim the specified
subspace, execution of this process is suspended until repetition of the test would indicate
that the process can claim the specified subspace, or, when a timeout is present, until the
timeout expires, if that occurs first. If the timeout expires, step 3 below is skipped.

3. All of the nrefs in the lockargument are inserted into the locktable for this process. This
may result in some nrefs being in the table more than once for this process. The nrefs for
the lockargument are either inserted all at once or not at all.

47

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC

11756:1992 (E)

d. If the lockargument has a leading - sign, then for each pref in the lockargument, if the nref exists
in the locktable for this process, one instance of nref is removed from the locktable.

e.

2.6.13 NEW

I a timeout is present, the condition reported by $T upon completion of the execution of the
lockargument is the success or failure to establish or relinquish the claim; it has the value of 1 if the
lock claim is established or O if the timeout expires. If no timeout is present, executlon
lockargument does not.change $T.

[8B.] |

N[EW] postcond , i
SP L newargument

for the definition of postcond. See section 1 for-the definition of L.

See 2.5.1
l lname « . ‘
mewargument | (L lname)

See 2.6.1
of V. Sesg

NEW prov
The three
a
b

.
See sectiq

Each arg
STACK a

| @ expratom V L newargument

of the

for the defmmon of lname. See 2.2 for the deﬁnmon of expratom. See section 1 for:the deﬂnmon

section 1 for the definition of L.

ides a means of performing variable scoping.

argument forms of NEW are given the following names:
Iname: Selective New

(L Iname): Exclusive New
Empty argument list: New All

n 1 for the definition of L.

ment of the NEW command pushes a frame containing the NEW argument onto the PRC
d copies a set of NAME-TABLE entries into the frame.

The actions of the three forms of NEW are then defined as:

a

b

Selective‘New - th4e NAME-TABLE entry for Iname is copied into the frame.

Exclusive New - the set of NAME-TABLE entries for all names except the names
argument are copied into the frame.

C.

New All - all entries in the NAME-TABLE are copied into_the frame.

CESS-

in the

In all three cases, the NAME-TABLE entries copied into the frame are subsequently deleted from the NAME-
TABLE. - This deletion has the effect of making the variable unknown in the current process context.

See 2.6.15 for a description of the actions of QUIT.

48

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.6.14 OPEN

O[PEN] postcond SP L opéenargument
See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

| expr.[: openparameters] |

openargument 1=

| € expratom V L openarqument }

See 2.3 for the definition of expr. See 2.2 for the defnmon of expratom. See sectlon 1 for the defmmon of

V See section 1 for the defmltlon of L.

' deviceparameters [timeout] ‘
openparameters ::=

| timeout 1

Seg 2.6.2 for the definition of deviceparameters. See 2.5.6 for the definition of timeout.

The value of the first expr of each gpenargument identifies a device (or file or. data set). The interpretation

of
syrtax specification of deviceparameters.)

The OPEN command is used to obtain ownérship of a device, and does not affect which devicq
device or the value of $10. (See the discussion of USE in 2.6.18)

For each openargument, the OPEN command attempts to/séize exclusive ownership of the sp
OPEN performs this function effectively instantaneouslys far as other processes are concern
it hes no effect regarding the ownership of devices and. the values of the device parameters.
ent, the condition reported by $T is the success‘of-0btaining ownership. If no timeout is pre
of $T is not changed and process execution is_siSpended until seizure of ownership has bee
acqomplished. '

Ownership is relinquished by execution ofthe CLOSE command. When ownership is relinquis
parameters are retained. Upon establishing ownership of a device, any parameter for which n
is present in the openparameters is ‘given the vaiue most recently used for that device; if n
imglementor-defined default valuesis used.

2.6115 QUIT

Q[UXIT] postcond
SP expr

Seg 2:5:¥for the definition of gostcond.’ See 2.3 for the definition of expr.

e value of this expr or of any exprs in deviceparameters is left to the(implementor. (Se¢ 2.6.2 for the

is the current

beified device.
ed; otherwise,
If a timeout is
bent, the value
h successfully

hed, all device
b specification
bne exists, an

QUIT terminates execution of an argumentless DO command, doarqument xarqument exfunc

exvar, or FOR

command.

Encountering the end-of-routine mark eor is equivalent to an unconditional argumentiess QUIT.

The effect of executing QUIT in the scope of FOR is fully discussed in 2.6.5. Note the eor never occurs in

the scope of FOR.

49

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

If an executed QUIT is not in the scope of FOR, then it is in the scope of some argumentless DO command,
doargument, xargument, exfunc, or exvar if not explicitly then implicitly, because the initial activation of a
process, including that due to execution of a jobargument, may be thought of as arising from execution of a
DO naming the first executed routine of that process.

The effect of executing a QUIT in the scope of an argumentless DO command, doargument, xargument,
exfunc, or exvar is to restore the previous variable environment (if necessary), restore the value of $T (if
necessary), restore the previous execution level, and continue execution at the location of the invoking
argumentless DO command, doargument, xargument, exfunc, or exvar.

If the expr is present in the QUIT, this return must be to an exfunc or exvar. Similarly, if the expr is-not
present, the return must be 1o an argumentless DO command, doargument or xargument. Any other case is
erroneous. :

The following steps are executed when a QUIT is encountered:
a. I an expr is present, evaluate it. This value becomes the value of the invoking exfunc or exvar.

b. Hemove the frame on the top of the PROCESS-STACK. If no such frame-exists, then execute an
implicit HALT.

c. If that frame is from a NEW, examine the saved argument of the/NEW and take one of the
folloying actions dependent on the argument types: ' '

1. Selective New - perform an implicit KILL onthe argument Iname.

2. Exclusive New - perform an implicit KiLLSon all names in the NAME-TABLE except
those in the argument,of the NEW.

3. New All - perform an implicit KILL ALL.
Finally, copy all NAME-TABLE entriés from the frame into the NAME-TABLE.

Processing of this frame is complete, continue at step b.

d. Ifjthe frame is a parameter frame, extract the formallist and process each name in the list with the
following steps:

1. Search the(NAME-TABLE for an entry containing the name. If no such entry is found,
processing of this name is complete. Otherwise, proceed to step 2.

2. Delete-the NAME-TABLE entry for this name.
Finally, copy all NAME-TABLE entries from this frame into the NAME-TABLE.

E . t"' [. !l |- I |ph

e. Hf the frame is from an exfunc or exvar or from an argumentless DO command, set the value of
$T to the value saved in the frame.

f. Restore the execution level and continue execution at the location specified in the frame.

50

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

2.6.1

ISO/IEC 11756:1992 (E)

6 READ

R[EAD] postcond SP L readargument

See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

strlit

format

lvn [readcount] [timeout]
* lvn [timeout]
@ expratom V L readargument

l

|
|

T
HH

readarqument

See 2.2.5 for the definition of strlit. See 2.5.4 for the definition of format. See 2.2.2.1 for the definition of lvn.
See 2 initi i initi i i he definition
of V.| See section 1 for the definition of L.

See

The feadarguments are executed, one at a time, in left-to-right order.

The {
curre
Ifno |
implig

If ati

message is terminated, but in any case no longer than t seconds. If t'> 0, t = 0 is used.

When a timeout is present, $T is affected as follows, If the input message has been terminated

the ti

readcount # intexpr

P.2.4.1 for the definition of intexpr.

op two argument forms cause output operations to the current devicethe next two cause in
"t device to the named local variable (see 2.2.2.3 for a description of the value assignmen
imeout is present, execution will be suspended until the input message is terminated, either
itly with a readcount. (See 2.6.18 for a definition of current-device.)

meout is present, it is interpreted as a t-second timeout, and execution will be suspended u

me at which execution resumes, $T is set to(1, otherwise, $T is set to 0.

Whe
itis

giver| to lvn is an integer; the mapping:between the set of input characters and the set of integer
to lvnf may be defined by the implemantor in a device-dependent manner. If timeout is present ang
expirgs, fvn is given the value ,1.

Whe
termi
the ti
the v

When the form_of the argument is lvn # intexpr | timeout], let n be the value of intexpr. It is er

> 0.
by a

put from the
operation).
explicitly or

htil the input

at or before

the form of the argument is *lvn [timeout], the input message is by definition one character long, and

plicitly terminated by the entry of one\character, which is not necessarily from the ASCli se

the form of the argument is lvn [timeout], the input message is a string of arbitrary len
hated by an implementor-defined procedure, which may be device-dependent. !f timeout is
meout expires, the)value given to lvn is the string entered prior to expiration of the timeou
alue given tovn is the entire string.

Otherwise, the input message is a string whose length is at most n characters, and which i
h implementor-defined, possibly device-dependent procedure, which may be the receip

. The value
alues given
the timeout

gth which is
present and
; otherwise,

roneous if n
5 terminated
of the nth

chard

n -

ge by either

mechanism just described, the value given to lvn is the string entered prior to the expiration of the timeout,
otherwise, the value given to lvn is the string just described.

When the form of the argument is strlit, that literal is output to the current device, provided that it accepts
output.

51

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

When the form of the argument is format, the output actions defined in 2.5.4 are executed. ‘
$X and $Y are affected by READ ‘the same as if the command were WRITE with the same argument |IS'(
(except for timeouts) and with each expr value in each writeargument equal, in turn, to the final value of the
respective lvn resulting from the READ. - :

2.6.17 SET

S[ET] gostcohd SP L setargument

See 2.5.1 for the definition of gostcond. See section 1 for the definition of L.

| setglece | |
l glvn ‘ = expr
(L glvn)

|
sletarqument ::= !
l

|
@ expratom V L setargument | -

See 2.2.2.2 for the definition of glvn. See 2.3 for the definition of expr. See 2.2 for the definition of expratom.
See sectiopn 1 for the definition of V. See section 1 for the definition of L.

—

etgiece t:= S$P[IECE] (glvn , expr, [, integpr, [, intexpr,] ‘)

B 1]

See 2.2.2.2 for the definition of glvn. See 2.3 for the definition of expr. 'See'2.2.4.1 for the definition of intexpr.

SET is the(general means both for explicitly assigning values to variables, and for substituting new vajues in
pieces of g variable. Each setargument computes one value, defiried by its e expr. That value: is then|either
assigned tp each of one or more variables, or it is substituted:for one or more pieces of a variable's gurrent
value. Eagh variable is named by one givn.

Each setargument is executed one at a time in left-to-fight order. The execution of a setargument ccgurs in
the following order.

a. | One of the following two operations is pérformed:
1. If the portion of the setérgument to the left of the = consists of one or more gbﬂs, the

glvns are scanned in_left-to-right order and all subscripts are evaluated, in left-to-righ{ order
within each glvn,

2. If the pertion of the setargument to the left of the = consists of a setpiece, the ghin that
is the first argument of the setpiece is scanned in left-to-right order and all subscrigts are
evaluated in left-to-right order within the glvn, and then the remaining arguments Jof the’
setpiece are evaluated in left-to-right order.

b. | The(gxpr to the right of the = is evaluated.

¢.. Une of the foliowing two operations is performed.

1. If the left-hand side of the set is one or more glvns, the value of expr is giVen' to each
givn, in left-to-right order.. (See 2.2.2.3 for a description of the value assignment operation).

2. If the left-hand side of the set is a setpiece, of the form $P(glvn,d,m.n), the value of'e'xQ. r
replaces the mth through the nth pieces of the current value of the glvn, where the value of

52

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

- dis the piece delimiter. Note that both m and n are optional. 'If neither is present, then m

= n'=1;if only mis present, then n = m. I glvn has no current value, the empty string is
used as its current value. Note that the current value of glvn is obtained just prior-to
replacing it. That is, the other arguments of setpiece are evaluated in left-to-right order, and
the expr to the right of the —’us evaluated pnor to obtamlng the value of glvn.

Let s be the current value of glv k be the number of occurrences of din s, that is,
k = max(0,8L(s,d) - 1), and t be the value of expr. The following cases.are defined,
using the concatenation operator _ of 2.3.5.

aym>norn<1. The glvn is not changed and does not change the naked
indicator.

b) n'<m-1> k. The value in glvn is replaced by s._F(m-1-k), t|where F(x)
denotes a string of x occurrences of dwhen X > 0;
otherwise, F(x) = "". In either case, glvn affects the

naked indicator.

c)m1'>k<n Thevaluein glvn is replaced by
$P(s,d,1,m-1)_F(min(m-11))t.

d) Otherwise, The value in glvn is_replaced by ‘
$P(s,d,m-1)_F(min{m-1,1))_t_d SP(s,d,n+1,k+ft).

If the glvn is a global variable, the naked indicator is set at the time that the glvniis given its valug| If the glvn
is a naked reference, the reference to the naked indicator to determine the name and initial subscript sequence

occurp just prior to the time that the glvn is given its value:

2.6.18 USE

See 4.5.1 for the definition of postcand.” See section 1 for the definition of L.

U[SE] postcond SP L useargument

useargument e

expr { : deviceparameters]

| @ expratom V L useargument |

See 2.3 for the definition of e g See 2.6.2 for the definition of deviceparameters. See 2.2 for the deflnmon

of expratom. See.séction 1 for the definition of V. See section 1 for the definition of L.

The vplue of the first exg' r of each usevargument‘ identifies a device, (of file or da‘ta‘set). The inte p’ret.ati'on of
the vglue ot this expr or of any exprs in deviceparameters is left to the implementor. (See 2.6.2 for the syntax

specification’ of deviceparameters.)

Before a device can be employed in conjunctlon with an mput or output data transfer it must be des;gnated
through execution of a USE command, as the current device.. Before a device can be named in an executed
useargument, its ownership must have been established through execution of an OPEN command.

The specified device remains current until such time as a new USE command is executed. As a side effect
of employing expr to designate a current device, $10 is given the value of expr.

53

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992. (E)

Specification of device parameters, by means of the exprs in deviceparameters, is normally associated with
the process of obtaining ownership; however; it is possible, by execution of a USE command, to change the
parameters of a device previously obtained. ..

Distinct values for $X and $Y are retained for. each device. The special variables $X and $Y reflect those
values for the current device. When the identity of the current device is changed as a result of the execution
of a USE command, the values of $X and $Y are saved, and the values associated with the new current
device are then the values of $X and $Y.

2.6.19 VIEW

V[IEW) postcond arguments unspecified

See 2.5.1

VIEW mak
to be unde

2.6.20 WRI

W

See 2.5.1f

r the definitioﬁ of postcond.

s available to the implementor a mechanism for examining machine-dependent informatiorp.

stood that routines containing the VIEW command may not be portable.

TE

[RITE] postcond SP L writeargument

pr the definition of postcond. See section 1 for the definition of L.

| format |
Fitearqument ::= expr

See 2.54

intexpr. Sge 2.2 for the deflnmon of expratom.~See section 1 for the definition of V. See section 1

definition o

The writean
operation t

When the {
output, in t

When the
device is d
$Y as des(

form of argument is expr, the value of expr is sent to the device. The effect of this string
bfined_by-the ASCI! standard and conventions. Each character of output, in turn, affects §
ribed’in 2.5.5.

| @ expratom VxL 'writeargument |

or the definition of format. See 2.3:fop the definition of expr. See 2.2.4.1 for the defini
L

guments are executed, one-ata time, in left-to-right order. Each form of argument defines an
b the current device. v

orm of argument i§ format, the output actions defined in 2.5.4 are executed. Each chara
irn, affects $X and $Y as described in 2.5.4 and 2.5.5.

It is

ion of
or the

output

cter of

at the
X and

When the

is the number represented in decnmal by the value of ntexg is sent to the device. The effect of thls character
at the device may be defined by the implementor in a device-dependent manner.

54.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.6.21 XECUTE
X[(ECUTE] postcond SP L xargqument
See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

| expr postcond |
xarqument ::=

@ expratom V L xarqument

See 2.3 for the definition of expr. See 2.5.1 for the definition of postcond. See 2.2 for the definition of
expratom. See section 1 for the definition of V. See section 1 for the definition of L.

XECUTE provides a means of executing MUMPS code which arises from the process of expression [evaluation.

Each kargument is evaluated one at a time in left-to-right order. If the postcond in the xargumeny is present
and it$ tvexpr is faise, the xargument is not executed. Otherwise, if the value of expt is,x, execption of the

xargument is executed in a manner equivalent to execution of DO y, where y is thesgpelling of an otherwise
unuseF label attached to the following two-line subroutine considered to be a part’ef the currently executing
routin

®
[

o

y 1ls x
1

[

QUIT eo

See 2[4.1 for the definition of Is and eol.
2.6.22Z
Z[unspecified] arguments unspecified

All comnmand words in a given implementation which are not defined in the standard are to begin with the letter
Z. This convention protects the standard for future enhancement.

55

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

56

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Part 2: MUMPS Portability Requirements

57

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 {E)

58

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Table of Contents

IMrOAUCHON . . L 61
1 Expression Elements A ... B2
1.1 NaMES . e Oy e 62
1.2 Local Variables D Ce 62
1.3 Global Variables e e R 62
14 DataTypes o ADTT ... 863
1.5 NumberRange i N 63
1.8 Integers S b4
1.7 Character Strings AN ... 64
18 SpecialVariables LN 64
2 EXPressions ST b4
2.7 Nesting of EXPressionsot o e e ... 64
22 Results e 64
3 Rofitines and Command Lines.. B4
3.1 Command Lines e N b4
3.2 Number of Command LINeS ;. o 865
3.3 Number of Commands 000 .. S 65
3.4 Labels N 65
3.5 Numberof LabelsG B5
3.8 Number of Routings\ .. . e, e 65
4 Indjrection N 65
5 Storage Space Restrictions. /. B5
B NeSting e 66
7 Other Portability, Requirements 66

59

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

60

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

Pan

Intre¢

bduction

o MUMPS-Portabili .

ISO/IEC 11756:1992 (E)

Part 2 highlights, for the benefit of irhple’mentors and application p
aspects of the language that must be accorded special attention if MUM
transferability (i.e., portability of source code between various MUMPS

ogrammers,
PS program
implementa-

tions) is to be achieved. It provides a specification‘of limits that must be observed

by both implementors and programmers if portability is not to be ruled
end, implementors must meet or exceed these limits, treating them as

out. To this
a minimum

requirement. Any implementor who provides definitions in currently undefined areas

the implementation, upon subsequent revision of the MUMPS Languag
tion. Application programmers striving to develop portable programs m
account the danger of employing “unilateral extensions” to the lang
available by the implementor.

The following definitions(apply to the use of the terms explicit limit and
within this document.\An explicit limit is one which applies directly to

language constructZ;implicit limits on language constructs are second-
resulting from explicit limits on other language constructs. For example

" must take into account that this action risks jeopardizing the upward compatibility. of

e Specifica-
ust take into
uage made

implicit limit
b referenced
brder effects
, the explicit

command line length restriction places an implicit limit on the length of gny construct

which must/be expressed entirely within a single command line.

61

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 1

1756:1992 (E)

1 Expression Elements

1.1 Names

The use of alpha in names is restricted to upper case alphabetic characters. While there is no explicit limit
on name length, only the first eight characters are uniquely distinguished. This length restriction places an

implicit limit

on the number of unique names.

1.2 Local Variables

1.2.1 Num

The number of local variable names in existence at any time is not explicitly limited.. However, the
ations due to the storage space restrictions (Section 5).

implicit limit

1.2.2 Num

The numbe
of ali the eV
name must

1.2.3 Values of Subscripts

Local variable subscript values are nonempty strings*which may only contain characters from the
aracter subset. The length of each subsctipt is limited to 63 characters. When the subscript

printable ch
satisfies the
subject to th
criteria is un
of the $ORI
the SNEXT

1.2.4 Num

There is ng
However, th
1.2.2) place

Ler of Local Variables

ber of Subscripts

aluated subscripts, plus two times the number of subscripts, (plus the length of the local va

of subscripts in a local variable is limited in that, in a local arrayeference, the sum of the le

not exceed 127.

definition of a numeric data value (Se@2/2.3.1 of the MUMPS Language Specification), itis f
e restrictions of number range given in 1.5. The use of subscript values which do not meet
defined, except for the use of the~empty string as the last subscript of a reference in the ¢

e are

ngths
riable

ASCII
value
Lirther
these
bntext

DER function, and the use of ¢he value "-1" as the last subscript of a reference in the context of

function.

ber of Nodes

explicit dimit on the number of distinct nodes which are defined within local variable afrays.

e limit onthe number of local variables (see 1.2.1) and the limit on the number of subscript
implicit limits on the number of distinct nodes which may be defined.

5 (see

1.3 Global

Variables

1.3.1 Number of Global Variables

There is no

62

explicit limit on the number of distinct global variable names in existence at any time.

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

1.3.2

ISO/IEC 11756:1992 (E)

Number of Subscripts

The number of subscripts in a global variable is limited in that, in a global array reference, the sum of the
lengths of all the evaluated subscripts, plus two times the number of subscripts, plus the length of the global
variable name must not exceed 127. I a naked reference is used to specify the global array reference, the
above restriction applies to the full reference to which the naked reference is expanded.

1.3.3

Values of Subscripts

The restrictions imposed on the values of global variable subscripts are identical to those imposed on local

varig

1.3.4

Ther

1.4

The
Cont
for m

The

bee
agre
conv

1.5

le subscripts (see 1.2.3).

Number of Nodes

b is no limit on the distinct global variable nodes which are defined.

Data Types

MUMPS Language Specification defines a single data type, 'namely, variable length charg
bxts which demand a numeric, integer, or truth value intetpretation are satisfied by unamb
apping a string datum into a number, integer, or truth{value.

mplementor is not limited to any particular internal representation. Any internal represent

s with the MUMPS Language Specification. For example, integers might be stored as binary
eried to decimal character strings whenever an operation requires a string value.

Number Range

cter strings.
guous rules

htion(s) may

ployed as long as all necessary mode conversions are performed automatically and all extefnal behavior

integers and

All values used in arithmetic operations or in any context requiring a numeric interpretation ate within the

inclu

sive intervals [-10%%,=10%°] or [10%, 10%), or are zero.

The precision of anyvalue used in arithmetic operations requiring a numeric interpretation is twel

digitg.

Prog

ammeérs should exercise caution in the use of noninteger arithmetic. In general, arithmet

on n

ninteger operands or arithmetic operations which produce noninteger results cannot be ex

e significant

C operations
pected to be

exacl. “Wyparticular, noninteger arithmetic can vield unexpected results when used in loop control

or arithmetic

tests.

63

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1.6 Integers

The magnitude of the value resulting from an integer interpretation is limited by the accuracy of numeric values
(see 1.5). The'values produced by integer valued operators and. functions - also fall within thls range (sees

2.2.4.1 of the MUMPS Language Specification for a precise definition of integer mterpretatlon)

1.7 Character Strings

I 7

Character string length is limited to 255 characters. The characters permitted within character strings must

include those defined in the ASCII Standard (ANSI X3.4-1986).

1.8 Spedial Variables

The specigl! variables $X and $Y are nonnegative integers (see 1.6). The effect of incrementing $X and/or $Y

past the maximum allowable integer value is undefined. (For a description of the cases in which $X
are incremented see 2.5.5 of the MUMPS Language Specification)

2 Expressions
2.1 Nesting of Expressions

The nqmmer of levels of nesting in expressions is not explicitly limited. The maximum string leng
impose ap implicit limit on this number (see 1.7).

2.2 Resylts

Any resull, whether intermediate or final, which does not satisfy the constraints on character strings (s

and $Y

h dvoe's

ee 1.7)

is erroneoss. Furthermore, integer results are erroneous if they do not satisfy the constraints on integgrs (see

1.6).

3 Routines and Command Lines

3.1 Command Lines

A comma
line is the number of characters in the line up to but not including the gol.

The characters within a command line are restricted to the 95 ASCII printable characters. The chara

ommand

cter set

restriction places a corresponding implicit restriction upon the value of the argument of the indirection delimiter

(Section 4).

64

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

3.2 Number of Command Lines

There is no explnczt limit on the number of command Imes ina routme subject to storage space restrlctlons
(Section 5).

3.3 Number of Commands

3.9).

The number of commands per line is limited only by the restriction on the maximum command line length (see

3.4

A lal
lengt

3.5

Ther

b) |

3.6

Ther
lengt

4

1

The
cons
of co

|_abels

el of the form name is subject to the constraints on names; labels of the form ‘intlit are s
h constraint on names (see 1.1).

Number of Labels
P is no explicit limit on the number of labels in a routine. \However, the following restriction
A command line may have only one label.

No two lines may be labeled with equivalent (notuniquely distinguishable) labels.

Number of Routines

b is'no explicit limit on the number of routmes The number of routmes is nmplucnly limited
h restriction (see 1.1).

direction

ibject to the

s apply:

by the name

values of the argument of indirection and the argument of the XECUTE command are s{ibject to the

raints on.character string length (see 1.7). They are additionally restricted to the character s
mmmand lines (see 3.1).

Bt limitations

5 Storage Space Restrictions

The size of a single routine must not exceed 5000 characters. The size of a routine is the sum of the sizes

of all

the lines in the routine. The size of each line is its length (as defined in 3.1) plus two.

65

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

The size of local variable storage must not exceed 5000 characters. This size is defined as the sum of the
sizes of all defined local variables, whether within the current NEW context or defined in a higher level NEW
context. The size of an unsubscripted local variable is the length of its name in characters plus the length of
its value in characters, plus four. The size of a local array is the sum of the following:

a) The length of the name of the array.

b} Four characters plus the length of each value.

¢) The size of each subscript in each subscript list.

d) Two additional characters for each node N, whenever $DATA(N) is 10 or 11.

All subscripts and values are considered to be character strings for this purpose.

6 Nesting

Each active|DO, Extrinsic Function, Extrinsic Special Variable, FOR, XECUTE, and’indirection occurrerce is
counted asi level of nesting. Control storage provides for thirty levels of nesting. The actual use of all fhese
levels may te limited by storage restrictions (Section 5).

Nesting within an expression is not counted in this limit. Expression riesting is not explicitly limited; however,
it is implicitly limited by the storage restriction (Section 5).

7 Other Portability Requirements

Programmef should exercise caution in the use of'noninteger values for the HANG command and in timgouts.

In general, the period of actual time which elapses upon the execution of a HANG command cannot de ex-
pected to be¢ exact. In particular, relying upon noninteger values in these situations can lead to unexpected
results.

66

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Appendix A: ASCIlI Character Set

(informative)

Octal Decimal Hexadecimal Character Patcode
0 0 00 NUL CE
1 1 01 SOH CE
2 2 02 STX CE
3 3 03 ETX ‘ C,E
4 4 04 EOT CE
5 5 05 ENQ CE
6 6 06 ACK CE
7. 7 07 BELL C.E
10 8 08 BS CE
11 9 09 HT C,E
12 10 0A LF C.E
13 11 0B VT CE
14 12 oC FF ' CE
15 13 0D CR CE
16 14 OE SO CE
17 15 OF Sl C.E
20 16 10 DLE CE
21 17 11 DC1 CE
22 18 12 DC2 C.E
23 19 13 DC3 C.E
24 20 14 DC4 CE
25 21 15 NAK C.E
26 22 16 SYN C.E
27 23 17 ETB C.E
30 24 18 CAN CE
31 25 19 EM CE
32 26 1A suB CE
33 27 1B ESC CE
34 28 1C FS CE
35 29 1D GS CE
36 30 1E RS ' CE
37 31 1F us CE
40 32 20 SP (space) P.E
41 33 21 1 PE
42 34 22 " PE
43 35 23 # PE
a4 36 24 $ P.E
45 37 25 % P.E
46 38 26 & PE
47 39 27 ! (apostrophe) PE
50 40 28 (PE
51 41 29) PE
52 42 2A * PE
53 43 2B + P.E
54 44 2C , (comma) PE
55 45 2D - (hyphen) P.E
56 46 2E . P.E

67

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Octal Decimal Hexadecimal Character Patcode
57 47 2F / P.E
60 48 30 0 N,E
61 ' 49 31 1 N,E
62 ' 50 32 2 N,E
63 51 33 3 N,E
64. 52 34 4 N,E
65 53 35 5 N,E
66 54 36 6 N,E
67 55 37 7 N,E
70 56 38 8 N,E
71 57 39 9 N,E
72 58 (3A : PE
73 59 . 3B ; PE"
74 60 3C < P.E
7% 61 3D = P\E
76 62 3E > RE
77 63 ' 3F ? PE
100 64 40 @ P.E
101 65 41 A AUE
102 66 42 B AUE
103 67 ' 43 C AUE
104 68 44 D AUE
105 69 _ 45 E AUE
106 70 46 F AUE
107 7 47 G AUE
110 72 48 H AUE
111 73 ; 49 | AUE
112 74 4A J AUE
113 75 ‘ 4B K AUE
114 76 ' 4C L AUE
115~ 77 4D M AUE
116 78 4E N AUE
117 79 ‘ 4F o AUE
120 80 50 P AUE
121 81 51 Q AUE
122 82 52 R AVUE
123 83 53 S AUE
124 v 84 54 T AUE
125 85 55 U AUE
126 86 56 Y AVUE
127 87 57 w AUE
130 88 58 X AUE
131 89 59 Y AUE
132 a0 5A Z ALLE
133 91 58 [P.E
134 92 5C \ PE
135 83 5D] PE
136 94 5E " PE
137 95 5F _ (underscore) P.E
140 96 60 ‘ PE
141 97 61 a ALE

68

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Octal Decimal Hexadecimal Character Patcode
142 98 62 b ALE
143 99 63 c ALE
144 100 64 d ALE
145 101 65 e ALE
146 102 66 f ALE
147 103 67 g ALE
150 104 68 h ALE
151 105 69 i ALE
152 106 6A j ALE
153 107 6B k ALE
5% T08 oC | ACE T
155 109 6D m ALE
156 110 6E n AUE
157 111 6F 0 ALE
160 112 70 p ALE
161 113 71 q ALE
162 114 72 r ALE
163 115 73 s ALE
164 - 116 74 t ALE
165 117 75 u ALE
166 118 76 v ALE
167 119 77 w ALE
170 120 78 X ALE
171 121 79 y ALE
172 122 7A z ALE
173 123 7B { P.E
174 124 7C | PE
175 125 7D } PE
176 126 7E ~ P.E
177 127 7F DEL CE

69

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

	1 Static Syntax Metalanguage
	2 Static Syntax and Semantics
	2.1 Basic Alphabet
	2.2 Expression Atom expratom
	2.2.1 Name name
	2.2.2Variables
	2.2.2.1 Local Variable Name
	2.2.2.2 Global Variable Name
	2.2.2.3 Variable Handling
	2.2.2.4 Variable Contexts
	2.2.3 Numeric Literal numlit
	2.2.3.1 Numeric Data Values

	2.2.4 Numeric Interpretation of Data
	2.2.4.1 Integer Interpretation
	2.2.4.2 Truth-value Interpretation

	2.2.5 String Literal
	2.2.6 Intrinsic Special Variable Name
	2.2.7 Intrinsic Functions function
	2.2.7.1 $ASCII
	2.2.7.2$CHAR
	2.2.7.3$DATA
	2.2.7.4$EXTRACT
	2.2.7.5$FIND
	2.2.7.6 $FNUMBER

	2.2.7.7$GET
	2.2.7.8 $JUSTIFY
	2.2.7.9 $LENGTH

	2.2.7.10$NEXT
	2.2.7.11 $ORDER
	2.2.7.12 $PIECE
	2.2.7.13 QUERY.
	2.2.7.14 $RANDOM
	2.2.7.15$SELECT
	2.2.7.16$TEXT
	2.2.7.18 $VIEW

	2.2.7.19$Z

	2.2.8 Unary Operator unaryop
	2.2.9 Extrinsic Special Variable
	2.2.10 Extrinsic Function

	2.3 Expressions
	2.3.1 Arithmetic Binary Operators
	2.3.2 Relational Operators
	2.3.2.1 Numeric Relations
	2.3.2.2 String Relations

	2.3.3 Pattern match
	2.3.4 Logical Operators
	2.3.5 Concatenation Operator

	2.4 Routines
	2.4.1 Routine Structure
	2.4.2 Routine Execution

	2.5 General command Rules
	2.5.1 Post Conditionals
	2.5.2 Spaces in Commands
	2.5.3Comments
	2.5.4 format in READ and WRITE
	2.5.5 Side Effects on $X and $Y

	2.5.6Timeout
	2.5.7 Line References
	2.5.8 Command Argument Indirection
	2.5.9 Parameter Passing

	2.6 Command Definitions
	2.6.1 BREAK
	2.6.2CLOSE
	2.6.3 DO
	2.6.4 ELSE

	2.6.5FOR
	2.6.6GOTO
	2.6.7HALT
	2.6.8 HANG

	2.6.9IF
	2.6.10JOB
	2.6.11 KILL

	2.6.12LOCK
	2.6.13NEW
	2.6.14 OPEN

	2.6.15QUlT
	2.6.16 READ

	2.6.17SET
	2.6.18 USE

	2.6.19VlEW
	2.6.20WRlTE
	2.6.21 XECUTE

	Introduction
	1 Expression Elements
	1.1 Names
	1.2 LocalVariables
	1.3 Global Variables
	1.4 DataTypes
	1.5 Number Range
	1.6 Integers
	1.7 Character Strings
	1.8 Special Variables

	2 Expressions
	2.1 Nesting of Expressions
	2.2 Results

	3.1 Command Lines
	3.2 Number of Command Lines
	3.3 Number of Commands
	3.4 Labels
	3.5 Number of Labels
	3.6 Number of Routines

	4 Indirection
	5 Storage Space Restrictions
	6 Nesting
	7 Other Portability Requirements
	Appendix A ASCII Character Set (ANSI X3.4-1986
	Appendix B Metalanguage Elements
	Index
	Introduction
	Expression Elements
	1.1 Names
	1.2 Local Variables
	1.3 Global Variables
	1.4 Data Types
	1.5 Number Range
	1.6 Integers
	1.7 Character Strings
	1.8 Special Variables

	Expressions
	2.1 Nesting of Expressions
	2.2 Results

	Routines and Command Lines
	3.1 Command Lines
	3.2 Number of Command Lines
	3.3 Number of Commands
	3.4 Labels
	3.5 Number of Labels
	3.6 Number of Routines

	Indirection
	Storage Space Restrictions
	Nesting
	Other Portability Requirements

