
e

O

I NTERNATI ONAL
STANDARD

ISO/IEC
11756

First edition
1992-1 2-1 5

Informgtion technology - Programming languages -
MUMPS
Technologies de l’information - Langages de programmation - MUMPS

Reference number
ISO/IEC 11756:1992 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

I Table of Contents

Part 1: MUMPS Language Specification

1 Static Syntax Metalanguage . 2

2 Static Syntax and Semantics . 3
2.1 Basic Alphabet . 3
2.2 Expression Atom expratom . '. 3

2.2.1 Name name . 4
2.2.2Variables . 4

2.2.2.1 Local Variable Name . 4
2.2.2.2 Global Variable Name . 5
2.2.2.3 Variable Handling . 6
2.2.2.4 Variable Contexts . 9

9
2.2.3.1 Numeric Data Values . 10
2.2.3.2 Meaning of numlit . 1 O

2.2.4 Numeric Interpretation of Data . 11
2.2.4.1 Integer Interpretation . 12
2.2.4.2 Truth-value Interpretation . 12

12
2.2.6 Intrinsic Special Variable Name . 13
2.2.7 Intrinsic Functions function . 15

2.2.7.1 $ASCII . 15
2.2.7.2$CHAR . 16
2.2.7.3$DATA . 16
2.2.7.4$EXTRACT . 17
2.2.7.5$FIND . 17
2.2.7.6 $FNUMBER . 18

2.2.7.8 $JUSTIFY . 19

2.2.7.11 $ORDER . 21

2.2.3 Numeric Literal numlit .

2.2.5 String Literal 3 .

2.2.7.7$GET . 19

2.2.7.9 $LENGTH . 20
2.2.7.10$NEXT . 20

2.2.7.12 $PIECE . 21
2.2.7.13 $QUERY. 22
2.2.7.14 $RANDOM . 24

O ISOAEC 1992
All rights reserved . No part of this püblication may be reproduced or utilized in any form or by
any means. electronic or mechanical. including photocopying and microfilm. without
permission in writing from the publisher .

ISOAEC Copyright Office Case postale 56 CH-1211 Genève 20 Switzerland
Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.15$SELECT
2.2.7.16$TEXT .
2.2.7.18 $VIEW .
2.2.7.19$Z .

2.2.8 Unary Operator unaryop .
2.2.9 Extrinsic Special Variable .
2.2.10 Extrinsic Function .

2.3 Expressions .
2.3.1 Arithmetic Binary Operators .
2.3.2 Relational Operators .

2.3.2.1 Numeric Relations .
2.3.2.2 String Relations .

2.3.3 Pattern match .
2.3.4 Logical Operators .
2.3.5 Concatenation Operator .

2.4 Routines .
2.4.1 Routine Structure .
2.4.2 Routine Execution .

2.5 General command Rules .
2.5.1 Post Conditionals .
2.5.2 Spaces in Commands .
2.5.3Comments .
2.5.4 format in READ and WRITE .
2.5.5 Side Effects on $X and $Y .
2.5.6Timeout .
2.5.7 Line References .
2.5.8 Command Argument Indirection .
2.5.9 Parameter Passing .

2.6 Command Definitions .
2.6.1 BREAK .
2.6.2CLOSE .
2.6.3 DO .
2.6.4 ELSE .
2.6.5FOR .
2.6.6GOTO .
2.6.7HALT .
2.6.8 HANG .
2.6.9IF .
2.6.10JOB .
2.6.11 KILL .
2.6.12LOCK .
2.6.13NEW .
2.6.14 OPEN .
2.6.15QUlT .
2.6.16 READ .
2.6.17SET .
2.6.18 USE .
2.6.19VlEW .
2.6.20WRlTE .
2.6.21 XECUTE .

24
24
25
25
25
25
26
26
27
27
28
28
28
29
30
31
31
31
32
33
34
34
34
34
35
35
36
37
37
39
39
39
40
41
41
43
43
43
44
44
45
46
48
49
49
51
52
53
54
54
55

...
III

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Part 2 MUMPS Portability requirements

Introduction .

1 Expression Elements .
1.1 Names .
1.2 LocalVariables .
1.3 Global Variables .
1.4 DataTypes .
1.5 Number Range .
1.6 Integers .
1.7 Character Strings .
1.8 Special Variables .

2 Expressions .
2.1 Nesting of Expressions .
2.2 Results .

3 Routines and Command Lines .
3.1 Command Lines .
3.2 Number of Command Lines .
3.3 Number of Commands .
3.4 Labels .
3.5 Number of Labels .
3.6 Number of Routines .

4 Indirection .

5 Storage Space Restrictions .

6 Nesting .

7 Other Portability Requirements .

Appendix A ASCII Character Set (ANSI X3.4-1986).

Appendix B Metalanguage Elements .

Index .

iv

61

62
62
62
62
63
63
64
64
64

64
64
64

64
64
65
65
65
65
65

65

65

66

66

67

71

81

e

O

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of IS0 or IEC participate in
the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. IS0 and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-
governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.
International Standard ISO/IEC 11756 was prepared by American National
Standards Institute (ANSI) (as ANSI/MDC X1l.l-1990) and was adopted, under a
special "fast-track procedure", by Joint Technical Committee ISO/IEC JTC 1,
lnformation technology, in parallel with its approval by national bodies of IS0
and IEC.

Appendices A and B of this International Standard are for information only.

Terminology and conventions
The text of American National Standard Institute ANSI/MDC Xll.I-l990 has been
approved for pubtication, without deviation, as an International Standard. Some
terminology and certain conventions are not in accordance with the ISO/IEC
Directives Part 3: "Drafting and presentation of International Standards"; attention
is especially drawn to the following:

Wherever the word "standard" appears, referring to this International Standard, it
should be read as "International Standard".

Cross reference
American National Corresponding International Standard
Standard

ANSI X3.4-1986 ISO/IEC 646: 1991, Information technology - IS0 7-bit
coded character set for information interchange.

V

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

INTERNATIONAL STANDARD ISO/IEC 11756:1992 (E)

Information technology - Programming languages -
MUMPS

Part 1: MUMPS Language Specification

Introduction

Part 1 consists of two sections that describe the MUMPS language. Section 1 describes the
metalanguage used in the remainder of Part 1 for the static syntax. Section 2 describes the static
syntax and overall semantics of the language. The distinction between 'static" and "dynamic" syntax
is as follows. The static syntax describes the sequence of characters in a routine as it appears on
a tape in routine interchange or on a listing. The dynamic syntax describes the sequence of
characters that would be encountered by an interpreter during execution of the routine. (There is no
requirement that MUMPS actually be interpreted). The dynamic syntax takes into account transfers
of control and values produced by indirection.

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1 Static Syntax Metalanguage

The primitives of the metalanguage are the ASCII characters. The metalanguage operators are defined as
follows:

Operator Meaning
..- definition
[I option

grouping
optional indefinite repetition

I I
...
- L list
!! value - SP space

The following visible representations of ASCII characters required in the defined syntactic objects are used:
_I SP (space), CR (carriage-return), E (line-feed), and E (form-feed).

In general, defined syntactic objects will have designators which are underlined names spelled with lower case
letters, e.g., name, expr, etc. Concatenation of syntactic objects is expressed by horizontal juxtaposition,
choice is expressed by vertical juxtaposition. The ::= symbol denotes a syntactic definition. An optional
element is enclosed in square brackets [1, and three dots ... denote that the previous element is optionally
repeated any number of times. The definition of name, for example, is written:

name ::= 8 diqit j ... -
laïpha I I alpha ,

The vertical bars are used to group elements or to make a choice of elements more readable.

Special care is taken to avoid any danger of confusing the square brackets in the metalanguage with the ASCII
graphics] and [. Normally, the square brackets will stand for the metalanguage symbols.

The unary metalanguage operator C denotes a list of one or more occurrences of the syntactic object
immediately to its right, with one comma between each pair of occurrences. Thus,

-- L name is equivalent to name [, name]
The binary metalanguage operator y places the constraint on the syntactic object to its left that it must have
a value which satisfies the syntax of the syntactic object to its right. For example, one might define the syntax
of a hypothetical EXAMPLE command with its argument list by

examplecommand : : = EXAMPLE sp 4 examplearqument
where

expr
exampiearqument : : = I I

I @ expratom 1 exampiearqument I
This example states: after evaluation of indirection, the command argument list consists of any number of
exprs separated by commas. In the static syntax (i.e., prior to evaluation of indirection), occurrences of @
expratom may stand in place of nonoverlapping sublists of command arguments. Usually, the text
accompanying a syntax description incorporating indirection will describe the syntax after all occurrences of
indirection have been evaluated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2 Static Syntax and Semantics

2.1 Basic Alphabet

The routine, which is the object whose static syntax is being described in Section 2, is a string made up of the
following 98 ASCII symbols.

The 95 printable characters, including the space character represented as Sp, and also,
the carriage-return character represented as CR,
the line-feed character represented as E,
the form-feed character represented as E.

See 2.4 for the definition of routine.

The syntactic types graphic, alpha, dig-, and nonquote are defined here informally in order to save space.

q r a p h i c ::= any of t h e class o f 95 ASCII p r i n t a b l e c h a r a c t e r s , i n c l u d i n g
SP . -

nonquote : := any o f t h e c h a r a c t e r s i n g r a p h i c e x c e p t t h e q u o t e c h a r a c t e r .

a l p h a ::= any of t h e class o f 52 upper and lower c a s e let ters: A-2 ,

d i q i t ::= any o f t h e c l a s s o f 1 0 d i g i t s : 0-9.

a -z .

2.2 Expression Atom expratom

The expression, m, is the syntactic element which denotes the execution of a value-producing calculation;
it is defined in 2.3. The expression atom, expratom, is the basic value-denoting object of which expressions
are built; it is defined here.

I & I
expra tom : := I qvn

e x p r i t e m

See 2.2.2.1 for the definition of h. See 2.2.2.2 for the definition of gvn.

e x p r i t e m ::=

svn
f u n c t i o n
ex func
e x v a r
numl i t
s t r l i t
(2 3 x 1
unaryop expra tom

-

See 2.2.6 for the definition of çvn. See 2.2.7 for the definition of functi<
exfunc. See 2.2.9 for the definition of m. See 2.2.3 for the definition c
of çtrlit. See 2.3 for the definition of x.

1 ' 1 (Note: a p o s t r o p h e
: :=

(Note : hyphen)
unaryop

7. See 2.2.10 for the definition of
numlit. See 2.2.5 for the definition

3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756~992 (E)

2.2.1 Name name

See 2.1 for the definition of alpha and a.

2.2.2 Variables

...

The MUMPS standard uses the terms local variables and global variables somewhat differently from their
connotation in certain other computer languages. This section provides a definition of these terms as used
in the MUMPS environment.

A MUMPS routine, or set of routines, runs in the context of an operating system process. During its execution,
the routine will create and modify variables that are restricted to its process. It can also access (or create)
variables that can be shared with other processes. These shared variables will normally be stored on
secondary peripheral devices such as disks. At the termination of the process, the process-specific variables
cease to exist. The variables created for long term (shared) use remain on auxiliary storage devices where
they may be accessed by subsequent processes.

MUMPS uses the term local variable to denote variables that are created for use during a single process
activation. These variables are not available to other processes. However, they are generally available to all
routines executed within the process’ lifetime. MUMPS does include certain constructs, the NEW command
and parameter passing, which limit the availabiliîy of certain variables to specific routines or parts of routines.
See 2.2.2.3 for a further discussion of variables and variable environments.

A global variable is one that is created by a MUMPS process, but is permanent and shared. As soon as it
has been created, it is accessible to other MUMPS processes on the system. Global variables do not
disappear when a process terminates. Like local variables, global variables are available to all routines
executed within a process.

2.2.2.1 Local Variable Name

l v n -
See 2.2 for the definition of expratom. See section I for the definition of x.

r l v n -
See 2.2.1 for the definition of name. See 2.3 for the definition of E. See section 1 for the definition of !=.

lnamind ::= rexpratom V lvn

See section 1 for the definition of y.

I
I rexpratom ::= rgvn i z i t e m

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 1'9756:1992 (E)

See 2.2.2.2 for the definition of m. See 2.2 for the definition of expritem.

A local variable name is either unsubscripted or subscripted; if it is subscripted, any number of subscripts
separated by commas is permitted. An unsubscripted occurrence of may carry a different value from any
subscripted occurrence of &.

When lnamind is present it is always a component of an m. If the value of the is a subscripted form of
- Ivn, then some of its subscripts may have originated in the Inamind. In this case, the subscripts contributed
by the lnamind appear as the first subscripts in the value of the resulting separated by a comma from the
(non-empty) list of subscripts appearing in the rest of the G.

2.2.2.2 Global Variable Name ~ v n

See 2.2 for the definition of expratom. See section 1 for the definition of 1.
I

name [(L expr)]
@ qnamind @ (L expr)

rgvn ..
See 2.3 for the definition of m. See 2.2.1 for the definition of name. See section 1 for the definition of C.

gnamind ::= I rexpratom V qvn I '
See section 1 for the definition of y.

The prefix uniquely denotes a global variable name. A global variable name is either unsubscripted or
subscripted; if it is subscripted, any number of subscripts separated by commas is permitted. An abbreviated
form of subscripted gvn is permitted, called the naked reference, in which the prefix is present but the name
and an initial (possibly empty) sequence of subscripts is absent but implied by the value of the naked indimfor.
An unsubscripted occurrence of gvn may carry a different value from any subscripted Occurrence of qvn.

When gnamind is present it is always a component of an w. If the value of the is a subscripted form
of gvn, then some of its subscripts may have originated in the gnamind. In this case, the subscripts
contributed by the gnamind appear as the first subscripts in the value of the resulting r g ~ , separated by a
comma from the (non-empty) list of subscripts appearing in the rest of the m.
Every executed occurrence of CJVJ affects the naked indicator as follows. If, for any positive integer m, the qvn
has the nonnaked form

N(v1 I v2 9 e . . , v,)

then the m-tuple N, v, , v2 , ... , v,,,.~ , is placed into the naked indicator when the QVJ reference is made. A
subsequent naked reference of the form

A(sl I s2 I ... , s,) (i positive)

results in a global reference of the form

N(v, 9 v2 I e * * I V,.l 9 s, 9 s, , . * * , s,)

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

U

after which the m+i-l-tuple N , vl , v, , ... , si., is placed into the naked indicator. Prior to the first executed
occurrence of a nonnaked form of gvn, the value of the naked indicator is undefined. It is erroneous for the
first executed occurrence of gvn to be a naked reference. A nonnaked reference without subscripts leaves
the naked indicator undefined.

The effect on the naked indicator described above occurs regardless of the context in which E is found; in
particular, an assignment of a value to a global variable with the command SET qvn = does not affect
the value of the naked indicator until after the right-side has been evaluated. The effect on the naked
indicator of any= within the right-side ~XJIJ will precede the effect on the naked indicator of the left-side gvn.

For convenience, & is defined so as to be satisfied by the syntax of either g v ~ or m.

See 2.2.2.1 for the definition of b.

2.2.2.3 Variable Handling

MUMPS has no explicit declaration or definition statements. Local and global variables, both non-subscripted
and subscripted, are automatically created as data is stored into them, and their data contents can be referred
to once information has been stored. Since the language has only one data type - string - there is no need
for type declarations or explicit data type conversions. Array structures can be multidimensional with data
simultaneously stored at all levels including the variable name level. Subscripts can be positive, negative,
and/or noninteger numbers as well as nonnumeric strings (other than empty strings).

In general, the operation of the local variable symbol table can be viewed as follows. Prior to the initial setting
of information into a variable, the data value of that variable is said to be undefined. Data is stored into a
variable with commands such as SET, READ, or FOR. Subsequent references to that variable return the data
value that was most recently stored. When a variable is killed, as with the KILL command, that variable and
all of its array descendants (if any) are deleted, and their data values become undefined.

No explicit syntax is needed for a routine or subroutine to have access to the local variables of its caller.
Except when the NEW command or parameter passing is being used, a subroutine or called routine (the
callee) has the same set of variable values as its caller and, upon completion of the called routine or
subroutine, the caller resumes execution with the same set of variable values as the callee had at its
corn pl e ti on.

The NEW command provides scoping of local variables. It causes the current values of a specified set of
variables to be saved. The variables are then set to undefined data values. Upon returning to the caller of
the current routine or subroutine, the saved values, including any undefined states, are restored to those
variables. Parameter passing, including the DO command, extrinsic functions, and extrinsic variables, allows
parameters to be passed into a subroutine or routine without the callee being concerned with the variable
names used by the caller for the data being passed or returned.

The formal association of MUMPS local variables with their values can best be described by a conceptual
model. This model is NOT meant to imply an implementation technique for a MUMPS processor.

The value of a MUMPS variable may be described by a relationship between two structures: the NAME-
TABLE and the VALUE-TABLE. (in reality, at least two such table sets are required, one pair per executing
process for process-specific local variables and one pair for system-wide global variables.) Since the value
association process is the same for both types of variables, and since issues of scoping due to parameter

6

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

passing or nested environments apply only to local variables, the discussion that follows will address only local
variable value association. It should be noted, however, that while the overall structures of the table sets are
the same, there are two major differences in the way the sets are used. First, the global variable tables are
shared. This means that any operations on the global tables, e.g., SET or KILL, by one process, affect the
tables for all processes. Second, since scoping issues of parameter passing and the NEW command are not
applicable to global variables, there is always a one-to-one relationship between entries in the global NAME-
TABLE (variable names) and entries in the global VALUE-TABLE (values).

The NAME-TABLE consists of a set of entries, each of which contains a name and a pointer. This pointer
represents a correspondence between that name and exactly one DATA-CELL from the VALUE-TABLE. The
VALUE-TABLE consists of a set of DATA-CELLS, each of which contains zero or more tuples of varying
degrees. The degree of a tuple is the number (possibly O) of elements or subscripts in the tuple list. Each
tuple present in the DATA-CELL has an associated data value.

The NAME-TABLE entries contain every non-subscripted variable or array name (name) known, or accessible,
by the MUMPS process in the current environment. The VALUE-TABLE DATA-CELLS contain the set of tuples
that represent all variables currently having data-values for the process. Every name (entry) in the NAME-
TABLE refers (points) to exactly one DATA-CELL, and every entry contains a unique name. Several NAME-
TABLE entries (names) can refer to the same DATA-CELL, however, and thus there is a many-to-one
relationship between (all) NAME-TABLE entries and DATA-CELLS. A name is said to be bound to its
corresponding DATA-CELL through the pointer in the NAME-TABLE entry. Thus the pointer is used to
represent the correspondence and the phrase change the pointer is the equivalent to saying change the
correspondence so that a m e now corresponds to a possible different DATA-CELL (value). NAME-TABLE
entries are also placed in the PROCESS-STACK (see 2.2.2.4).

The value of an unsubscripted !VJ corresponds to the tuple of degree O found in the DATA-CELL that is bound
to the NAME-TABLE entry containing the name of the h. The value of a subscripted h (array node) of
degree n also corresponds to a tuple in the DATA-CELL that is bound to the NAME-TABLE entry containing
the name of the h. The specific tuple in that DATA-CELL is the tuple of degree n such that each subscript
of the has the same value as the corresponding element of the tuple. If the designated tuple doesn’t exist
in the DATA-CELL then the corresponding & is said to be undefined.

7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

In the following figure, the variables and array nodes have the designated data values.

VAR7 = "Hello"

VAR3 = "abc"
VAR3("Smith","John",l234)=123
VAR3("Widget","red") = -56

VAR2 = 12.34

Also, the variable DEF existed at one time but no longer has any data or array value, and the variable XYZ
has been bound through parameter passing to the same data and array information as the variable VAR2

NAME-TABLE VALUE-TABLE DATA-CELLS

i ()="abc"
(" Smith " , I' John " ,12 3 4) = 12 3
("Widget", "red")=-56

I
I
2

DEF----------->

The initial state of a MUMPS process prior to execution of any MUMPS code consists of an empty NAME-
TABLE and VALUE-TABLE. When information is to be stored (set, given, or assigned) into a variable WnJ:

a. If the name of the !VJ does not already appear in an entry in the NAME-TABLE, an entry is added
to the NAME-TABLE which contains the name and a pointer to a new (empty) DATA-CELL. The
corresponding DATA-CELL is added to the VALUE-TABLE without any initial tuples.

b. Otherwise, the pointer in the NAME-TABLE entry which contained the name of the !VJ is
extracted. The operations in step c. and d. refer to tuples in that DATA-CELL referred to by this
pointer.

c. If the !VJ is unsubscripted, then the tuple of degree O in the DATA-CELL has its data value
replaced by the new data value. If that tuple did not already exist, it is created with the new data
value.

d. If the !VJ is subscripted, then the tuple of subscripts in the DATA-CELL (i.e., the tuple created by
dropping the name of the ivn; the degree of the tuple equals the number of subscripts) has its data
value replaced by the new data value. If that tuple did not already exist, it is created with the new
data value.

When information is to be retrieved, if the name of the !VJ is not found in the NAME-TABLE, or if its
corresponding DATA-CELL tuple does not exist, then the data value is said to be undefined. Otherwise, the
data value exists and is retrieved. A data value of the empty string (a string of zero length) is not the same
as an undefined data value.

8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

When a variable is deleted (kdied):

a. If the name of the & is not found in the NAME-TABLE, no further action is taken.

b. If the !VIJ is unsubscripted, all of the tuples in the corresponding DATA-CELL are deleted.

c. If the !VIJ is subscripted, let N be the degree of the subscript tuple formed by removing the name
from the b. All tuples that satisfy the following two conditions are deleted from the corresponding
DATA- C E LL:

1. The degree of the tuple must be greater than or equal to N, and

2. The first N arguments of the tuple must equal the corresponding subscripts of the fi.

In this formal language model, even if all of the tuples in a DATA-CELL are deleted, neither the DATA-CELL
nor the corresponding names in the NAME-TABLE are ever deleted. Their continued existence is frequently
required as a result of parameter passing and the NEW command.

2.2.2.4 Variable Contexts

The organization of multiple variable contexts requires the use of a PROCESS-STACK. This is a simple push-
down stack, or last-in-first-out (LIFO) list, used to save and restore items which control the execution flow or
variable environment. Five types of items, or frames, will be placed on the PROCESS-STACK, DO frames,
exfunc frames, exvar frames, NEW frames, and parameter frames:

a. DO frames contain the execution level and the execution location of the doarqument. In the case
of the argumentless DO, the execution level, the execution location of the DO command and a saved
value of $T are saved. The execution location of a MUMPS process is a descriptor of the location
of the command and possible argument currently being executed. This descriptor includes, at
minimum, the routinename and the character position following the current command or argument.

b. Exfunc and
location.

c. NEW frames contain a NEW argument (newaraument) and a set of NAME-TABLE entries.

d. Parameter frames contain a formallist arid a set of NAME-TABLE entries.

frames contain saved values of $T, the execution level, and the execution

2.2.3 Numeric Literal numlit

The integer literal syntax, U, which is a nonempty string of digits, is defined here.

intlit ::= diqit ...
See 2.1 for the definition of W.
The numeric literal numlit is defined as foltows.

mant [exp] - numlit : : =

9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

::= I intlit [.

r 1
::= E I 1 I intlit

L A

lntlitl I mant - . intlit
exp

The value of the string denoted by an occurrence of numlit is defined in the following two subsections.

2.2.3.1 Numeric Data Values

All variables, local, global, and special, have values which are either defined or undefined. If defined, ïhe
values may always be thought of and operated upon as strings. The set of numeric values is a subset of the
set of all data values.

Only numbers which may be represented with a finite number of decimal digits are representable as numeric
values. A data value has the form of a number if it satisfies the following restrictions.

a. It may contain only digits and the characters "-" and ".".

b. At least one digit must be present.

c. "." occurs at most once.

d. The number zero is represented by the one-character string "O".

e. The representation of each positive number contains no "-'I.

f. The representation of each negative number contains the character "-" followed by the
representation of the positive number which is the absolute value of the negative number. (Thus, the
following restrictions describe positive numbers only.)

g. The representation of each positive integer contains only digits and no leading zero.

h. The representation of each positive number less than 1 consists of a "." followed by a nonempty
digit string with no trailing zero. (This is called a fraction.)

i. The representation of each positive noninteger greater than 1 consists of the representation of a
positive integer (called the integer part of the number) followed by a fraction (called the fraction part
of the number).

Note that the mapping between representable numbers and representations is one-to-one. An important result
of this is that string equality of numeric values is a necessary and sufficient condition of numeric equality.

2.2.3.2 Meaning of numlit

Note that numlit denotes only nonnegative values. The process of converting the spelling of an occurrence
of numlit into its numeric data value consists of the following steps.

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

a. If the mant has no ".", place one at its right end.

b. If the a is absent, skip step c.

c. If the 9 has a plus or has no sign, move the 'I.'' a number of decimal digit positions to the right
in the mant equal to the value of the jntlJ of a, appending zeros to the right of the mant as
necessary. If the has a minus sign, move the 'I.'' a number of decimal digit positions to the left
in the mant equal to the value of the intlit of x, appending zeros to the left of the mant as necessary.

d. Delete the

e. If the rightmost character is ".", remove it.

f. If the result is empty, make it "O".

and any leading or trailing zeros of the W.

2.2.4 Numeric Interpretation of Data

Certain operations, such as arithmetic, deal with the numeric interpretations of their operands. The numeric
interpretation is a mapping from the set of all data values into the set of all numeric values, described by the
following algorithm. Note that the numeric interpretation maps numeric values into themselves.

O

(Note: The head of a string is defined to be a substring which contains an identical sequence of characters
in the string to the left of a given point and none of the characters in the string to the right of that point. A
head may be empty or it may be the entire string.)

Consider the argument to be the string S.

First, apply the following sign reduction rules to S as many times as possible, in any order.

a. If S is of the form + T, then remove the +. (Shorthand: t T + T)

b. - + T + - T

C. - - T * T

Second, apply one of the following, as appropriate. 0
a.
description of numlit. Then apply the algorithm of 2.2.3.2 to the result.

b. If S is of the form - T, apply step a. above to Tand append a 'I-I' to the left of the result. If the
result is "-O", change it to " O .

If the leftmost character of S is not ' (- ' I , form the longest head of S which satisfies the syntax

The numeric expression numexpr is defined to have the same syntax as m. Its presence in a syntax
description serves to indicate that the numeric interpretation of its value is to be taken when it is executed.

numexpr ::= expr

See 2.3 for the definition of M.

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.6 Intrinsic Special Variable Name 9

Intrinsic special variables are denoted by the prefix $ followed by one of a designated list of names. Intrinsic
special variable names differing only in the use of corresponding upper and lower case letters are equivalent.
The standard contains the following intrinsic special variable names:

H [OROLOG]
IL01
JiOBl
s TOI~AGE 1
T[EST]
X
Y
Z[unspecified]

Unused instrinsic special variable names beginning with an initial letter other than Z are reserved for future
enhancement of the standard.

The formal definition of the syntax of
of 2.2.6.

is a choice from among all of the individual p~ syntax definitions

I syntax of SHOROLOG intrinsic special variable

I syntax of $Y intrinsic special variable

I
syntax of $10 intrinsic special variable !

svn : := -

Any implementation of the language must be able to recognize both the abbreviation and the full spelling of
each intrinsic special variable name.

Syntax Definition

$H[OROLOG] $H gives date and time with one access. Its value is D I S where D is an integer
value counting days since an origin specified below, and S is an integer value
modulo 86,400 counting seconds. The value of $H for the first second of December
31, 1840 is defined to be 0,O. S increases by 1 each second and S clears to O with
a carry into D on the tick of midnight.

$I identifies the current I/O device (see 2.6.2 and 2.6.18).

Each executing MUMPS process has its own job number, a positive integer which
is the value of $J. The job number of each process is unique to that process within
a domain of concurrent processes defined by the implementor. $J is constant
throughout the active life of a process.

$S[TORAGE] Each implementation must return for the value of $S an integer which is the number
of characters of free space available for use. The method of arriving at the value of
$S is not part of the standard.

$T[ESTl $T contains the truth value computed from the execution of an IF command
containing an argument, or an OPEN, LOCK, JOB, or READ command with a
timeout (see 2.2.9, 2.2.10, and 2.6.3).

$X $X has a nonnegative integer value which approximates the value of a carriage or
horizontal cursor position on the current line as if the current I/O device were an

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

14

ASCII terminal. It is initialized to zero by input or output of control functions
corresponding to CR or FF; input or output of each graphic adds 1 to $X (see 2.5.5
and 2.6.18).

$Y has a nonnegative integer value which approximates the line number on the
current il0 device as if it were an ASCII terminal. It is initialized to zero by input or
output of control functions corresponding to FF; input or output of control functions
corresponding to E adds 1 to $Y (see 2.5.5 and 2.6.18).

$Z[unspecified] 2 is the initial letter reserved for defining non-standard intrinsic special variables.
The requirement that $Z be used permits the unused initial letters to be reserved for
future enhancement of the standard without altering the execution of existing routines
which observe the rules of the standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7 Intrinsic Functions function

Intrinsic functions are denoted by the prefix $ followed by one of a designated list of names, followed by a
parenthesized argument fist. Intrinsic function names differing only in the use of corresponding upper and
lower case letters are equivalent. The standard contains the following function names:

A[SCII]
C[HARl
D[ATA]
E [XTRACT J
F[IND]
FN [UMBER]

J[USTIFY]
L [ENGTH]
N[EXT]
O [RDER J
P[IECE]
Q [UERY I
R [ANDOM]
S [ELECT]
T[EXT]
TR[ANSLATE]
V[IEW]
Z[unspecified]

G[ETI

Unused function names beginning with an initial letter other than Z are reserved for future enhancement of the
standard.

The formal definition of the syntax of function is a choice from among all of the individual function syntax
definitions of 2.2.7

funct ion : :=

syntax of $ASCII function
syntax of $CHAR funct ion

syntax of $VIEW funct ion

Any implementation of the language must be able to recognize both the abbreviation and the full spelling of
each function name.

2.2.7.1 $ASCII

$A[SCII] (~XJX)

See 2.3 for the definition of w.
This form produces an integer value as follows:

a. -1 if the value of is the empty string.
b.
$A($C(n)) = n.

Otherwise, an integer n associated with the leftmost character of the value of s, such that

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

iSO/iEC 11756:1992 (E)

$A[SCII] (expr , intexpr)

See 2.3 for the definition of w. See 2.2.4.1 for the definition of intexpr.

This form is similar to $ A m except that it works with the intexprîh character of
Formally, $A(expr,intexpr) is defined to be $A($E(expr,intexpr)).

instead of the first.

2.2.7.2 $CHAR

$C[HAR] (L intexpr)

See 2.2.4.1 for the definition of intexpr. See section 1 for the definition of !=.

This form returns a string whose length is the number of argument expressions which have nonnegative
values. Each intexpr in the closed interval [0,1271 maps into the ASCII character whose code is the value of
intexpr; this mapping is order-preserving. Each negative-valued intexpr maps into no character in the value
of $C.

2.2.7.3 $DATA

$D[ATAl (cilvn)

See 2.2.2.2 for the definition of m.
This form returns a nonnegative integer which is a characterization of the
where:

The value of the integer is ptd,

d = 1 if the & has a defined value, i.e., the NAME-TABLE entry for the name of the & exists,
and the subscript tuple of the &I has a corresponding entry in the associated bATA-CELL;
otherwise, 60.

p = 10 if the variable has descendants; i.e., there exists at least one tuple in the W s DATA-CELL
which satisfies the following conditions:

a.

b.

The degree of the tuple is greater than the degree of the g h , and

the first N arguments of the tuple are equal to the corresponding s
&I where N is the number of subscripts in the ,e.

If no NAME-TABLE entry for the glvn exists, or no such tuple exists in the associatëd DATA-
CELL, then PO.

16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.4 $EXTRACT

$E[XTRACT] (~XJJ)

See 2.3 for the definition of m.
This form returns the first (leftmost) character of the value of E. If the value of -er is the empty string, the
empty string is returned.

$E[XTRACT] (expr , intexpr)

See 2.3 for the definition of m. See 2.2.4.1 for the definition of intexpr.

Let s be the value of m, and let rn be the integer value of intexpr. $E(s,m) returns the mth character of s.
If m is less than 1 or greater than $L(s), the value of $E is the empty string. (1 corresponds to the leftmost
character of s; $L(s) corresponds to the rightmost character.)

$E[XTRACT] (expr , intexpr, , intexDr,)

See 2.3 for the definition of m. See 2.2.4.1 for the definition of intexpr.

Let n be the integer value of intexpr,. $E(s,rn,n) returns the string between positions m and n of s. The
following cases are defined:

a. rn > n.

b. rn = n.

Then the value of $E is the empty string.

$E(s,m,n) = $E(s,~) .

c. m e n '> $L(s).
$E(s,m,n) = $E(s,rn) concatenated with $E(s,m+l ,n).
That is, using the concatenation operator - of 2.3.5, $E(s,m,n) =
$E(S,m)$E(S,rn+l) _..._ $E(~,m+(n-m)).

d. rn < n and $L(s) e n.
$E(s, m,n) = $E(s, rn,$L(~)).

2.2.7.5 $FIND

$F[INDl (E, , m2)

See 2.3 for the definition of E.

This form searches for the leftmost occurrence of the value of x, in the value of w,. If none is found,
$F returns zero. If one is found, the value returned is the integer representing the number of the character
position immediately to the right of the rightmost character of the found occurrence of w2 in w,. In
particular, if the value of m, is empty, $F returns 1.

$F[IND] (

See 2.3 for the definition of m. See 2.2.4.1 for the definition of intexpr.

, expr, , intexpr)

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Let a be the value of let b be the value of ex^& and let rn be the value of intexpr. $F(a,b,m) searches
for the leftmost occurrence of b in a, beginning the search at the max(rn,l) position of a. Let p be the value
of the result of $F($E(a,rn,$L(a)),b). If no instance of b is found (i.e., P O) , $F returns the value O; otherwise,
$F(a,b,rn) = p + max(rn,l) - 1.

2.2.7.6 $FNUMBER

$FN[UMBER] (numexpr , fncodexpr)

See 2.2.4 for the definition of numexpr.

fncodexpr ::= expr V fncode

See 2.3 for the definition of x. See section 1 for the definition of y,
f ncode ::= fncodatom ...

(note, c o m a)

(note, hyphen)

I T I
I :I fncodatom ::=

I -I
returns a value which is an edited form of numexpr. Each fncodatom is applied to numexpr in formatting the
results by the following rules (order of processing is not significant):

fncodatom Action

P Represent negative numexpr values in parentheses. Let A be the absolute value of
numexpr. Use of fncode "P" will result in the following:

1. If numexpr c O , the result will be "("-A-")".
2. If numexpr '< O , the result will be I' "-A-" 'I.

T Represent numexpr with a trailing rather than a leading "+I' or "-" sign. Note: if sign
suppression is in force (either by default on positive values, or by design using the
"-" fncodatom), use of fncode "T" will result in a trailing space character.

I Insert comma delimiters every third position to the left of the decimal (present or
assumed) within numexpr. Note: no comma shall be inserted which would result in
a leading comma character.

+ Force a plus sign ("+'I) on positive values of numexpr. Position of the "t" (leading
or trailing) is dependent on whether or not fncodatom of " T is specified.

Suppress the negative sign "-I' on negative values of numextx.

If fncodexpr equals an empty string, no special formatting is performed and the result of the expression is the
original value of numexpr.

More than one occurrence of a particular fncodatom within a single fncode is identical to a single occurrence
of that fncodatom. Erroneous conditions are produced when a fncodatom "P" is present with any of the sign
suppression or sign placement fncodatoms ('IT+-").

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

$FN[UMBER] (numexpr , fncodexpr , intexpr)

See 2.2.4 for the definition of numexpr. See 2.2.4.1 for the definition of intexpr.

This form is identical to the two-argument form of $FN, except that numexpr is rounded to intexpr fraction
digits, including possible trailing zeros, before processing any fncodatoms. If intexpr is zero, the evaluated
numexpr contains no decimal point. Note: if (-1 < numexpr < l) , the result of $FN has a leading zero (“O”) to
the left of the decimal point.

2.2.7.7 $GET

$G[ETl (m)
See 2.2.2.2 for the definition of glvn.

This form returns the value of the specified & depending on its state, defined by $ D U) . The following
cases are defined:

a. $ D w) # l O = 1
The value returned is the value of the variable specified by @.

b. Otherwise, the value returned is the empty string.

2.2.7.8 $JUSTIFY

$J[USTIFY] (expr , intexpr)

See 2.3 for the definition of m. See 2.2.4.1 for the definition of intexpr.

This form returns the value of & right-justified in a field of intexpr spaces. Let m be $ L m and n be the
value of intexpr. The following cases are defined:

a. m ’< n. Then the value returned is x.
b.
spaces.

Otherwise, the value returned is S(n-m) concatenated with E,, where S(x) is a string of x

$J[USTIFY] (numexpr , intexpr, , intexpr,)

See 2.2.4 for the definition of numexpr. See 2.2.4.1 for the definition of intexpr.

This form returns an edited form of the number numexpr. Let r be the value of numexpr after rounding to
intexpr, fraction digits, including possible trailing zeros. (If intexgr, is the value O, rcontains no decimal point.)
The value returned is $J(r, intexpr,). Note that if -1 < numexpr < 1, the result of $J does have a zero to the
left of the decimal point. Negative values of intexpr, are reserved for future extensions of the $JUSTIFY
function.

19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.9 $LENGTH

$L[ENGTH] (w)
See 2.3 for the definition of m.
This form returns an integer which is the number of characters in the value of expr. If the value of expr is the
empty string, $ L m returns the value O.

$L[ENGTH] (w, , m2)

See 2.3 for the definition of m.
This form returns the number plus one of nonoverlapping occurrences of
is the empty string, then $L returns the value O.

in expr,. I f the value of 8 x 1 3 ~ ~

2.2.7.10 $NEXT'

"XTI (glvn 1
See 2.2.2.2 for the definition of &.

This form is included for backward compatibility. The use of the $ORDER function is strongly encouraged in
place of $NEXT, as the two functions perform the same operation except for the different starting and ending
condition of $NEXT.

$N returns a value which is a subscript according to a subscript ordering sequence. This ordering sequence
is specified below with the aid of a function, CO, which is used for definitional purposes only, to establish the
collating sequence.

CO(s,t) is defined, for strings s and t, as follows:

When t follows s in the ordering sequence, CO(s,?) returns t.
Otherwise, CO(s,t) returns s.

Let m and n be strings satisfying the definition of numeric data values (see 2.2.3.1), and U and v be nonempty
strings which do not satisfy this definition. The following cases define the ordering sequence: a

a. CO('"',s) = s.
b. CO(m,n) = n if n > m; otherwise, CO(m,n) = m.
c. CO(m,u) = U.
d. CO(u,v) = v i f v] U; otherwise, CO(u,v) = U.

In words, all strings follow the empty string, numerics collate in numeric order, numerics prece
strings, and nonnumeric strings are ordered by the conventional ASCII collating sequence.

Only subscripted forms of !VJ and gvn are permitted. Let
is -1, let A be the set of all subscripts. If s,, is not -1, let A be the set of all subscripts that follow

or g v ~ be of the form Name(s,, s, Sn
S,

for all s i n A:

'$NEXT may not be included in the next version of ISO/IEC 11756.

20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

a. CO@,, s) = s and
b. $D(Name(s,, s,, ..., s , . ~ , s)) is not zero.

Then $N(Name(s,, s,, ..., s,)) returns that value t in A such that CO(t,s) = s for all s not equal to t ; that is, all
other subscripts which follow s,, also follow t.

If no such texists, -1 is returned.

Note that $N will return ambiguous results for !VJ and
values.

arrays which have negative numeric subscript

2.2.7.11 $ORDER

$O[RDER] (g h)

See 2.2.2.2 for the definition of m.
This form returns a value which is a subscript according to a subscript ordering sequence. This ordering
sequence is specified below with the aid of a function, CO, which is used for definitional purposes only, to
establish the collating sequence.

CO(s,t) is defined, for strings s and t, as follows:

When tfollows s in the ordering sequence, CO(s,t) returns t.
Otherwise, CO(s,t) returns s.

Let m and n be strings satisfying the definition of numeric data values (see 2.2.3.1), and U and v be nonempty
strings which do not satisfy this definition. The following cases define the ordering sequence:

a. CO("",s) = s.
b. CO(m,n) = n if n > m; otherwise, CO(m,n) = m.
c. CO(m,u) = U.
d. CO(u,v) = vif v] U; otherwise, CO(u,v) = U.

In words, all strings follow the empty string, numerics collate in numeric order, numerics precede nonnumeric
strings, and nonnumeric strings are ordered by the conventional ASCII collating sequence.

Only subscripted forms of !VJ and IJVJ are permitted. Let !VJ or
s,, may be the empty string. Let A be the set of subscripts that follow s,. That is, for all s in A:

be of the form Name(s,, s,, ..., s,,) where

a. CO(s,,s) = sand
b. $D(Name(s,, s,, ..., s,.,, s)) is not zero.

Then $O(Name(s,, s,, ..., s,)) returns that value t i n A such that CO(t,s) = s for all s not equal to t ; that is, all
other subscripts which follow s, also follow t.

If no such t exists, $0 returns the empty string.

2.2.7.12 $PIECE

$P[IECEl (x1 , x2)

21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.3 for the definition of m.
This form is defined here with the aid of a function, NF, which is used for definitional purposes only, called find
the position number following the mth occurrence.

NF(s,d,m) is defined, for strings s, d, and integer m, as follows:

When d is the empty string, the result is zero.

When m ’> O, the result is zero.

When d is not a substring of s, i.e., when $F(s,d) = O, then the result is $L(s) t $L(d) t 1.

Otherwise, NF(s,d,l) = $F(s,d).

For m > 1, NF(s,d,m) = NF($E(s,$F(s,d),$L(s)),d,m-1) + $F(s,d) - 1.

That is, NF extends $F to give the position number of the character to the right of the rnth occurrence
of the string d in s.

Let s be the value of s,, and let d be the value of -er2. $P(s,d) returns the substring of s bounded on the
right but not including the first (leftmost) occurrence of d.

$P(S,d) = $E(s,O,NF(s,d,l) - $L(d) - 1).

$P[IECE] (expr, , expr, , intexpr)

See 2.3 for the definition of E. See 2.2.4.1 for the definition of intexpr.

Let rn be the integer value of intexpr. $P(s,d,m) returns the substring of s bounded by but not including the
rn-lth and the rnth occurrence of d.

$ P (~ , d , m) = $E(S,NF(s,d,m-l),NF(S,d,m) - $L(d) - 1).

$P[IECE] (a, , expr, , intexpr, , intexpr,)

See 2.3 for the definition of w. See 2.2.4.1 for the definition of intexpr.

Let n be the integer value of intexpr,. $P(s,d,m,n) returns the substring of s bounded on the left but not
including the m-7th occurrence of din s, and bounded on the right but not including the nth occurrence of d
in s.

$P(s,d,m,n) = $E(s,NF(s,d,rn-l),NF(s,d,n) - $L(d) -1).

Note that $P(s,d,m,rn) = $P(s,d,m), and that $P(s,d,l) = $P(s,d).

2.2.7.13 $QUERY

$Q[UERY] (fi)

22

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.2.2 for the definition of plvn.

Let givn, = 'A(i , , i2, ..., i,) and givn, = "A(jl, j,, ..., j , ,)

Then a collating relation exists between Qlvn, and gh,. e, is said to follow glvn, when for any pair (i k , j k)
when:

a. p e q and ik = jk for all k in the range (O < k '> p).

b. p = O and q > O.

c. k > O and k '> min@, q) and
there exists some ik '= jk and
no n exists with O < n < k and i,, '= j,, and
the function CO(ik, j k) , as defined in 2.2.7 (definition of $ORDER), is equal to jk.
In less formal terms, when the first index that is different, collates in glvn, after the corresponding one
in (&I,.

or

or

For the purpose of this discussion a function CQ@-n,, givnJ is defined that would yield g h , when, according
to the above definition, glvn, would be said to follow givn,.

namevalue : := expr

See 2.3 for the definition of m.
A namevalue has the syntax of a gh with the following restrictions:

a. The plvn is not a naked reference.

b. Each subscript whose value has the form of a number as defined in 2.2.3.1 appears as a numlit,
spelled as its numeric interpretation.

c. Each subscript whose value does not have the form of a number as defined in 2.2.3.1 appears
as a U, defined as follows:

I "
*I >I s u b l i t ::= " I

I subnonquote I . . .
where subnonuuote is defined as follows:

subnonquote : : = any c h a r a c t e r v a l i d i n a s u b s c r i p t , e x c l u d i n g t h e q u o t e
symbol.

Then the value of the function $QUERY can be defined as follows:

the value of $QUERY(cilvn,) is a namevalue that conforms to qlvn, if and only if:

CQ (cilvn,, glvnJ = givn,

and no glvn, exists so that

CQ (cilvn,, = cilvn,

CQ (cI(vn7, glvnJ = givn,
and

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

the value of $QUERY(nlVn,) will be the empty string when no qlvn, exists so that

CQ (cilvn,, QlvnJ = (Ilvn,

2.2.7.14 $RANDOM

$R[ANDOM] (intexpr)

See 2.2.4.1 for the definition of intexpr.

This form returns a random or pseudo-random integer uniformly distributed in the closed interval [O, intexpr
- 13. If the value of intexpr is less than 1, an error will occur.

2.2.7.1 5 $SELECT

$S[ELECT] (C 1 tvexpr : expr I)

See 2.2.4.2 for the definition of tvexpr. See 2.3 for the definition of m. See section 1
L.

This form returns the value of the leftmost a whose corresponding tvexpr is true. The pr
consists of evaluating the tvexprs, one at a time in left-to-right order, until the first one is
is true. The = corresponding to this tvexpr (and no other) is evaluated and this value i

is evaluated at any i

-

An error will occur if all tvexprs are false. Since only one
e .only which must have a defined value.

2.2.7.1 6 $TEXT

See 2.2.4.1 for the definition of intexpr. See 2.5.7 for the definition of entrvref.

This form returns a string whose value is the contents of the line specified by
entire 5, with col deleted, is returned.

If the argument of $T is an entrvref, the denoted by the entrvref is specifi
dlabel then the denoted is the first line of the routine. If the argument is +
If the value of intexpr is greater than O, the intexlirth line of the routine is sp
equal to O, the routinename of the routine is specified. An error will occur if the value of intexpr is less than
O.

If no such
is ambiguous, the results are not defined.

as that specified by the argument exists, an empty string is returned. If the

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.2.7.1 7 $TRANSLATE

$TR[ANSlATE] (expr, , ex^&)

See 2.3 for the definition of expr.

Let s be the value of expr,, $TR(expr,,expr,) returns an edited form of s in which all characters in s which are
found in expr, are removed.

$TR[ANSLATE] (ml , ~XJX, ,

See 2.3 for the definition of expr.

Let s be the value of expr,, $TR(expr,,expr,,exprJ returns an edited form of sin which all characters in s which
are found in ~XJX, are replaced by the positionally corresponding character in m. If a character in s
appears more than once in expr, the first (leftmost) occurrence is used to positionally locate the translation.

Translation is performed once for each character in s. Characters which are in s that are not in expr, remain
unchanged. Characters in expr, which have no corresponding character in expr, are deleted from s (this is
the case when expr, is shorter than -2).

Note: If the value of

)

is the empty string, no translation is performed and s is returned unchanged.

2.2.7.18 $VIEW

$V[IEW] (unspecified)

This form makes available to the implementor a call for examining machine-dependent information. It is to be
understood that routines containing occurrences of $V may not be portable.

\

2.2.7.19 $2

$Z[unspecified] (unspecified)

This form is the initial letter reserved for defining nonstandard intrinsic functions. This requirement permits the
unused function names to be reserved for future use.

2.2.8 Unary Operator unaryop

There are three unary operators: ’ (not), + (plus), and - (minus).

Not inverts the truth value of the expratom immediately to its right. The value of ’emratom is 1 if the
truth-value interpretation of expratom is O; otherwise its value is O. Note that ” performs the truth-value
interpretation.

Plus is merely an explicit means of taking a numeric interpretation. The value of +exDratom is the numeric
interpretation of the value of expratom.

25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Minus negates the numeric interpretation of expratom. The value of -exDratom is the numeric interpretation
of -N, where N is the value of expratom.

Note that the order of application of unary operators is right-to-left.

2.2.9 Extrinsic Special Variable

- exvar ::= $ $ labelref

See 2.5.7 for the definition of labelref.

Extrinsic special variables are denoted by the prefix $$ followed by a labelref. Extrinsic special variables
invoke a MUMPS subroutine to return a value. When an extrinsic special variable is executed, the current
value of $T, the current execution level, and the current execution location are saved in an exval frame on the
PROCESS-STACK.

a Execution continues at the first command of the formalline specified by the labelref. Execution of an exvar
to a levelline is erroneous.

Upon return from the subroutine the value of $T and the execution level is restored, and the value of the
argument of the QUIT command that terminated the subroutine is returned as the value of the =.

An extrinsic special variable whose labelref is x is identical to the extrinsic function:

Note that x must have a (possibly empty) formallist.

a

2.2.10 Extrinsic Function’

exfunc ::= $$ labelref actuallist

See 2.5.7 for the definition of labelref. See 2.5.9 for the definition of actuallist.

Extrinsic functions are denoted by the prefix $$ followed by a labelref followed by an actuallist of parameters.
Extrinsic functions invoke a MUMPS subroutine to return a value. When an extrinsic function is executed, the
current value of $T, the current execution level, and the current execution location are saved in an exfunc
frame on the PROCESS-STACK. The actuallist parameters are then processed as described in 2.5.9.

Execution continues at the first command of the formalline specified by the labelref. This formalline must
contain a formallist in which the number of names is greater than or equal to the number of names in the
actuallist. Execution of an exfunc to a levelline is erroneous.

Upon return from the subroutine the value of $T and the execution level are restored, and the value of the
argument of the QUIT command that terminated the subroutine is returned as ihe value of the exfunc.

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.3 Expressions expr

Expressions are made up of expression atoms separated by binary string, arithmetic, or truth-valued operators.

. .= expr .. expratom [e x p r t a i l] ...
See 2.2 for the definition of expratom.

I e x p r t a i l ::= [.yiKxX, expratom 1 I I [‘ I ? pat t e r n I
See 2.2 for the definition of expratom. See 2.3.3 for the definition of pattern.

b ina ryop : :=

(Note: u n d e r s c o r e)

(Note: hyphen)

t r u t h o p : := I r e l a t i o n
loqicalop

I = I

loqicalop ::= I & I
I l l

The order of evaluation is as follows:

a. Evaluate the left-hand expratom.

b. If an exprtaii is present immediately to the right, evaluate its expratom or pattern and apply its
operator.

c. Repeat step b. as necessary, moving to the right.

In the language of operator precedence, this sequence implies that all binary string, arithmetic, and
truth-valued operators are at the same precedence level and are applied in left-to-right order.

Any attempt to evaluate an expratom containing an ivn, E, or çvn with an undefined value is erroneous.

2.3.1 Arithmetic Binary Operators

The binary operators + - * / \ # are called the arithmetic binary operators. They operate on the numeric
interpretations of their operands, and they produce numeric (in one case, integer) results.

+ produces the algebraic sum.

produces the algebraic difference.

27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

* produces the algebraic product.

l produces the algebraic quotient. Note that the sign of the quotient is negative if and only if
one argument is positive and one argument is negative. Division by zero is erroneous.

produces the integer interpretation of the result of the algebraic quotient.

produces the value of the left argument modulo the right argument. It is defined only for
nonzero values of its right argument, as follows.

A # 6 = A - (B * floor(A/B))
where floor (x) = the largest integer '> x.

\

2.3.2 Relational Operators

The operators = < >] [produce the truth value 1 if the relation between their arguments which they express
is true, and O otherwise. The dual operators 'relation are defined by:

A 'relation 6 has the same value as ' (A relation 4.

2.3.2.1 Numeric Relations

The inequalities > and < operate on the numeric interpretations of their operands; they denote the conventional
algebraic greater than and less than.

2.3.2.2 String Relations

The relations =] [do not imply any numeric interpretation of either of their operands.

The relation = tests string identity. If the operands are not known to be numeric and numeric equality is to be
tested, the programmer may apply an appropriate unary operator to the nonnumeric operands. If both
arguments are known to be in numeric form (as would be the case, for example, if they resulted from the
application of any operator except -), application of a unary operator is not necessary. The uniqueness of the
numeric representation guarantees the equivalence of string and numeric equality when both operands are
numeric. Note, however, that the division operator 1 may produce inexact results, with the usu
attendant to inexact arithmetic.

The relation [is called contains. A [B is true if and only if B is a substring of A; that is, A [5 has the same
value as "$F(A,B). Note that the empty string is a substring of every string.

The relation] is called follows. A] 6 is true if and only if A follows 5 in the conventional
sequence, defined here. A follows B if and only if any of the following is true.

a. B is empty and A is not.

b. Neither A nor B is empty, and the leftrnost character of A follows (i.e., has a numerically greater
ASCII code than) the leftrnost character of B.

28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

c. There exists a positive integer n such that A and B have identical heads of length n, (i.e.,
$E(A,1 ,n) = $E(B,l ,n)) and the remainder of A follows the remainder of B (i.e., $E(A,n+l ,$L(A)) follows
$E(B,n+l ,$L(B))).

2.3.3 Pattern match

The pattern match operator ? tests the form of the string which is its left-hand operand. S ? P is true if and
only if S is a member of the class of strings specified by the pattern P.

A pattern is a concatenated list of pattern atoms.

I patatom ... I
p a t t e r n ::= 1 @ expra tom 1 p a t t e r n 1

See 2.2 for the definition of expratom. See section 1 for the definition of y.

Assume that pattern has n patatoms. S ? pattern is true if and only if there exists a partition of S into n
substrings

s = s, s, ... s,
such that there is a one-to-one order-preserving correspondence between the S, and the pattern atoms, and
each S, satisfies its respective pattern atom. Note that some of the SI may be empty.

Each pattern atom consists of a repeat count repcount, followed by either a pattern code patcode or a string
literal m. A substring SI of S satisfies a pattern atom if it, in turn, can be decomposed into a number of
concatenated substrings, each of which satisfies the associated patcode or çtrlit.

patatom ::= r e p c o u n t I I patcode

I - s t r i i t I
See 2.2.5 for the definition of $rlJt.

! - i n t l i t !
I I [i n t i i t , 1 . [i n t l i t , 1

r e p c o u n t ::=

See 2.2.3 for the definition of jntliJ.

patcode ::=

N

U
E l

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Patcodes differing only in the use of corresponding upper and lower case letters are equivalent. Each patcode
is satisfied by any single character in the union of the classes of characters represented, each class denoted
by its own patcode letter, as follows.

C 33 ASCII control characters, including DEL

N 10 ASCII numeric characters

P 33 ASCII punctuation characters, including Sp

A 52 ASCII alphabetic characters

L 26 ASCII lower-case alphabetic characters

U 26 ASCII upper-case alphabetic characters

E Everything (the entire set of ASCII characters)

All other unused patcode letters for class names are reserved.

Each strlit is satisfied by, and only by, the value of m.
If rewount has the form of an indefinite multiplier ".", patatom is satisfied by a concatenation of any number
of Si (including none), each of which meets the specification of patatom.

If remount has the form of a single intlit, patatom is satisfied by a concatenation exactlyintJ S,, each of which
meets the specification of patatom. In particular, if the value of jntJ is zero, the corresponding S, is empty.

If repcount has the form of a range, intlit,.intlit,, the first intiit gives the lower bound, and the second fi the
upper bound. It is erroneous if the upper bound is less than the lower bound. If the lower bound is omitted,
so that the range has the form .U,, the lower bound is taken to be zero. If the upper bound is omitted, so
that the range has the form m,. , the upper bound is taken to be indefinite; that is, the range is at least fi,
occurrences. Then patatom is satisfied by the concatenation of a number of S,, each of which meets the
specification of patatom, where the number must be within the expressed or implied bounds of the specified
range, inclusive.

The dual operator '? is defined by:

A '? B =, ' (A ? B)

2.3.4 Logical Operators

The operators ! and i3 are called logical operators. (They are given the names or and and, respectively.) They
operate on the truth-value interpretations of their arguments, and they produce truth-value results.

A ! B = (O if both A and B have the value O)
(1 otherwise)

A & B = (1 if both A and 6 have the value 1)
(O otherwise)

30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (El

The dual operators '& and '! are defined by:

A '& B = ' (A & 8)
A '! 0 = ' (A ! B)

2.3.5 Concatenation Operator

The underscore symbol - is the concatenation operator. It does not imply any numeric interpretation. The
value of A-B is the string obtained by concatenating the values of A and B, with A on the left.

2.4 Routines

The routine is the unit of routine interchange. In routine interchange, each routine begins with its routinehead,
which contains the identifying routinename, and the routinehead is followed by the routinebody, which contains
the code to be executed. The routinehead is not part of the executed code.

routine ::= routinehead routinebody

See 2.4.1 for the definition of routinebody.

routinehead : := routinename

routinename : : = - name

See 2.2.1 for the definition of name.

2.4.1 Routine Structure

The routinebody is a sequence of lines terminated by an z. Each & starts with one which may be
preceded by an optional and formallist. The iç is followed by zero or more (level-indicator) which are
followed by zero or more commands and a terminating O)!. One or more spaces may separate the comment
from the last command of a &. The LEVEL of a line is the number plus one of fi.

routinebody ::= - line ... - eor

- line ::= I formalline I
I levelline I

formalline ::= - label formallist linebody

levelline ::= [label] [g] ... linebody
r- 1 I commands [CS comment 1 1

linebody : :=
comment !

See 2.5.3 for the definition of comment.

formallist ::= ([L name])

31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (El

See 2.2.1 for the definition of name. See section 1 for the definition of L.
label

See 2.2.1 for the definition of name. See 2.2.3 for the definition of m.
commands : := command [gg command J ...

See 2.5 for the definition of command.

::= SP ... - Is -
li . e = .. . [ÇP J ... -

. .= .. SP ...
::= CR LF

- cs -
-- eo1 -

::= CR FF -- eor -
Each occurrence of a label to the left of
occurrences of
- line whose LEVEL is one, i.e., does not contain an 1.

in a is called a defining occurrence of w.
may have the same spelling in one routinebody. A formallist may only

2.4.2 Routine Execution

MUMPS routines are executed in a sequence of blocks. Each block is dynamically defined and
the instance of an argumentless DO command, a doarqument, an exfunc, or an exvar. Each block consists
of a set of Qs that all have the same LEVEL; the block begins with the line reference implied by the DO,
exfunc, or and ends with an implicit or explicit QUIT command. is specified in the
doarqument, exfunc, or 3, the first line of the routinebody is used. The execution level is defined as the
LEVEL of the currently being executed. &s which have a LEVEL greater than the current execution
level are ignored, i.e., not executed. An implicit QUIT command is executed when a with a LEVEL less
than the current execution level or the j g is encountered, thus terminating this biock (see 2.
description of the actions of QUIT). The initial LEVEL for a process is one. The argumentless DO
increases the execution level by one. (See also the DO command and GOTO command).

Within a given routine or subroutine execution proceeds sequentially from
starting with the
execution begins at the leftmost command and proceeds left to right from command to command. Routine
flow commands DO, ELSE, FOR, GOTO, IF, QUIT, XECUTE, exfunc and extrinsic functions and
variables, provide exception to this execution flow. Within a command, all exDratoms are evaluated in a left-to-
right order with all expratoms that occur to the left of the expratom being evaluated, including the complete
resolution of any indirection, prior to the evaluation of that expratom, except as explicitly not
this document. The expratom is formed by the longest sequence of characters that satisfies
expratom.

It is an error to begin execution of any formalline unless that formalline has just been reached as a result of
an exvar, an exfunc, or a DO command doargument that contains an actuallist.

If no

to in top t
of the routine if no label is give specified by the invoked or first

32

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.5 General command Rules

Every command starts with a command word which dictates the syntax and interpretation of that command
instance. Command words differing only in the use of corresponding upper and lower case letters are
equivalent. The standard contains the following command words.

B [REAK]
C [LOSE]

E
F
G
H
H
I

D [O I

..
J
K

N
O
Q
R
s
U
V
W
X
z

L S E]

OTO]
OR 1

ALT I
ANG 1
F I
OB 1
ILL]

EW 1
OCK]

PEN]
U I T]
EAD]
E T 1
S E 1
IEW]
R I T E]
ECUTE]
unspecified]

Unused initiai letters of command words are reserved for future enhancement of the standard.

The formal definition of the syntax of command is a choice from among all of the indivi
definitions of 2.6.

mmand syntax

I syntax of BREAK command I I syntax of CLOSE command

I syntax of XECUTE command 1
command ::=

Any implementation of the language must be able to recognize both the initial letter abbreviation and the full
spelling of each command word. When two command words have a common initial letter, their argument
syntaxes uniquely distinguish them.

For all commands allowing multiple arguments, the form

command word arg,, arg, ...

is equivalent in execution to

command word arg, command word arg,

33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

2.5.1 Post Conditionals

All commands except ELSE, FOR, and IF may be made conditional as a whole by following the command
word immediately by the post-conditional postcond.

postcond ::= [: tvexpr]

See 2.2.4.2 for the definition of tvexpr.

If the postcond is absent or the postcond is present and the value of the tvexpr is true, the command is
executed. If the postcond is present and the value of the tvexpr is false, the command word and its arguments
are passed over without execution.

The postcond may also be used to conditionalize the arguments of DO, GOTO, and XECUTE. In such cases
the arguments’ expratoms that occur prior to the postcond are evaluated prior to the evaluation of the
postcond.

2.5.2 Spaces in Commands

Spaces are significant characters. The following rules apply to their use in k s .

a. There may be a space immediately preceding - Is may immediately precede g, this rule does not apply to the space which may stand for is.)

b. If a command instance contains at least one argument, the command word or postcond is followed
by exactly one space; if the command is not the last of t h e m , or if a comment follows, the command
is followed by one or more spaces.

only if the 5 ends with a comment. (Since

c. If a command instance contains no argument and it is not the last command of the I&, or if a
comment follows, the command word or postcond is followed by at least two spaces; if it is the last
command of the ljne and no comment follows, the command word or postcond is immediately followed
by a.

2.5.3 Comments

If a semicolon appears in the command word initial-letter position, it is the start of a comment. The remainder
of the 5 to must consist of graphics only, but is otherwise ignored and nonfunctional.

comment ::= ; [qraphic] ...
See 2.1 for the definition of graphic.

2.5.4 format in READ and WRITE

The format, which can appear in READ and WRITE commands, specifies output format control. The
parameters of format are processed one at a time, in left-to-right order.

34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

i ? intexpr i
See 2.2.4.1 for the definition of intexpr.

The parameters, which need not be separated by commas when occurring in a single instance of format, may
take the following forms.

! causes a new line operation on the current device. Its effect is the equivalent of writing CR LF on
a pure ASCII device. In addition, $X is set to O and 1 is added to $Y.

causes a fop of form operation on the current device. Its effect is the equivalent of writing CR FF
on a pure ASCII device. In addition, $X and $Y are set to O. When the current device is a display,
the screen is blanked and the cursor is positioned at the upper left-hand corner.

? intexpr produces an effect similar to tab to column intexpr. If $X is greater than or equal to intexpr,
there is no effect. Otherwise, the effect is the same as writing (intexpr - $X) spaces. (Note that the
leftmost column of a line is column O.) 0

2.5.5 Side Effects on $X and $Y

As READ and WRITE transfer characters one at a time, certain characters or character combinations represent
device control functions, depending on the identity of the current device. To the extent that the supervisory
function can detect these control characters or character sequences, they will alter $X and $Y as follows.

graphic : add 1 to $X

line feed : add 1 to $Y

form feed : set $Y = O, $X = O

backspace : set $X = max($X-1 ,O)

carriage return : set $X = O

2.5.6 Timeout

The OPEN, LOCK, JOB, and READ commands employ an optional timeout specification, associated with the
testing of an external condition.

0

timeout ::= : numexpr

See 2.2.4 for the definition of numexpr.

If the optional timeout is absent, the command will proceed if the condition, associated with the definition of
the command, is satisfied; otherwise, it will wait until the condition is satisfied and then proceed.

$T will not be altered if the timeout is absent.

If the optional timeout is present, the value of numexpr must be nonnegative. If it is negative, the value O is
used. NumexDr denotes a t-second timeout, where t is the value of numexpr.

35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

If t = O, the condition is tested. If it is true, $T is set to 1; otherwise, $T is set to O. Execution
proceeds without delay.

If t is positive, execution is suspended until the condition is true, but in any case no longer than t
seconds. If, at the time of resumption of execution, the condition is true, $T is set to 1 ; otherwise, $T
is set to O.

2.5.7 Line References

The DO and GOTO commands, extrinsic functions and extrinsic variables, as well as the
contain in their arguments means for referring to particular lines within any routine. This secti
means for making E references.

Any
or prior to the line in question.

in a given routine may be denoted by mention of a label which occurs in a defining occurrence on

1 abe 1 - d l a b e l : :=
@ expratom V d l a b e l

See 2.4.1 for the definition of M. See 2.2 for the definition of expratom. See section 1 for the definition
of y.

rout inename
r o u t i n e r e f ::=

@ expra tom r o u t i n e r e f

See 2.4 for the definition of routinename. See 2.2 for the definition of expratom. See section 1 for the
definition of y.

The total line specification in DO and GOTO is in the form of entrvref.

d l a b e l [+ i n t e x p r] [A r o u t i n e r e f J l - r o u t i n e r e f
e n t r v r e f ::=

See 2.2.4.1 for the definition of intexer.

If the delimiter
absent, the first 5 is implied.

When the DO or JOB commands or exfunc or
the +intexDr form of entrvref is not permitted and the specified
labelref is used instead:

is absent, the routine being executed is implied. If the line reference (dlabel l+intexPr]) is

include parameters to be passed to the s
must be a formalline. The I

l a b e l [rout inename] l - rout inename
l a b e l r e f ::=

See 2.4.1 for the definition of U. See 2.4 for the definition of routinename.

If + intexer is absent, the 5 denoted by dlabel is the one containing label in a defining occurrence. If +
intexer is present and has the value n 'c O, the 5 denoted is the nth line after the one cont n a
defining occurrence. A negative value of intexpr is erroneous. When is an instance ing
zeros are significant to its spelling,

' 36

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

In the context of DO or GOTO, either of the following conditions is erroneous.

a. A value of intexDr so large as not to denote a

b. A spelling of label which does not occur in a defining occurrence in the given routine.

within the bounds of the given routine.

In any context, reference to a particular spelling of
in the given routine will have undefined results.

DO, GOTO, and JOB commands, as well as the $TEXT function, can refer to a line in a routine other than that
in which they occur; this requires a means of specifying a routinename.

which occurs more than once in a defining occurrence

2.5.8 Command Argument Indirection

Indirection is available for evaluation of either individual command arguments or contiguous sublists of
command arguments. The opportunities for indirection are shown in the syntax definitions accompanying the
command descriptions.

Typically, where a command word carries an argument list, as in

COMMANDWORD Sp C araument

the arqument syntax will be expressed as

I individual argument syntax I
arqument : := I I

I @ expratom arqument I
See 2.2 for the definition of expratom. See section 1 for the definition of y. See section 1 for the definition
of C. See section 1 for the definition of L.
This formulation expresses the following properties of argument indirection.

a. Argument indirection may be used recursively.

b. A single instance of argument indirection may evaluate to one complete argument or to a sublist
of complete arguments.

Unless the opposite is explicitly stated, the text of each command specification describes the arguments after
all indirection has been evaluated.

2.5.9 Parameter Passing

Parameter passing is a method of passing information in a controlled manner to and from a subroutine as the
result of an exfunc, an e, or a DO command with an actuallist.

actuallist ::= ([L actual])

See section 1 for the definition of L.

37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

. * = actual ..
lexpr

See 2.3 for the definition of m.
1 -

actualname : := I I
I @ expratom 1 actualname

See 2.2.1 for the definition of name. See 2.2 for the definition of expratom. See section 1 for the definition
of k.

When parameter passing occurs, the formalline designated by the labelref must contain a formallist in which
the number of names is greater than or equal to the number of actuals in the actuallist. The correspondence
between actual and formallist name is defined such that the first actual in the actuallist corresponds to the first
name in the formallist, the second actual corresponds to the second formallist name, etc. Similarly, the
correspondence between the parameter list entries, as defined below, and the actual or formallist names is
also by position in left-to-right order. If the syntax of actual is .actualname, then it is said that the actual is of
call-by-reference format; otherwise, it is said that the actual is of the call-by-value format.

When parameter passing occurs, the following steps are executed:

a. Process the actuals in left-to-right order to obtain a list of DATA-CELL pointers called the
parameter list. The parameter list contains one item per actual. The parameter list is created
according to the following rules:

1. If the actual is call-by-value, then evaluate the and create a DATA-CELL with a zero
tuple value equal to the result of the evaluation. The pointer to this DATA-CELL is the
parametgr list item.

2. If the actual is call-by-reference, search the NAME-TABLE for an entry containing the
actuallist name. If an entry is found, the parameter list item is the DATA-CELL pointer in this
NAME-TABLE entry. If the actuallist name is not found, create a NAME-TABLE entry
containing the name and a pointer to a new (empty) DATA-CELL. This pointer is the
parameter list item.

b. Create the parameter frame on the PROCESS-STACK containing the formallist.

c. For each name in the formallist, search the NAME-TABLE for an entry containing the name and
if the entry exists, copy the NAME-TABLE entry into the parameter frame and delete it from the
NAME-TABLE. This step performs an implicit NEW on the formallist names.

d. For each item in the parameter list, create a NAME-TABLE entry containing the corresponding
formallist name and the parameter list item (DATA-CELL pointer). This step binds the formallist
names to their respective actuals.

As a result of these steps, two (or more) NAME-TABLE entries may point to the same DATA-CELL. As long
as this common linkage is in effect, a SET or KILL of an k with one of the names appears to perform an
implicit SET or KILL of an !g with the other name(s). Note that a KILL does not undo this linkage of multiple - names to the same DATA-CELL, although subsequent parameter passing or NEW commands may.

Execution is then initiated at the first command following the
of the subroutine continues until an

of the line specified by the labelref. Execution
or a QUIT is executed that is not within the scope of a subsequently

38

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

executed doaraument, xargumenl, exfunc, exvar, or FOR. In the case of an exfunc or w, the subroutine
must be terminated by a QUIT with an argument.

At the time of the QUIT, the formallist names are unbound and the original variable environment is restored.
See 2.6.15 for a discussion of the semantics of the QUIT operation.

2.6 Command Definitions

The specifications of all commands follow.

2.6.1 BREAK

B[REAK] postcond I [Sp J I I argument syntax unspecified 1
See 2.5.1 for the definition of postcond.

BREAK provides an access point within the standard for nonstandard programming aids. BREAK without
arguments suspends execution until receipt of a signal, not specified here, from a device.

2.6.2 CLOSE

C[LOÇE] postcond ÇP & closearqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of I.
deviceparameters]

, .= I expr [: closearqument ..
I @ expratom ciosearqument I

See 2.3 for the definition of E. See 2.2 for the definition of expratom. See section 1 for the definition of
- V. See section 1 for the definition of C.

I l "[expr] :] ... expr I deviceparameters ::=

See 2.3 for the definition of m.
The value of the first of each closearqument identifies a device (or file or data set). The interpretation
of the value of this m is left to the implementor. The deviceparameters may be used to specify termination
procedures or other information associated with relinquishing ownership, in accordance with implementor
interpretation.

Each designated device is released from ownership. if a device is not owned at the time that it is named in
an argument of an executed CLOSE, the command has no effect upon the ownership and the values of the
associated parameters of that device. Device parameters in effect at the time of the execution of CLOSE are
retained for possible future use in connection with the device to which they apply. If the current device is
named in an argument of an executed CLOSE, the implementor may choose to execute implicitly the

39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

commands OPEN P USE P, where P designates a predetermined default device. If the implementor chooses
otherwise, $10 is given the empty value.

2.6.3 DO

D[O] pos tcond I I I sp & doarqument I

See 2.5.1 for the definition of postcond. See section 1 for the definition of C.
I e n t r y r e f pos tcond I

I @ expratom 1 2 doarqument Ostcond 1 doarqument : := I l a b e l r e f a c t u a l l i s t P

See 2.5.7 for the definition of entryref. See 2.5.1 for the definition of postcond. See 2.5.7 for the definition
of labelref. See 2.5.9 for the definition of actuallist. See 2.2 for the definition of expratom. See section 1 for
the definition of y. See section 1 for the definition of C.

An argumentless DO initiates execution of an inner block of lin_s. If postcond is present and its tvexpr is false,
the execution of the command is complete, If postcond is absent, or the postcond is present and its tvexpr
is true, the DO places a DO frame containing the current execution location, the current execution level, and
the current value of $T on the PROCESS-STACK, increases the execution level by one, a
execution at the next lin_ in the routine. (See 2.4.2 for an explanation of routine execu
encountering an implicit or explicit QUIT not within the scope of a subsequently executed doargument,
xarqument, exfunc, exvar, or FOR, execution of this block is terminated (see 2.6.15 for a description of the
actions of QUIT). Execution resumes at the command (if any) following the argumentless DO.

DO with arguments is a generalized call to the subroutine specified by the entryref, or labelref, in each
doarqument. The specified by the entryref or labelref, must have a LEVEL of one. Execution of a
doarqument to a & whose LEVEL is not one is erroneous.

If the actuallist is present in an executed doaraument, parameter passing occurs and the formalline designated
by labelref must contain a formallist in which the number of names is greater than or equal to the number of
actuals in the actuallist.

Each doarciument is executed, one at a time in left-to-right order, in the following steps.

a. Evaluate the expratoms of the doarqument.

b. If postcond is present and its tvexpr is false, execution of the doarqument is complete. If postcond
is absent, or postcond is present and its tvexpr is true, proceed to the step c.

c. A DO-frame containing the current execution location and the execution level are placed on the
PROCESS-STACK.

d. If the actuallist is present, execute the sequence of steps described in 2.5.9 Parameter Passing.

e. Continue execution at the first command following the of the & specified by entrvref or
labelref. Execution of the subroutine continues until an gg or a QUIT is executed that is not within
the scope of a subsequently executed FOR, argumentless DO, doargument, xargument, exfunc, or

40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

- exvar. The scope of this doarqument is said to extend to the execution of that QUIT or g. (See
2.6.15 for a description of the actions of QUIT.) Execution then returns to the first character position
following the doarqument.

2.6.4 ELSE

E[LSEI [sp 3

If the value of $T is 1, the remainder of the
is O, execution continues normally at the next command.

to the right of the ELSE is not executed. If the value of $T

2.6.5 FOR

F[ORl 1 [S P I I I SP i v n = L forparameter I e
See 2.2.2.1 for the definition of 5. See section 1 for the definition of L.

I
numexpr, : numexpr, : numexpr, I - numexpr, : numexpr,

forparameter ::=

See 2.3 for the definition of w. See 2.2.4 for the definition of numexpr.

The scope of this FOR command begins at the next command following this FOR on the same line and ends
just prior to the on this m.
The FOR with arguments specifies repeated execution of the commands within its scope for different values
of the local variable ivn, under successive control of the forparameters, from left to right. Any expressions
occurring in &, such as might occur in subscripts or indirection, are evaluated once per execution of the FOR,
prior to the first execution of any forparameter.

For each forparameter, control of the execution of the commands in the scope is specified as follows. (Note
that A, B, and C are hidden temporaries.)

a a. If the forparameter is of the form ocpy,.

1. Set&=expr.
2. Execute the commands in the scope once.
3. Processing of this forparameter is complete.

b. If the forparameter is of the form numexpr, : numexpr, : numexpr,
and numexpr, is nonnegative.

1. Set A = numexpr,.
2. Set B = numexpr,.
3. Set C = numexpr,.
4. Set = A.
5. If !VJ > C, processing of this forparameter is complete.
6. Execute the commands in the scope once; an undefined value for is erroneous.

41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

7. If @ > C-B, processing of this forparameter is complete.
8. Otherwise, set h = @ + B.
9. Go to 6.

c. If the forparameter is of the form numexpr, : numexpr, : numexpr,
and numexpr, is negative.

1. Set A = numexpr,.
2. Set B = numexpr,.
3. Set C = numexpr,.
4. Set fi= A.
5. If h c C, processing of this forparameter is complete.
6. Execute the commands in the scope once; an undefined value for
7. If h < C-B, processing of this forparameter is complete.
8. Otherwise, set h =fi + B.
9. Go to 6.

is erroneous.

d. If the forparameter is of the form numexpr, : numexpr,.

1. Set A = numexpr,.
2. Set B = numexcv,.
3. Set = A.
4. Execute the commands in the scope once; an undefined value for
5. Set h = + B.
6. Go to 4.

IS erroneous.

If the FOR command has no argument.

a. Execute the commands in the scope once; since no
referenced.

b. Goto 1.

has been specified, it cannot be

Note that form d. and the argumentless FOR, specify endless loops. Termination of these loops must occur
by execution of a QUIT or GOT0 within the scope of the FOR. These two termination methods are available
within the scope of a FOR independent of the form of forparameter currently in control of the execution of the
scope; they are described below. Note also that no forparameter to the right of one of form d. can be
executed.

Note that if the scope of a FOR (the outer FOR) contains an inner FOR, one execution of the scope of
commands of the outer FOR encompasses all executions of the scope of commands of the inner FOR
corresponding to one complete pass through the inner FOR command’s forparameter list.

Execution of a QUIT within the scope of a FOR has two effects.

a. It terminates that particular execution of the scope at the QUIT; commands to the right of the QUIT
are not executed.

b. It causes any remaining values of the forparameter in control at the time of execution of the QUIT,
and the remainder of the forparameters in the same forparameter list, not to be calculated and the
commands in the scope not to be executed under their control.

42

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

In other words, execution of QUIT effects the immediate termination of the innermost FOR whose scope
contains the QUIT.

Execution of GOTO effects the immediate termination of all FOR commands in the line containing the GOTO,
and it transfers execution control to the point specified. Note that the execution of a QUIT within the scope
of a FOR does not affect the variable environment, e.g., stacked NEW frames are not removed or processed.

2.6.6 GOTO

G[OTO] postcond sp & qotoarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of C.

I ! entryref postcond
qotoarqumF& : : = I @ expratom y L qotoarqument I

See 2.5.1 for the dl finition of postcond. See 2.2 for the definition of expratom. See section 1 for the definition
of y. See sectic I 1 for the definition of C.

GOTO is a generalized transfer of control. If provision for a return of control is desired, DO may be used.

Each gotoarqument is examined, one at a time in left-to-right order, until the first one is found whose postcond
is either absent, or whose postcond is present and its tvexpr is true. If no such gotoarqument is found, control
is not transferred and execution continues normally. If such a gotoarqument is found, execution continues at
the left of the line it specifies, provided the 5 has the same LEVEL as the containing the GOTO and,
if the LEVEL of the line containing the GOTO is greater than one, there may be no U s of lower execution
LEVEL between the 5 specified by the gotoarqument and the ljne containing the GOTO. Also, the line
containing the GOTO and the specified by the gotoarqument must be in the same routine.

See 2.6.5 for a discussion of additional effects of GOTO when executed within the scope of FOR.

2.6.7 HALT

H[ALT] postcond [Sp]

See 2.5.1 for the definition of postcond.

First, LOCK with no arguments is executed. Then, execution of this process is terminated

2.6.8 HANG

H[ANG] postcond S p 4. hanqarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of C.

I numexpr I
hanqarqument ::= I I

I @ expratom y & hanqarqument I

43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756~992 (El

See 2.2.4 for the definition of numexpr. See 2.2 for the definition of expratom. See section I for the definition
of 2. See section 1 for the definition of LE.
Let t be the value qf numexlir. If t '> O , HANG has no effect. Otherwise, execution is suspended for t
seconds.

2.6.9 IF

1 I L: Ifarqument

I[FI

See section 1 for the definition of C.

ifarqument ::= I - I
I e expratom 114 ifarqument I

See 2.2.4.2 for the definition of ivexpr. See 2.2 for the definition of expratom. See section 1 for the definition
of y. See section 1 for the definition of I;.

In its argumentless form, IF is the inverse of ELSE. That is, if the value of $T is O, the remainder of the
to the right of the IF is not executed. If the value of $T is 1, execution continues normally at the next
command.

If exactly one argument is present, the value of ivexDr is placed into $T; then the function des
is performed.

IF with n arguments is equivalent in execution to n IF commands, each with one argument, with the respective
arguments in the same order. This may be thought of as an implied and of the conditions expressed by the
arguments.

2.6.1 O JOB

J[OB] postcond ÇP 4. jobarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of I.

I
I I
entryref [: jobparameters]

labelref jobactuallist [: jobparameters J
..- I jobarqument . .-

1 @ expratom 1 L jobarqument i
See 2.5.7 for the definition of entryref and labelref. See 2.2 for the definition of expratom. See section 1 for
the definition of y. See section 1 for the definition of C.

jobactuallist : := ('?expr 1

See 2.3 for the definition of o(er. See section 1 for the definition of I.

44

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

l processparameters [timeout]

I
I jobparameters : :=
1 timeout

See 2.5.6 for the definition of timeout.

I
processparameters ::= i T ~ w l : l . . , ~) ~

See 2.3 for the definition of H.

For each jobarqument, the JOB command attempts to initiate another MUMPS process. If the jobactuallist
is present in a iobarciument, the formalline designated by labelref must contain a formallist in which the number
of names is greater than or equal to the number of m s in the jobactuallist.

The JOB command initiates this MUMPS process at the line specified by the entwref or labelref. If the
jobactuallist is present, the process will have certain variables initially defined. These variables will be taken
from the formallist of the formalling designated by the labelref. Formallist names will be created and paired
with the values of the jobactuallist m s for as many o<erç as are present in the jobactuallist. There is no
linkage between the started process and the process that initiated it; jobactuallist w s are passed only by
value. If the jobactuallist is not present, the process will have no variables initially defined.

0

The processparameters can be used in an implementation-specific fashion to indicate partition size, principal
device, and the like.

If a timeout is present,
present, the value of $1
in the jobarqument is

the condition reported by $T is the success of initiating the process. If no timeout is
.is not changed, and process execution is suspended until the MUMPS process named
successfully initiated. The meaning of success in either context is defined by the

implementation.

2.6.11 KILL

[S P I
K[ILL] postcond I I

1 Sp & killarqument I
See 2.5.1 for the definition of postcond. See section 1 for the definition of C. 0

I * I
killarqument ::= (L lname) I @ expratom 1 & killarqument I

See 2.2.2.2 for the definition of @. See 2.2 for the definition of expratorn. See section 1 for the definition
of y. See section 1 for the definition of L.

lname : := - I
I @ expratom v name I

See 2.2.1 for the definition of name. See 2.2 for the definition of expratom. See section 1 for the definition

The three argument forms of KILL are given the following names.

of y.

45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

a. g h ~ : Selective Kill.
b. (L Iname): Exclusive Kill.
c. Empty argument list: Kill All.

See section 1 for the definition of L.

KILL is defined using a subsidiary function K(V) where Vis a g h ~ .

1. Search for the name Vin the NAME-TABLE. If no such entry is found, the function is completed.
Otherwise, extract the DATA-CELL pointer and proceed to step 2.

2. If Vis unsubscripted, delete all tuples in the DATA-CELL.

3. If V has subscripts, then let N be the number of subscripts in V. Delete all tuples in the DATA-
CELL which have N o r greater subscripts and whose first N subscripts are the same as those in V.

Note that as a result of procedure K, $D(V)=O, i.e., the value of Vis undefined, and V has no descendants.

The actions of the three forms of KILL are then defined as:

a. Selective Kill - apply K to the specified qlvn.

b. Exclusive Kill - apply K t o all names in the NAME-TABLE except those in the argument
list. Note that the names in the argument list of an exclusive kill may not be
su bscripted.

c. Kill All - apply Kto all names in the NAME-TABLE.

If a ,aiable N, a descendant of M, is killed, the killing of N affects the value of $D(M) as follows: if N was
not the only descendant of M, $D(M) is unchanged; otherwise, if M has a defined value $D(M) is changed
from 11 to 1 ; if M does not have a defined value $D(M) is changed from 10 to O.

~

2.6.12 LOCK

l [S P I I
L[OCK] postcond 1 sp L lockarqument I

See 2.5.1 for the definition of postcond. See section 1 for the definition of L.

[timeout] I l l + l t nref
lockarqument ::=

I L A

I @ expratom 1 5 lockarqument

See 2.6.12 for the definition of nref. See 2.5.6 for the definition of timeout. See 2.2 for the definition of
expratom. See section 1 for the definition of y. See section 1 for the definition of C.

I [^ I n a m e [(L e x p r) l I
nref -

46

::= I
I @ expratom 1 nref

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

See 2.2.1 for the definition of name. See 2.3 for the definition of a. See 2.2 for the definition of expratom.
See 2.6.12 for the definition of nref. See section 1 for the definition of y. See section 1 for the definition of

LOCK provides a generalized interlock facility available to concurrently executing MUMPS processes to be
used as appropriate to the applications being programmed. Execution of LOCK is not affected by, nor does
it directly affect, the state or value of any global or local variable, or the value of the naked indicator. Its use
is not required to access globals, nor does its use inhibit other processes from accessing globals. It is an
interlocking mechanism whose use depends on programmers establishing and following conventions.

- L.

Each lockaraument specifies a subspace of the total MUMPS name space for which the executing process
seeks to make or release an exclusive claim; the details of this subspace specification are given below.

For the purposes of this discussion, name space is herein defined as the union of all possible X f s after
resolution of all indirection. There exists a table, called the locktable, which contains zero or more nrefs for
each MUMPS process. A given nref may appear more than once for the same process and it may not appear
for multiple processes. Each nref represents a claim on a portion of the name space. The subspace of the
total name space claimed by each nref in the locktable is as follows:

a. If the occurrence of nref is unsubscripted, then the subspace is the set of the following points: one
point for the unsubscripted variable name nref and one point for each subscripted variable name
N(s l,...,si) for which N has the same spelling as Z f .

a
b. If the occurrence of nref is subscripted, let the nref be N(sl,s2, ..., s,,). Then the subspace is the set
of the following points: one point for each of N, N(sl), N(s,,s,), ..., N(sl, ..., s,), where i ' > n, and one point
for each descendant (see 2.2.7 $DATA function for a definition of descendant) of nref.

If the LOCK command is argumentless, LOCK removes all nrefs in the locktable that are associated with this
process.

Execution of lockaraument occurs in the following order:

a. Any expression evaluation involved in processing the lockargument is performed.

b. When the form of lockaraument does not include an initial t or - sign, then prior to evaluating or
executing the rest of the lockaraument, LOCK first removes all nrefs in the locktable that are
associated with this process. For the rest of the discussion, this form acts the same as if an initial +
sign were present.

c. If an explicit or implicit leading t sign is present, then: a
1. A test is made to see if this process can claim the entire subspace defined by the - lockarqument. This subspace can be claimed if each nref of the lockarqument does not
intersect the union of the subspaces claimed at this instant by nrefs in the locktable for all
other processes.

2. If the test performed above indicates that the process cannot claim the specified
subspace, execution of this process is suspended until repetition of the test would indicate
that the process can claim the specified subspace, or, when a timeout is present, until the
timeout expires, if that occurs first. If the timeout expires, step 3 below is skipped.

3. All of the nrefs in the lockargument are inserted into the locktable for this process. This
may result in some nrefs being in the table more than once for this process. The nrefs for
the lockargument are either inserted all at once or not at all.

47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

d. If the lockarqument has a leading - sign, then for each nref in the lockaraument, if the nref exists
in the locktable for this process, one instance of nref is removed from the locktable.

e. If a timeout is present, the condition reported by $T upon completion of the execution of the
lockarqument is the success or failure to establish or relinquish the claim; it has the value of 1 if the
lock claim is established or O if the timeout expires. If no timeout is present, execution of the
lockarqument does not change $T.

2.6.13 NEW

I [S P I
N[EW] postcond 1 sp 2 newarqument I

See 2.5.1 for the definition of postcond. See section 1 for the definition of I-.

I (=&IsE)
newarqument ::=

I @ expratom 1 & newarqument

See 2.6.11 for the definition of Iname. See 2.2 for the definition of expratom. See section 1 for the definition
of y. See section 1 for the definition of C.

NEW provides a means of performing variable scoping.

The three argument forms of NEW are given the following names:

a. Iname: Selective New
b. (L Iname): Exclusive New
c. Empty argument list: New All

See section 1 for the definition of I.
Each argument of the NEW command pushes a frame containing the NEW argument onto the PROCESS-
STACK and copies a set of NAME-TABLE entries into the frame.

The actions of the three forms of NEW are then defined as:

a. Selective New

b. Exclusive New

- the NAME-TABLE entry for lname is copied into the frame.

- the set of NAME-TABLE entries for all names except the names in the
argument are copied into the frame.

- all entries in the NAME-TABLE are copied into the frame. c. New All

In all three cases, the NAME-TABLE entries copied into the frame are subsequently deleted from the NAME-
TABLE. This deletion has the effect of making the variable unknown in the current process context.

See 2.6.1 5 for a description of the actions of QUIT.

48

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 [E)

2.6.14 OPEN

O[PEN] postcond Sp & openarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of C.

I expr [: openparameters 3 I
I e expratom openarqument I . .- openarqument . .-

See 2.3 for the definition of m. See 2.2 for the definition of expratom. See section 1 for the definition of
- V. See section 1 for the definition of C.

I openparameters ::=
deviceparameters [timeout J

I timeout I
See 2.6.2 for the definition of deviceparameters. See 2.5.6 for the definition of timeout.

The value of the first E of each openarqument identifies a device (or file or data set). The interpretation
of the value of this or of any m s in deviceparameters is left to the implementor. (See 2.6.2 for the
syntax specification of deviceparameters.)

The OPEN command is used to obtain ownership of a device, and does not affect which device is the current
device Or the value of $10. (See the discussion of USE in 2.6.18)

For each openarqument, the OPEN command attempts to seize exclusive ownership of the specified device.
OPEN performs this function effectively instantaneously as far as other processes are concerned; otherwise,
it has no effect regarding the ownership of devices and the values of the device parameters. If a timeout is
present, the condition reported by $T is the success of obtaining ownership. If no timeout is present, the value
of $T is not changed and process execution is suspended until seizure of ownership has been successfully
accomplished.

Ownership is relinquished by execution of the CLOSE command. When ownership is relinquished, all device
parameters are retained. Upon establishing ownership of a device, any parameter for which no specification
is present in the openparameters is given the value most recently used for that device; if none exists, an
implementor-defined default value is used.

2.6.15 QUIT

Q[UIT] postcond i SP expr 1
See 2.5.1 for the definition of postcond. See 2.3 for the definition of E.

QUIT terminates execution of an argumentless DO command, doarqument, xarqument, exfunc, exvar, or FOR
command.

Encountering the end-of-routine mark go^ is equivalent to an unconditional argumentless QUIT.

The effect of executing QUIT in the scope of FOR is fully discussed in 2.6.5. Note the g never occurs in
the scope of FOR.

49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

If an executed QUIT is not in the scope of FOR, then it is in the scope of some argumentless DO command,
doarqument, xarqument, exfunc, or if not explicitly then implicitly, because the initial activation of a
process, including that due to execution of a iobarqument, may be thought of as arising from execution of a
DO naming the first executed routine of that process.

The effect of executing a QUIT in the scope of an argumentless DO command, doarqurnent, xarqument,
exfunc, or is to restore the previous variable environment (if necessary), restore the value of $T (if
necessary), restore the previous execution level, and continue execution at the location of the invoking
argumentless DO command, doarqument, xarqument, exfunc, or exvar.
If the is not
present, the return must be to an argumentless DO command, doarqument or xarqument. Any other case is
erroneous.

is present in the QUIT, this return must be to an exfunc or exvar. Similarly, if the

The following steps are executed when a QUIT is encountered:

a. If an is present, evaluate it. This value becomes the value of the invoking exfunc or s.
b. Remove the frame on the top of the PROCESS-STACK. If no such frame exists, then execute an
implicit HALT.

c. If that frame is from a NEW, examine the saved argument of the NEW and take one of the
following actions dependent on the argument types:

1. Selective New

2. Exclusive New

- perform an implicit KILL on the argument Iname.

- perform an implicit KILL on all u s in the NAME-TABLE except
those in the argument of the NEW.

3. New All - perform an implicit KILL ALL.

Finally, copy all NAME-TABLE entries from the frame into the NAME-TABLE.

Processing of this frame is complete, continue at step b.

d. If the frame is a parameter frame, extract the formallist and process each name in the list with the
following steps:

1. Search the NAME-TABLE for an entry containing the name. If no such entry is found,
processing of this name is complete. Otherwise, proceed to step 2.

2. Delete the NAME-TABLE entry for this name.

Finally, copy all NAME-TABLE entries from this frame into the NAME-TABLE.

Processing of this frame is complete, continue at step b.

e. If the frame is from an exfunc or
$T to the value saved in the frame.

f. Restore the execution level and continue execution at the location specified in the framz.

or from an argumentless DO command, set the value of

50

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISQ/IEC 11756:1992 (E)

2.6.16 READ

R[EAD] postcond sp & readarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of L.
I - strlit

f ormat
readarqument ::= I m r e a d c o u n t] [timeout] E [timeout J I * @ expratom 1 & readarqument

See 2.2.5 for the definition of a. See 2.5.4 for the definition of format. See 2.2.2.1 for the definition of h.
See 2.5.6 for the definition of timeout. See 2.2 for the definition of expratom. See section 1 for the definition
of E. See section 1 for the definition of C.

readcount : := # intexpr

See 2.2.4.1 for the definition of intexpr.

The readarquments are executed, one at a time, in left-to-right order.

The top two argument forms cause output operations to the current device; the next two cause input from the
current device to the named local variable (see 2.2.2.3 for a description of the value assignment operation).
If no timeout is present, execution will be suspended until the input message is terminated, either explicitly or
implicitly with a readcount. (See 2.6.18 for a definition of current device.)

If a timeout is present, it is interpreted as a t-second timeout, and execution will be suspended until the input
message is terminated, but in any case no longer than t seconds. If t ’> O, t = O is used.

When a timeout is present, $T is affected as follows. If the input message has been terminated at or before
the time at which execution resumes, $T is set to 1; otherwise, $T is set to O.

When the form of the argument is *(vn [timeout 1, the input message is by definition one character long, and
it is explicitly terminated by the entry of one character, which is not necessarily from the ASCII set. The value
given to & is an integer; the mapping between the set of input characters and the set of integer values given
to !vr~ may be defined by the implementor in a device-dependent manner. If timeout is present and the timeout
expires, & is given the value -1.

When the form of the argument is a [timeout 1, the input message is a string of arbitrary length which is
terminated by an implementor-defined procedure, which may be device-dependent. If timeout is present and
the timeout expires, the value given to & is the string entered prior to expiration of the timeout; otherwise,
the value given to !VJ is the entire string.

When the form of the argument is # intexpr I timeout 1, let n be the value of intexpr. It is erroneous if n
’> O. Otherwise, the input message is a string whose length is at most n characters, and which is terminated
by an implementor-defined, possibly device-dependent procedure, which may be the receipt of the nth
character. If timeout is present and the timeout expires prior to the termination of the input message by either
mechanism just described, the value given to is the string entered prior to the expiration of the timeout;
otherwise, the value given to

When the form of the argument is çtrlit, that literal is output to the current device, provided that it accepts

is the string just described.

output.

51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (€1

When the form of the argument is format, the output actions defined in 2.5.4 are executed.
$X and $Y are affected by READ the same as if the command were WRITE with the same argument list
(except for tirneouts) and with each expr value in each writearaument equal, in turn, to the final value of the
respective resulting from the READ.

2.6.17 SET

S[ET] postcond sp L setarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of C.

j @ expratom 1 4 setarqument I
See 2.2.2.2 for the definition of glvn. See 2.3 for the definition of w. See 2.2 for the definition of exgratom.
See section 1 for the definition of y. See section 1 for the definition of L.

setpiece ::= $P[IECEJ (g& , expr, [, intexpr, [, intexpr, J])

See 2.2.2.2 for the definition of &. See 2.3 for the definition of w. See 2.2.4.1 for the definitio

SET is the general means both for explicitly assigning values to variables, and for substituting n
pieces of a variable. Each setaraurnent computes one value, defined by its expr. That value is
assigned to each of one or more variables, or it is substituted for one or more pieces of a varia
value, Each variable is named by one giv~

Each setaraurnent is executed one at a time in left-to-right order. The execution of a setarqument occurs in
the following order.

a. One of the following two operations is performed:

1. If the portion of the setarqument to the left of the = consists of one or m
&s are scanned in left-to-right order and all subscripts are evaluated, in le
within each giv~.

2. If the portion of the setarqument to the left of the = consists of a setoiece, the glvn that
is the first argument of the setpiece is scanned in left-to-right order and ali subscri
evaluated in left-to-right order within the ghn, and then the remaining arguments
setpiece are evaluated in left-to-right order.

b. The to the right of the = is evaluated.

c. One of the following two operations is performed.

1. If the left-hand side of the set is one or more qlvns, the value of expr is
qlvn, in left-to-right order. (See 2.2.2.3 for a description of the value assignm

2. If the left-hand side of the set is a setpiece, of the form $P(alvn,d,m.n), the value of
replaces the mth through the nth pieces of the current value of the giv~, where the value of

52

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

d is the piece delimiter. Note that both rn and n are optional. If neither is present, then m
= n = 1; if only rn is present, then n = rn. If glvn has no current value, the empty string is
used as its current value. Note that the current value of glvn is obtained just prior to
replacing it. That is, the other arguments of setpiece are evaluated in left-to-right order, and
the a to the right of the = is evaluated prior to obtaining the value of qlvn.

Let s be the current value of glvn, k be the number of occurrences of d in s, that is,
k = max(O,$L(s,d) - i), and t be the value of expr. The following cases are defined,
using the concatenation operator - of 2.3.5.

a) r n > n o r n < 1. The glvn is not changed and does not change the naked
indicator.

b) n ’< m-1 > k. The value in glvn is replaced by s-F(m-1 -k)-f, where F(x)
denotes a string of x occurrences of d, when x > O;
otherwise, F(x) = ‘I”. In either case, qlvn affects the
naked indicator.

The value in glvn is replaced by
$P(s,d,l ,rn-1)-F(min(m-1 , l))-f.

c) rn-1 ’> k e n.

d) Otherwise, The value in glvn is replaced by
$P(s, d,m-l)-F(min(m-1 , l))-f-d-SP(s, d,nt 1 ,kt 1).

If the glvn is a global variable, the naked indicator is set at the time that the qlvn is given its value. If the qlvn
is a naked reference, the reference to the naked indicator to determine the name and initial subscript sequence
occurs just prior to the time that the glvn is given its value.

2.6.18 USE

U[SE] postcond ÇP & usearqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of I-.
expr [: deviceparameters]

I @ expratom 1 4 usearqument I
usearqument : : = 1

See 2.3 for the definition of ex]-. See 2.6.2 for the definition of deviceparameters. See 2.2 for the definition
of expratom. See section 1 for the definition of 2. See section 1 for the definition of I.
The value of the first of each useargument identifies a device (or file or data set). The interpretation of
the value of this expr or of any a s in deviceparameters is left to the implementor. (See 2.6.2 for the syntax
specification of deviceparameters.)

Before a device can be employed in conjunction with an input or output data transfer it must be designated,
through execution of a USE command, as the current device. Before a device can be named in an executed
usearqument, its ownership must have been established through execution of an OPEN command.

The specified device remains current until such time as a new USE command is executed. As a side effect
of employing expr to designate a current device, $10 is given the value of expr.

53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Specification of device parameters, by means of the m s in deviceparameters, is normally associated with
the process of obtaining ownership; however, it is possible, by execution of a USE command, to change the
parameters of a device previously obtained.

Distinct values for $X and $Y are retained for each device. The special variables $X and $Y reflect those
values for the current device. When the identity of the current device is changed as a result of the execution
of a USE command, the values of $X and $Y are saved, and the values associated with the new current
device are then the values of $X and $Y.

2.6.19 VIEW

V[IEW] postcond arguments unspecified

See 2.5.1 for the definition of postcond.

VIEW makes available to the implementor a mechanism for examining machine-dependent information. It is
to be understood that routines containing the VIEW command may not be portable.

2.6.20 WRITE

W[RITE] postcond sp L writearqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of I;.

I format
writearqument ::= I expr

I * intexpr I
I @ expratom 1 writearqument I

See 2.5.4 for the definition of format. See 2.3 for the definition of x. See 2.2.4.1 for the definition of
intexpr. See 2.2 for the definition of expratom. See section 1 for the definition of y. See section 1 for the
definition of L.
The writearquments are executed, one at a time, in left-to-right order. Each form of argument defines an output
operation to the current device.

When the form of argument is format, the output actions defined in 2.5.4 are executed. Each character of
output, in turn, affects $X and $Y as described in 2.5.4 and 2.5.5.

When the form of argument is g x , the value of is sent to the device. The effect of this string at the
device is defined by the ASCII standard and conventions. Each character of output, in turn, affects $X and
$Y as described in 2.5.5.

When the form of the argument is *intexgr, one character, not necessarily from the ASCII set and whose code
is the number represented in decimal by the value of intexgr, is sent to the device. The effect of this character
at the device may be defined by the implementor in a device-dependent manner.

54

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (El

2.6.21 XECUTE

X[ECUTE] postcond & xarqument

See 2.5.1 for the definition of postcond. See section 1 for the definition of I-.
I

@ expratom 1 4 xarqument
xarqument : : =

See 2.3 for the definition of w. See 2.5.1 for the definition of postcond. See 2.2 for the definition of
expratom. See section 1 for the definition of y. See section 1 for the definition of I.
XECUTE provides a means of executing MUMPS code which arises from the process of expression evaluation.

Each xarqument is evaluated one at a time in left-to-right order. If the postcond in the xarqument is present
and its tvexpr is false, the xarqument is not executed. Otherwise, if the value of is x, execution of the
xarqument is executed in a manner equivalent to execution of DO y, where y is the spelling of an otherwise
unused attached to the following two-line subroutine considered to be a part of the currently executing
routine.

y & x &
__. Is QUIT

See 2.4.1 for the definition of and fi.

2.6.22 Z

Z[unspecified] arguments unspecified

All command words in a given implementation which are not defined in the standard are to begin with the letter
Z. This convention protects the standard for future enhancement.

55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISOlIEC 11756:1992 (E)

a

a

56

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Part 2: MUMPS Portability Requirements

57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Table of Contents

Introduction .

1 Expression Elements .
1.1 Names .
1.2 Local Variables .
1.3 Global Variables .
1.4 Data Types .
1.5 Number Range .
1.6 Integers .
1.7 Character Strings .
1.8 Special Variables .

. 61

.

.

.

.

.

.

.

.

.

62
62
62
62
63
63
64
64
64

Expressions .
2.1 Nesting of Expressions .
2.2 Results .

Routines and Command Lines .
3.1 Command Lines .
3.2 Number of Command Lines .
3.3 Number of Commands .
3.4 Labels .
3.5 Number of Labels .
3.6 Number of Routines .

Indirection .

Storage Space Restrictions .

Nesting .

Other Portability Requirements .

64
64
64

64
64
65
65
65
65
63

65

65

66

66

59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 117561992 {E)

60

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Part 2: MUMPS Portability requirements

Introduction
Part 2 highlights, for the benefit of implementors and application programmers,
aspects of the language that must be accorded special attention if MUMPS program
transferability (i.e., portability of source code between various MUMPS implementa-
tions) is to be achieved. It provides a specification of limits that must be observed
by both implementors and programmers if portability is not to be ruled out. To this
end, implementors must meet or exceed these limits, treating them as a minimum
requirement. Any implementor who provides definitions in currently undefined areas
must take into account that this action risks jeopardizing the upward compatibility of
the implementation, up00 subsequent revision of the MUMPS Language Specifica-
tion. Application programmers striving to develop portable programs must take into
account the danger of employing “unilateral extensions” to the language made
available by the implementor.

The following definitions apply to the use of the terms explicit limit and implicit limit
within this document. An explicit limit is one which applies directly to a referenced
language construct. Implicit limits on language constructs are second-order effects
resulting from explicit limits on other language constructs. For example, the explicit
command line length restriction places an implicit limit on the length of any construct
which must be expressed entirely within a single command line.

61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1 Expression Elements

1.1 Names

The use of alpha in names is restricted to upper case alphabetic characters. While there is no explicit limit
on name length, only the first eight characters are uniquely distinguished. This length restriction places an
implicit limit on the number of unique names.

1.2 Local Variables

1.2.1 Number of Local Variables

The number of local variable names in existence at any time is not explicitly limited. However, there are
implicit limitations due to the storage space restrictions (Section 5).

1.2.2 Number of Subscripts

The number of subscripts in a local variable is limited in that, in a local array reference, the sum of the lengths
of all the evaluated subscripts, plus two times the number of subscripts, plus the length of the local variable
name must not exceed 127.

1.2.3 Values of Subscripts

Local variable subscript values are nonempty strings which may only contain characters from the ASCII
printable character subset. The length of each subscript is limited to 63 characters. When the subscript value
satisfies the definition of a numeric data value (See 2.2.3.1 of the MUMPS Language Specification), it is further
subject to the restrictions of number range given in 1.5. The use of subscript values which do not meet these
criteria is undefined, except for the use of the empty string as the last subscript of a reference in the context
of the $ORDER function, and the use of the value "-1" as the last subscript of a reference in the context of
the $NEXT function.

1.2.4 Number of Nodes

There is no explicit limit on the number of distinct nodes which are defined within local variable arrays.
However, the limit on the number of local variables (see 1.2.1) and the limit on the number of subscripts (see
1.2.2) place implicit limits on the number of distinct nodes which may be defined.

1.3 Global Variables

1.3.1 Number of Global Variables

There is no explicit limit on the number of distinct global variable names in existence at any time.

62

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1.3.2 Number of Subscripts

The number of subscripts in a global variable is limited in that, in a global array reference, the sum of the
lengths of all the evaluated subscripts, plus two times the number of subscripts, plus the length of the global
variable name must not exceed 127. If a naked reference is used to specify the global array reference, the
above restriction applies to the full reference to which the naked reference is expanded.

1.3.3 Values of Subscripts

The restrictions imposed on the values of global variable subscripts are identical to those imposed on local
variable subscripts (see 1.2.3).

1.3.4 Number of Nodes

There is no limit on the distinct global variable nodes which are defined.

1.4 Data Types

The MUMPS Language Specification defines a single data type, namely, variable length character strings.
Contexts which demand a numeric, integer, or truth value interpretation are satisfied by unambiguous rules
for mapping a string datum into a number, integer, or truth value.

The implementor is not limited to any particular internal representation. Any internal representation(s) may
be employed as long as all necessary mode conversions are performed automatically and all external behavior
agrees with the MUMPS Language Specification. For example, integers might be stored as binary integers and
converted to decimal character strings whenever an operation requires a string value.

1.5 Number Range

All values used in arithmetic operations or in any context requiring a numeric interpretation are within the
inclusive intervals [-iOz5, -îOZ5] or [1Oz5, 1oZ5], or are zero.

The precision of any value used in arithmetic operations requiring a numeric interpretation is twelve significant
digits.

Programmers should exercise caution in the use of noninteger arithmetic. In general, arithmetic operations
on noninteger operands or arithmetic operations which produce noninteger results cannot be expected to be
exact. In particular, noninteger arithmetic can yield unexpected results when used in loop control or arithmetic
tests.

63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

1.6 Integers

The magnitude of the value resulting from an integer interpretation is limited by the accuracy of numeric values
(see 1.5). The values produced by integer valued operators and functions also fall within this range (see
2.2.4.7 of the MUMPS Language Specification for a precise definition of integer interpretation).

1.7 Character Strings

Character string length is limited to 255 characters. The characters permitted within character
include those defined in the ASCII Standard (ANSI X3.4-1986).

1.8 Special Variables

The special variables $X and $Y are nonnegative integers (see 1.6). The effect of incrementing $X and/or $Y
past the maximum allowable integer value is undefined. (For a description of the cases in which $X and $Y
are incremented see 2.5.5 of the MUMPS Language Specification)

2 Expressions

2.1 Nesting of Expressions

The number of levels of nesting in expressions is not explicitly limited. The maximum string
impose an implicit limit on this number (see 1.7).

2.2 Results

Any result, whether intermediate or final, which does not satisfy the constraints on character strings (see 1.7)
is erroneous. Furthermore, integer results are erroneous if they do not satisfy the constraints O
1.6).

3 Routines and Command Lines

3.1 Command Lines

A command line (II& must satisfy the constraints on character strings (see 1.7). The length of a command
line is the number of characters in the up to but not including the &.

O

The characters within a command line are restricted to the 95 ASCII printable characters. The character set
restriction places a corresponding implicit restriction upon the value of the argument of the indirection delimiter
(Section 4).

64

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (El

3.2 Number of Command Lines

There is no explicit limit on the number of command lines in a routine, subject to storage space restrictions
(Section 5).

3.3 Number of Commands

The number of commands per line is limited only by the restriction on the maximum command line length (see
3.1).

3.4 Labels

A label of the form name is subject 3 the constraints on names; labels of the form intlit are subject to the
length constraint on names (see 1.1).

3.5 Number of Labels

There is no explicit limit on the number of labels in a routine. However, the following restrictions apply:

a) A command line may have only one label.

b) No two lines may be labeled with equivalent (not uniquely distinguishable) labels.

3.6 Number of Routines

There is no explicit limit on the number of routines. The number of routines is implicitly limited by the name
length restriction (see 1.1).

4 Indirection

The values of the argument of indirection and the argument of the XECUTE command are subject to the
constraints on character string length (see 1.7). They are additionally restricted to the character set limitations
of command lines (see 3.1).

5 Storage Space Restrictions

The size of a single routine must not exceed 5000 characters. The size of a routine is the sum of the sizes
of all the lines in the routine. The size of each line is its length (as defined in 3.1) plus two.

65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

The size of local variable storage must not exceed 5000 characters. This size is defined as the sum of the
sizes of all defined local variables, whether within the current NEW context or defined in a higher level NEW
context. The size of an unsubscripted local variable is the length of its name in characters plus the length of
its value in characters, plus four. The size of a local array is the sum of the following:

a) The length of the name of the array.

b) Four characters plus the length of each value.

c) The size of each subscript in each subscript list.

d) Two additional characters for each node N, whenever $DATA(N) is 10 or 11.

All subscripts and values are considered to be character strings for this purpose.

6 Nesting

Each active DO, Extrinsic Function, Extrinsic Special Variable, FOR, XECUTE, and indirection occurrence is
counted as a level of nesting. Control storage provides for thirty levels of nesting. The actual use of all these
levels may be limited by storage restrictions (Section 5).

Nesting within an expression is not counted in this limit. Expression nesting is not explicitly limited; however,
it is implicitly limited by the storage restriction (Section 5).

7 Other Portability Requirements

Programmers should exercise caution in the use of noninteger values for the HANG command and in timeouts.
In general, the period of actual time which elapses upon the execution of a HANG command cannot be ex-
pected to be exact. In particular, relying upon noninteger values in these situations can lead to unexpected
results.

66

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

Appendix A: ASCII Character Set
(informative)

Octal

O
1
2
3
4
5
6
7
10
1 1
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56

Decimal

O
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Hexadecimal

O0
O 1
02
03
04
05
06
07
08
O9
OA
OB
oc
OD
OE
OF
10
1 1
12
13
14
15
16
17
18
19
1A
1B
1c
1 D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
26
2c
2D
2E

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BELL
BS
HT
LF
VT
FF
CR
so
SI
DLE
DC 1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us
SP (space)
!

$
%
&

I I

ISO/IEC 11756:1992 (E)

67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756:1992 (E)

Octal

57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
1 O0
1 O1
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
1 24
125
126
127
130
131
132
133
134
135
136
137
140
141

Decimal

47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

58

Hexadecimal

2F
30
31
32
33
34
35
36
37
38
39
3A
38
3 c
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
48
4c
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5 c
5D
5E
5F
60
61

Character

I
O
1
2
3
4
5
6
7
8
9

!

<
- -
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
v
W
X
Y
z
[
\
I
A

Patcode

e

68

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

ISO/IEC 11756~992, (E)

Octal

142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Decimal

98
99
1 O0
1 O1
102
103
104
105
106
107
108
1 O9
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hexadecimal

62
63
64
65
66
67
68
69
6A
68
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
7 c
7D
7E
7F

Character

b

d
e
f
9
h
i
j
k
I
rn
n

P
9
r
S
t
U
V
w
X

C

O

Y
z

I
1 -
DEL

Patcode

69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
75

6:1
99

2

https://iecnorm.com/api/?name=35f2c01a3cdfd7213808a43d93bd90a0

	1 Static Syntax Metalanguage
	2 Static Syntax and Semantics
	2.1 Basic Alphabet
	2.2 Expression Atom expratom
	2.2.1 Name name
	2.2.2Variables
	2.2.2.1 Local Variable Name
	2.2.2.2 Global Variable Name
	2.2.2.3 Variable Handling
	2.2.2.4 Variable Contexts
	2.2.3 Numeric Literal numlit
	2.2.3.1 Numeric Data Values

	2.2.4 Numeric Interpretation of Data
	2.2.4.1 Integer Interpretation
	2.2.4.2 Truth-value Interpretation

	2.2.5 String Literal
	2.2.6 Intrinsic Special Variable Name
	2.2.7 Intrinsic Functions function
	2.2.7.1 $ASCII
	2.2.7.2$CHAR
	2.2.7.3$DATA
	2.2.7.4$EXTRACT
	2.2.7.5$FIND
	2.2.7.6 $FNUMBER

	2.2.7.7$GET
	2.2.7.8 $JUSTIFY
	2.2.7.9 $LENGTH

	2.2.7.10$NEXT
	2.2.7.11 $ORDER
	2.2.7.12 $PIECE
	2.2.7.13 QUERY.
	2.2.7.14 $RANDOM
	2.2.7.15$SELECT
	2.2.7.16$TEXT
	2.2.7.18 $VIEW

	2.2.7.19$Z

	2.2.8 Unary Operator unaryop
	2.2.9 Extrinsic Special Variable
	2.2.10 Extrinsic Function

	2.3 Expressions
	2.3.1 Arithmetic Binary Operators
	2.3.2 Relational Operators
	2.3.2.1 Numeric Relations
	2.3.2.2 String Relations

	2.3.3 Pattern match
	2.3.4 Logical Operators
	2.3.5 Concatenation Operator

	2.4 Routines
	2.4.1 Routine Structure
	2.4.2 Routine Execution

	2.5 General command Rules
	2.5.1 Post Conditionals
	2.5.2 Spaces in Commands
	2.5.3Comments
	2.5.4 format in READ and WRITE
	2.5.5 Side Effects on $X and $Y

	2.5.6Timeout
	2.5.7 Line References
	2.5.8 Command Argument Indirection
	2.5.9 Parameter Passing

	2.6 Command Definitions
	2.6.1 BREAK
	2.6.2CLOSE
	2.6.3 DO
	2.6.4 ELSE

	2.6.5FOR
	2.6.6GOTO
	2.6.7HALT
	2.6.8 HANG

	2.6.9IF
	2.6.10JOB
	2.6.11 KILL

	2.6.12LOCK
	2.6.13NEW
	2.6.14 OPEN

	2.6.15QUlT
	2.6.16 READ

	2.6.17SET
	2.6.18 USE

	2.6.19VlEW
	2.6.20WRlTE
	2.6.21 XECUTE

	Introduction
	1 Expression Elements
	1.1 Names
	1.2 LocalVariables
	1.3 Global Variables
	1.4 DataTypes
	1.5 Number Range
	1.6 Integers
	1.7 Character Strings
	1.8 Special Variables

	2 Expressions
	2.1 Nesting of Expressions
	2.2 Results

	3.1 Command Lines
	3.2 Number of Command Lines
	3.3 Number of Commands
	3.4 Labels
	3.5 Number of Labels
	3.6 Number of Routines

	4 Indirection
	5 Storage Space Restrictions
	6 Nesting
	7 Other Portability Requirements
	Appendix A ASCII Character Set (ANSI X3.4-1986
	Appendix B Metalanguage Elements
	Index
	Introduction
	Expression Elements
	1.1 Names
	1.2 Local Variables
	1.3 Global Variables
	1.4 Data Types
	1.5 Number Range
	1.6 Integers
	1.7 Character Strings
	1.8 Special Variables

	Expressions
	2.1 Nesting of Expressions
	2.2 Results

	Routines and Command Lines
	3.1 Command Lines
	3.2 Number of Command Lines
	3.3 Number of Commands
	3.4 Labels
	3.5 Number of Labels
	3.6 Number of Routines

	Indirection
	Storage Space Restrictions
	Nesting
	Other Portability Requirements

