
INTERNATIONAL
STANDARD

IEC
62056-53

First edition
2002-02

Electricity metering �
Data exchange for meter reading,
tariff and load control �

Part 53:
COSEM application layer

Reference number
IEC 62056-53:2002(E)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables
you to search by a variety of criteria including text searches, technical
committees and date of publication. On-line information is also available on
recently issued publications, withdrawn and replaced publications, as well as
corrigenda.

• IEC Just Published
This summary of recently issued publications (www.iec.ch/JP.htm) is also
available by email. Please contact the Customer Service Centre (see below) for
further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

http://www.iec.ch/
http://www.iec.ch/catlg-e.htm
http://www.iec.ch/JP.htm
mailto:custserv@iec.ch
https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

INTERNATIONAL
STANDARD

IEC
62056-53

First edition
2002-02

Electricity metering –
Data exchange for meter reading,
tariff and load control –

Part 53:
COSEM application layer

PRICE CODE

 IEC 2002  Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland
Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch

XF
For price, see current catalogue

 Commission Electrotechnique Internationale
 International Electrotechnical Commission

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 2 � 62056-53  IEC:2002(E)

CONTENTS

FOREWORD...5
1 Scope...7
2 Normative references ...7
3 Terms, definitions and abbreviations ..8
4 The COSEM communications framework .. 10

4.1 Client/server type operation, communication profiles ... 10
4.2 Connection (association) oriented operation .. 11

5 Overview : the COSEM application layer .. 12
5.1 Specification method ... 12
5.2 Application layer structure ... 12
5.3 Service specification ... 13

5.3.1 Services provided for application association establishment and
release .. 13

5.3.2 Data communication services .. 14
5.4 Layer management services .. 15
5.5 Protocol specification .. 15

6 COSEM application layer � Service specification .. 15
6.1 Summary of services ... 15
6.2 Application association establishment and release .. 16
6.3 Special application associations .. 17

6.3.1 Mandatory application associations ... 17
6.3.2 Pre-established application associations ... 17
6.3.3 Non-confirmed application associations ... 17

6.4 Data communication .. 17
6.5 Client COSEM application layer services ... 18

6.5.1 Application association establishment.. 18
6.5.2 Application association release.. 22
6.5.3 Client/server type data communication services .. 24
6.5.4 Client side services for event notification ... 33
6.5.5 Client side layer management services.. 35

6.6 Server COSEM application layer services.. 37
6.6.1 Application association establishment.. 37
6.6.2 Application association release.. 39
6.6.3 Client/server type data communication services .. 42

7 COSEM application layer protocol specification .. 53
7.1 State definitions for the client side Control function ... 54
7.2 State definitions for the server side Control function .. 55
7.3 Protocol for application association establishment/release 56

7.3.1 Establishment of an application association... 56
7.3.2 Establishment of special application associations 58
7.3.3 The AARQ and AARE APDUs .. 59
7.3.4 Managing the parameters for application association establishment 60
7.3.5 Repeated COSEM-OPEN.request service invocations 61
7.3.6 Releasing an application association ... 64
7.3.7 Registered COSEM names .. 66

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 3 �

7.4 Protocol for data communications.. 69
7.4.1 Protocol for the xDLMS services using LN referencing............................... 69
7.4.2 Protocol for the xDLMS services using SN referencing 83

8 Specification of COSEM data types and APDU-s .. 87
8.1 The COSEM APDUs .. 87
8.2 The AARQ and AARE APDUs.. 88
8.3 Useful types .. 89
8.4 The xDLMS-Initiate.request/response/ConfirmedServiceError PDUs...................... 94
8.5 The conformance block ... 95
8.6 Definition of APDUs for data communication ... 96

8.6.1 COSEM APDUs using logical name referencing... 96
8.6.2 DLMS APDUs using short name referencing .. 100

Annex A (normative) The 3-layer, connection-oriented, HDLC based profile........................ 101
A.1 Introduction ... 101
A.2 The HDLC-based data link layer � Overview.. 101

A.2.1 Services of the HDLC based data link layer ... 102

Annex B (normative) The xDLMS application service element ... 105
B.1 Introduction ... 105
B.2 DLMS compliance ... 105
B.3 Extensions to DLMS for COSEM ... 105

B.3.1 Additional services .. 105
B.3.2 Additional data types ... 105
B.3.3 The conformance block.. 106
B.3.4 DLMS version number ... 106
B.3.5 Other necessary modifications... 106

Annex C (informative) AARQ and AARE encoding examples... 107
C.1 Encoding example of the xDLMS-Initiate.request PDU... 107
C.2 Encoding example of an AARQ not using the ACSE security mechanism............. 108
C.3 Encoding example of an AARQ using low level authentication 109
C.4 Encoding example of an AARQ using high-level authentication 110
C.5 Encoding example for the AARE APDU, case of success 111
C.6 Encoding example of the xDLMS-Initiate.response PDU 111
C.7 Encoding of the AARE not using security or using low level security.................... 113
C.8 Encoding of the AARE using high-level security... 114
C.9 Encoding example for the AARE-pdu, case of failure 1 .. 115
C.10 Encoding example for the AARE APDU, case of failure 2 116

Annex D (informative) Data model and protocol .. 119

Figure 1 � Client/server relationship in COSEM .. 10
Figure 2 � Exchanging messages via the communications protocol....................................... 10
Figure 3 � The COSEM application layer on the top of various lower layer stacks 11
Figure 4 � A complete communications session in the CO environment 12
Figure 5 � The structure of the COSEM application layers .. 13

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 4 � 62056-53  IEC:2002(E)

Figure 6 � Structure of the COSEM AL when the server is using SN references.................... 15
Figure 7 � Summary of COSEM application layer services .. 16
Figure 8 � Normal service sequence for the COSEM-OPEN service...................................... 16
Figure 9 � Client side services for application association establishment 18
Figure 10 � Client services for releasing an application association 22
Figure 11 � Client side data communication services .. 24
Figure 12 � Client side services for event notification ... 34
Figure 13 � Server side services for application association establishment 37
Figure 14 � Server side services for releasing an application association 40
Figure 15 � Server side data communications services using LN referencing 42
Figure 16 � Partial state machine for the client side control function 54
Figure 17 � Partial state machine for the server side control function.................................... 55
Figure 18 � MSC for successful application association establishment.................................. 57
Figure 19 � Handling non-confirmed COSEM-OPEN.request at the client side 62
Figure 20 � Handling the reception of a non-confirmed AARQ at the server side................... 63
Figure 21 � Graceful release of an application association.. 65
Figure 22 � Aborting an application association following a PH-ABORT.indication 66
Figure 23 � MSC for a confirmed GET service in case of success ... 70
Figure 24 � MSC for a confirmed SET service in case of success ... 70
Figure 25 � MSC for the SET service in case of failure ... 71
Figure 26 � MSC for the ACTION service (simplest case) ... 71
Figure 27 � Example: EventNotificaton triggered by the client ... 73
Figure 28 � Long data with the GET service in three data blocks .. 78
Figure 29 � Long data transfer in three data blocks with the SET service.............................. 79
Figure 30 � Long data transfer with the ACTION service ... 82
Figure 31 � MSC for the ReadRequest/Response services ... 83
Figure A.1 � Data link services used by the client COSEM application layer 102
Figure A.2 � Data link layer services used by the server COSEM application layer 103
Figure D.1 � The three-step approach of COSEM ... 119

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 5 �

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICITY METERING � DATA EXCHANGE FOR
METER READING, TARIFF AND LOAD CONTROL �

Part 53: COSEM application layer

FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International
Organization for Standardization (ISO) in accordance with conditions determined by agreement between the
two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance
with this International Standard may involve the use of a maintenance service concerning the stack of protocols on
which the present standard IEC 62056-53 is based.

The IEC takes no position concerning the evidence, validity and scope of this maintenance service.

The provider of the maintenance service has assured the IEC that he is willing to provide services under
reasonable and non-discriminatory terms and conditions for applicants throughout the world. In this respect, the
statement of the provider of the maintenance service is registered with the IEC. Information may be obtained from:

DLMS1 User Association
Geneva / Switzerland

www.dlms.ch

International Standard IEC 62056-53 has been prepared by IEC technical committee 13:
Equipment for electrical energy measurement and load control.

The text of this standard is based on the following documents:

FDIS Report on voting

13/1268/FDIS 13/1274/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

�������
1 Device Language Message Specification.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 6 � 62056-53  IEC:2002(E)

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

Annexes A and B form an integral part of this standard.

Annexes C and D are for information only.

The committee has decided that the contents of this publication will remain unchanged until
2006. At this date, the publication will be

• reconfirmed;

• withdrawn;

• replaced by a revised edition, or

• amended.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 7 �

ELECTRICITY METERING � DATA EXCHANGE FOR
METER READING, TARIFF AND LOAD CONTROL �

Part 53: COSEM application layer

1 Scope

This part of IEC 62056 specifies the COSEM application layer in terms of structure, services
and protocols, for COSEM clients and servers.

Data communication services with COSEM interface objects, using Logical name (LN)
referencing and Short name (SN) referencing, are specified. COSEM servers use either LN or
SN referencing during a given association: this is negotiated during the Application
Association establishment. The COSEM client always uses LN referencing. If the client
communicates with a server using SN referencing, the LN services are mapped to SN
services.

Annex C includes encoding examples for APDUs. Annex D gives an explanation of the role of
data models and protocols in electricity meter data exchange.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050-300:2001, International Electrotechnical Vocabulary � Electrical and electronic
measurements and measuring instruments � Part 311: General terms relating to
measurements � Part 312: General terms relating to electrical measurements � Part 313:
Types of electrical measuring instruments � Part 314: Specific terms according to the type of
instrument

IEC 61334-4-41:1996, Distribution automation using distribution line carrier systems � Part 4:
Data communication protocols � Section 41: Application protocols � Distribution line message
specification

IEC 61334-6:2000, Distribution automation using distribution line carrier systems � Part 6:
A-XDR encoding rule

IEC/TR2 62051:1999, Electricity metering � Glossary of terms

IEC 62056-21, Electricity metering � Data exchange for meter reading, tariff and load control
� Part 21: Direct local data exchange 2

IEC 62056-42:2001, Electricity metering � Data exchange for meter reading, tariff and load
control � Part 42: Physical layer services and procedures for connection-oriented
asynchronous data exchange

IEC 62056-46, Electricity metering � Data exchange for meter reading, tariff and load control
� Part 46: Data link layer using HDLC protocol

�������
2 To be published.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 8 � 62056-53  IEC:2002(E)

IEC 62056-61, Electricity metering � Data exchange for meter reading, tariff and load control
� Part 61: OBIS Object identification system

IEC 62056-62, Electricity metering � Data exchange for meter reading, tariff and load control
� Part 62: Interface objects

ISO/IEC 8649:1996, Information technology � Open Systems Interconnection � Service definition
for the Association Control Service Element

ISO/IEC/TR2 8650-1:1996, Information technology � Open systems interconnection � Connection-
oriented protocol for the association control service element: Protocol specification

ISO/IEC 8824:1990, Information technology � Open Systems Interconnection � Specification
of Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825:1990, Information technology � Open Systems Interconnection � Specification
of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

ISO/IEC 13239:2000, Information technology � Telecommunications and information exchange
between systems � High-level data link control (HDLC) procedures

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purpose of this part of IEC 62056, the definitions in IEC 60050-300 and IEC/TR
62051, as well as the following, apply.

3.1.1
base_name
the short_name corresponding to the first attribute (�logical_name�) of a COSEM interface
object

3.1.2
class_id
interface class identification code

3.1.3
client
a station, asking for services

3.1.4
COSEM interface object
an instance of a COSEM interface class

3.1.5
server
a station, delivering services. The tariff device (metering equipment) is normally the server,
delivering the requested data or executing the requested tasks.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 9 �

3.2 Abbreviations
AA Application Association
AARE Application Association REsponse
AARQ Application Association ReQuest
ACSE Application Control Service Element
AE Application Entity
AP Application Process
APDU Application layer Protocol Data Unit
API Application Programming Interface
ASE Application Service Element
ASO Application Service Object
A-XDR Adapted eXtended Data Representation
BER Basic Encoding Rules
CF Control function
.cnf confirm service primitive
CO Connection Oriented
COSEM COmpanion Specification for Energy Metering
DLMS Distribution Line Message Specification
DSAP Data link Service Access Point
GMT Greenwich Mean Time
HDLC High-level Data Link Control
HLS High-Level Security
IC Interface Class
LLC Logical Link Control (sub-layer)
LLS Low Level Security
LPDU LLC Protocol Data Unit
LSB Least Significant Bit
LSAP LLC sub-layer Service Access Point
m mandatory, used in conjunction with attribute and method

definitions
MSB Most Significant Bit
MSC Message Sequence Chart
o optional, used in conjunction with attribute and method definitions
OBIS OBject Identification System
PDU Protocol Data Unit
.req .request service primitive
.res .response service primitive
SAP Service Access Point
xDLMS-ASE extended DLMS Application Service Element

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 10 � 62056-53  IEC:2002(E)

4 The COSEM communications framework

4.1 Client/server type operation, communication profiles

Communication with electricity metering equipment using the COSEM interface classes is
based on the client/server paradigm, where metering equipment3 plays the server role. In
this environment, communication takes place always between a client and a server
application process: in other words, the server application process provides remote services
to the client application process. These services are provided via exchanging messages
(SERVICE.requests/.responses) between the client and the server application processes, as it
is shown in Figure 1.

C lient application
Server application
(COSEM device)

SER VICE.request

SER VICE.response

Figure 1 � Client/server relationship in COSEM

In general, the client and the server application processes are located in separate devices,
exchanging messages is done with the help of the communications protocol.

Client

Application
layer

Intermediate
protocol layers

Physical layer

Server
.request

.response

.request .response

Protocol

Physical channel

Figure 2 � Exchanging messages via the communications protocol

�������
3 The metering equipment is an abstraction; consequently the equipment playing the role of a server may be any

type of equipment for which this abstraction is suitable.

IEC 268/02

IEC 269/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 11 �

In general, communication protocols are structured in layers. The client and server COSEM
applications use services of the highest protocol layer, that of the application layer:
consequently, this is the only protocol layer which shall contain COSEM specific element(s).
This is called the xDLMS_ASE. All COSEM interface object related services � the xDLMS
application protocol � are provided by this xDLMS_ASE.

Other protocol layers are independent from the COSEM model, consequently the COSEM
application layer can be placed on the top of a wide variety of lower protocol layer stacks, as
it is shown in Figure 3.

xDLMS_ASE ACSE

Application layer

N layer
N-1 layer

N layer N layer

Physical layer Physical layer Physical layer

Profile 1 Profile 2 Profile M

���

Figure 3 � The COSEM application layer on the top of various lower layer stacks

A complete protocol stack � including the application layer, a physical layer and all protocol
layers between these extreme layers � is called a communications profile.

A communications profile is characterized by the protocol layers included, their parameters,
and by the type � connection-oriented or connectionless � of the ACSE4 included in the
application layer.

4.2 Connection (association) oriented operation

The xDLMS application protocol is a connection-oriented protocol. It means, that the client
and server application processes can use the services of the xDLMS_ASE only when these
application processes are associated5. Therefore, in this environment a communication
session consists of three phases, as it is shown on Figure 4.

�������
4 ACSE = Association Control Service Element
5 Application associations can be considered as application level connections.

IEC 270/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 12 � 62056-53  IEC:2002(E)

Client application Server application

Phase 1.
Connection establishment

Phase 2.
Data communication

Phase 3.
Connection releaset

Figure 4 � A complete communications session in the CO environment

In the COSEM environment, application association establishment is normally done by using
the association request/response services of the standard association control service
element. On the other hand, for the purposes of very simple devices, one-way communicating
devices and for multicasting and broadcasting, pre-established application associations are
also allowed; see 6.3.2. For these associations, there is no need to use the services of the
ACSE: a full communication session may include only the data communication phase. (It can
be considered that the connection establishment phase has been already done somewhere in
the past.)

5 Overview : the COSEM application layer

5.1 Specification method

The COSEM application layer is specified in terms of structure, services and protocols.

5.2 Application layer structure

The main component of the client and server COSEM application layers is the COSEM ASO,
which provides services to the COSEM application process, and uses services provided by
the supporting lower layer.

Both the client and server side COSEM ASO contains three mandatory components:

• the ACSE. The task of this element is to establish, maintain and release application
associations. For the purposes of connection-oriented profiles, the connection-oriented
ACSE, specified in ISO/IEC 8649 and ISO/IEC/TR2 8650-1 is used;

• the Extended DLMS application service element (xDLMS_ASE). The task of this element is
to provide data communication services between COSEM equipment. See also Annex B;

• the Control function (CF). This element specifies how the ASO services invoke the
appropriate service primitives of the ACSE and the xDLMS ASE and the services of the
supporting layer.

NOTE Both the client and the server COSEM ASO may contain other, optional application protocol components.

Figure 5 shows �minimal� COSEM ASOs, containing only the three mandatory components.

IEC 271/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 13 �

COSEM client ASO
Client control function

COSEM client ASO services
Referencing by Logical Name

Supporting layer services

Client
xDLMS_ASE

Client
ACSE

COSEM client
application process

COSEM client application
L

COSEM server ASO

 COSEM server ASO services

Supporting layer services

Server
xDLMS_ASE

Server
ACSE

COSEM server
application process

COSEM server application
L

Pr
ot

oc
ol

Ap
pl

ic
at

io
ns

(c
om

m
un

ic
at

io
ns

)
(in

te
rfa

ce
 o

bj
ec

ts
)

WAN, ex. PSTN

Server control
F ti(Server CF)

Supporting layer (data link) and other
protocol layers

Supporting layer (data link) and other
protocol layers

Referencing by Logical
Name or by Short Name

(Client CF)

Figure 5 � The structure of the COSEM application layers

5.3 Service specification

Service specifications cover the services required of, or by the COSEM client and server
application processes at the logical interfaces with the respective COSEM application layer,
using connection-oriented procedures.

Services provided by the COSEM ASO fall into three categories:

• application association establishment and release;

• data communication;

• layer management.

The client and server application layer services are specified in clause 6.

5.3.1 Services provided for application association establishment and release

These services are the following:

• COSEM-OPEN;

• COSEM-RELEASE;

• COSEM-ABORT.

The COSEM-OPEN service is used during application association establishment phase and
relies on the association request/response services of the ACSE. In the case of pre-
established application associations (6.3.2) these services are not used.

As in any COSEM communications profile, there is a one-to-one relationship between an
application association and a supporting protocol layer connection, the COSEM-RELEASE
and COSEM-ABORT services � used during the connection release phase � do not rely on
the ACSE. Application associations are released or aborted simply by disconnecting the
corresponding supporting layer connection.

IEC 272/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 14 � 62056-53  IEC:2002(E)

5.3.2 Data communication services

IEC 62056-62 specifies two referencing methods for COSEM servers: referencing by Logical
Names (LN) and referencing by Short Names (SN). Therefore, two distinct service sets are
specified for the server side xDLMS_ASE. One set uses exclusively LN references, the other
set uses exclusively SN references. Thus, these services are the following:

• COSEM interface object attribute-related services: GET, SET for LN referencing and
Read, Write, Unconfirmed Write for SN referencing;

• COSEM interface object method-related services: ACTION (LN), Write (SN);

• the EventNotification (LN), InformationReport (SN) services.

The services listed above rely on the services of the xDLMS_ASE. Most of these services
contain references to attributes or methods of COSEM interface objects.

The service set to be used on the server side during the data communications phase is
negotiated during the association establishment phase, using the conformance block, see 8.5.
It shall not change during the lifetime of the established association. Using LN or SN services
within a given application association is exclusive. Therefore, it can be considered that there
are two, different server xDLMS_ASE-s: one providing services with Logical name references
and another providing services with Short name references. The server application layer shall
include one of these xDLMS_ASE-s.

NOTE A server could use both LN and SN referencing in different application associations.

On the client side, in order to handle the different referencing schemes transparently for the
COSEM client application process, the COSEM client application layer provides only one
service set, using Logical name referencing. This has two major consequences:

• using a unique, standardized service set between COSEM client applications and the
communications protocol � hiding the particularities of different COSEM servers � allows
to specify an Application Programming Interface (API). This is an explicitly specified
interface corresponding to this service set for applications running in a given computing
environment (e.g. Windows98, UNIX, etc.) Using this � public � API specification, client
applications can be developed without knowledge about particularities of a given server;

• when the COSEM server device does not use Logical name referencing, the client
application layer shall include an additional component. The purpose of this component is
to map the LN service set, used by the client application process into/from the service set,
used by the server application process. Figure 6 shows the COSEM client application
layer when the server is using Short name references. The additional component is called
SN_MAPPER_ASE. See also 6.5.5.2.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 15 �

COSEM client ASO
Client control function

COSEM client ASO services
Referencing by Logical Name

Supporting layer services

Client
xDLMS_ASE Client

ACSE

COSEM client
application process

COSEM client application
L

COSEM server ASO

COSEM server ASO services

Supporting layer services

Server
xDLMS_ASE

Server
ACSE

COSEM server
application process

COSEM server application
L

Pr
ot

oc
ol

Ap
pl

ic
at

io
ns

(c
om

m
un

ic
at

io
ns

)
(in

te
rfa

ce
 o

bj
ec

ts
)

PSTN

 Client
SN_MAPPER

SN referencing (RD/WR)

Server control
F ti(Server CF)

Supporting layer (data link) and other
protocol layers

Supporting layar (data link) and other
protocol layers

Figure 6 � Structure of the COSEM AL when the server is using SN references

5.4 Layer management services

Layer management services have local importance only. Therefore, specification of these
services is not within the scope of this standard. The specific SetMapperTables service is
defined in 6.5.5.1.

5.5 Protocol specification

The COSEM application layer protocols specify the procedures for the transfer of information
for application association control, authentication (ACSE procedures) and for data exchange
between COSEM clients and servers (xDLMS procedures). These procedures are defined in
terms of:

• the interactions between peer ACSE and xDLMS protocol machines through the use of
services of the supporting protocol layer;

• the interactions between the ACSE and xDLMS protocol machines and their service user;

• the abstract syntax (ASN.1, ISO/IEC 8824) representation of Application Protocol Data
Units (APDUs) is also specified with the application protocols; see clause 8.

NOTE All COSEM services are operating on an already established physical connection. Establishment of this
physical connection is done outside of the COSEM protocol, therefore, it is not within the scope of this standard.

6 COSEM application layer � Service specification

6.1 Summary of services

A summary of the services available at the top of the COSEM application layer is shown in
Figure 7.

IEC 273/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 16 � 62056-53  IEC:2002(E)

XX
.re

q

ZZ
.in

d
ZZ

.re
sXX

.c
nf

Ev
en

tN
ot

ifi
ca

tio
n.

re
q

or
In

fo
rm

at
io

nR
ep

or
t.r

eq

COSEM client
application process

COSEM server
application process

Application layer

ZZ.response

ZZ.request

Ev
en

tN
ot

ifi
ca

tio
n.

in
d

EventNotification

C
O

SE
M

-O
PE

N
.re

q
C

O
SE

M
-O

PE
N

.c
nf

C
O

SE
M

-R
EL

EA
SE

.re
q

C
O

SE
M

-R
EL

EA
SE

.c
nf

C
O

SE
M

-A
BO

R
T.

in
d

C
O

SE
M

-O
PE

N
.re

s
C

O
SE

M
-R

EL
EA

SE
.in

d
C

O
SE

M
-R

EL
EA

SE
.re

s

C
O

SE
M

-A
BO

R
T.

in
d

Tr
ig

g_
Ev

en
tN

ot
if.

re
q

C
O

SE
M

-O
PE

N
.in

d

Figure 7 � Summary of COSEM application layer services

NOTE In the figure, above XX and ZZ refers to client/server type data communication services. These services
may be different on the client side and the server side, if the server does not use LN referencing. See 6.4.

6.2 Application association establishment and release

The COSEM-OPEN, COSEM-RELEASE and COSEM-ABORT services are used for the
establishment and release of application associations.

The COSEM-OPEN.request service is invoked by the COSEM client application process to
open an application association to a COSEM server application process. Invoking this service
implies � after connecting the lower layers 6 � to generate a COSEM-OPEN.indication service
primitive at the server side. The server shall respond to this request by invoking the COSEM-
OPEN.response service, which is transferred to the client application process as a remote
confirmation (COSEM-OPEN.confirm). This normal opening sequence is shown in Figure 8.

Client
application layer

Server
application layer

COSEM-
OPEN.request

COSEM-
OPEN.indication

COSEM-
OPEN.response

COSEM-
OPEN.confirm

time

Figure 8 � Normal service sequence for the COSEM-OPEN service

�������
6 Except for the physical layer, which should be already connected.

IEC 274/02

IEC 275/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 17 �

NOTE The COSEM-OPEN.request may also be locally confirmed, for example when the connection of a lower
layer is not successful.

The COSEM-RELEASE service is provided for graceful disconnection of an existing
application association. As COSEM server application processes are not allowed to request a
graceful disconnection, the COSEM-RELEASE.request service is available only for the
COSEM client. The nominal service sequence for the COSEM-RELEASE service is the same
as is shown in Figure 8. for the COSEM-OPEN service, replacing the word �OPEN� with the
word �RELEASE�.

The ABORT service is used to indicate the disconnection of the physical connection. This
service is the same at both sides.

6.3 Special application associations

6.3.1 Mandatory application associations

As specified in 4.6 of IEC 62056-62, each physical device shall contain a management logical
device. The mandatory contents of the management logical device are defined in 4.6.4 of
IEC 62056-62. The management logical device must support an application association to a
public client, with the lowest security level. The client address 0x10 is reserved for the public
client.

6.3.2 Pre-established application associations

A pre-established application association does not need to be established using the COSEM-
OPEN service. It can be considered, that this OPEN has already been done (it is of no importance
how). Consequently, pre-established application associations should be considered to be existing
from the moment of the establishment of the physical connection between the client and the
server devices. A pre-established application association can be either confirmed or non-
confirmed (depending on the way it is pre-established), but in any case it cannot be released. The
purpose of this type of association is to simplify data exchange with simple devices, (e.g.
supporting one-way communication only). The pre-established application association eliminates
the need of connection establishment and release (phases 1 and 3 on Figure 4) and only data
communication services are used. These must use connectionless services of the supporting
lower protocol layers.7

6.3.3 Non-confirmed application associations

A client application may invoke the COSEM-OPEN.request service in two different ways:
confirmed or non-confirmed. A non-confirmed COSEM-OPEN.request invocation shall result in
the establishment of a non-confirmed application association. Within this application
association the client COSEM application layer shall accept only non-confirmed xDLMS
service requests (GET, SET, ACTION). The purpose of having this type of association is to
allow multicasting and broadcasting.

6.4 Data communication

For data communication purposes, the client application layer provides the following set of
services (referred to as XX on Figure 7):

• GET service (.request, .confirm);

• SET service (.request, .confirm);

• ACTION service (.request, .confirm).

All these services refer to attributes or methods of COSEM interface objects via logical
names.
�������
7 Pre-established associations cannot be supported by a lower protocol layer not providing non-connected data

communication services.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 18 � 62056-53  IEC:2002(E)

There are also non-client/server type services to support receiving information like alarms
from a COSEM server without first requesting it by the client. These are:

• EventNotification service (.indicate);

• Trigger_EventNotification_Sending (.request).

The client application layer obtains knowledge during the application association establish-
ment phase about the referencing method used by the server. When the client application
process invokes the data communication services, the COSEM client application layer shall
send the APDU corresponding to the appropriate service invocation to the server (referred to
as ZZ in Figure 7).

When the server is also using LN references, the server side service set is the complementary
of the client side service set (the same service set, but .request services shall be transferred
as .indication services, and the .confirm services are originated as .response services).

When the server is using SN references, the service set is as follows:

• READ service (.indication, . response);

• WRITE service (.indication, .response);

• UNCONFIRMED WRITE service (.indication);

• InformationReport service (.request).

As explained in 5.3.2, in order to able to �map� between the different service sets, the client
application layer shall include an additional protocol component, called �Client SN_MAPPER�.

The corresponding server application layer shall signal the reception of this (LN or SN
referencing) APDU to the server application process. In most cases, the server application
process responds to the received .request service by invoking the corresponding .response
service. Upon the reception of the APDU, corresponding to that .response invocation, the
client application layer shall generate the appropriate Logical name referencing service
primitive to the client application process.

6.5 Client COSEM application layer services

6.5.1 Application association establishment

6.5.1.1 Overview

Figure 9 shows services provided by the client side application layer for application
association establishment. These services are provided by the ACSE.

COSEM client application process

COSEM client application layer

C
O

SE
M

-O
PE

N
.re

q

C
O

SE
M

-O
PE

N
.c

nf

Figure 9 � Client side services for application association establishment
IEC 276/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 19 �

6.5.1.2 COSEM-OPEN.request

Function

This service is invoked by the COSEM client application process to request the establishment
of an application association to a remote COSEM server application process.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.request
(
Protocol_Connection_Parameters,
Dedicated_Key,
DLMS_Version_Number,
DLMS_Conformance,
Client_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Calling_Authentication_Value,
Implementation_Information,
User_Information,
Service_Class
)

The Protocol_Connection_Parameters service parameter contains all the information neces-
sary to establish lower layer protocol connections. See Annex A.

The Dedicated_Key, DLMS_Version_Number, DLMS_Conformance and Client_Max_
Receive_PDU_Size parameters contain respectively the value of the dedicated-key, the
proposed-dlms-version-number, the proposed-conformance and the client-max-receive-pdu-
size parameters of the xDLMS-Initiate.request PDU. These parameters are specified in
IEC 61334-4-41, and in 8.4 and of this standard. Annex C gives some examples of their
usage. The xDLMS-Initiate.request PDU shall be inserted in the user-information field of the
AARQ APDU to be sent.

The ACSE_Protocol_Version, Application_Context_Name, Application_Ids_and_Titles, Security_
Mechanism_Name and the Calling_Authentication_Value parameters shall be inserted into the
corresponding fields of the AARQ APDU to be sent.

The xDLMS-ASE and the ACSE provide only the framework for transporting this information.
To provide and verify that information is the job of the appropriate COSEM application
process. Default and allowed values for these fields are defined in 7.3.7.

The Implementation_Information parameter is optional. If present, it shall be inserted into the
implementation-information field of the AARQ APDU to be sent.

The User_Information parameter is optional. If present, it shall be passed on to the supporting
layer.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 20 � 62056-53  IEC:2002(E)

The Service_Class parameter indicates whether the service shall be invoked in confirmed or
unconfirmed manner.

Use

The client application process uses this service to initiate the establishment of an application
association to a remote server application process.

When the service is invoked with Service_class == Confirmed, the COSEM client shall first
establish all required lower layer connections using the service parameters received (except
for the physical layer connection, which must be already established prior to this service
invocation). Then the COSEM application layer shall send an AARQ APDU to its peer
application layer, including the service parameters received.

If the client application process invokes a COSEM-OPEN.request with Service Class ==
Confirmed with the same parameters as an already established application association, then
the application layer shall locally and negatively confirm this second COSEM-OPEN.request
for the reason that the requested application association is already existing.

The COSEM-OPEN.request service with Service_class == Unconfirmed can be used to
establish non-confirmed application associations (see 6.3.3). Unconfirmed association is
normally used with connectionless profiles � but for special purposes (e.g. multicasting and
broadcasting), COSEM allows to establish non-confirmed application associations within
connection oriented profiles, too.

The main purpose of invoking the COSEM-OPEN.request service with Service_class ==
Unconfirmed is to communicate to the client side application layer the necessary parameters
� lower layer addresses, application and xDLMS contexts, etc. � for the data communications
phase. The service invocation, depending on the implementation, shall or shall not cause the
client application layer to send a corresponding AARQ frame8. If transmitted, this AARQ is
sent using connectionless data services of the supporting lower layer protocol stack. In both
cases, the service shall be locally confirmed by the client application layer.

The protocol for application association establishment is specified in 7.3.1.

6.5.1.3 COSEM-OPEN.confirm

Function

This service is invoked by the COSEM client application layer to indicate whether the
previously requested application association is accepted or not.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.confirm
(
Protocol_Connection_Parameters,
Local_or_Remote,
Result,
Failure_type,
DLMS_Version_Number,
DLMS_Conformance,
Server_Max_Receive_PDU_Size,

�������
8 Both behaviours are allowed and are conform to this standard.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 21 �

ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Responding_Authentication_Value,
Implementation_Information
)

The Protocol_Connection_Parameters service parameter contains all the information required
to identify the protocol connection having been established. These parameters identify the
participants of the application association requested by the preceding COSEM-OPEN.request
service.

The Local_or_Remote parameter indicates the origin of the COSEM-OPEN.confirm service
primitive invocation. When this parameter is set to Remote, the service invocation has been
originated by the reception of an AARE APDU from the remote server. Otherwise, the service
is locally originated.

In case of a remote confirmation, the Result parameter indicates whether the COSEM server
application process accepted the requested association or not. In case of local confirmation,
the Result parameter indicates whether the client side protocol stack accepted the request or
not. In the case of non-acceptance (remote or local), the Failure_type parameter indicates the
reason for not accepting the proposed association.

The DLMS_Version_Number, DLMS_Conformance and Server_Max_Receive_PDU_Size
parameters contain respectively the value of the negotiated-dlms-version-number, negotiated-
conformance and server-max-receive-PDU-size parameters of the xDLMS- Initiate.response
PDU. These parameters are specified in IEC 61334-4-41, and in 8.4 of this standard. Annex C
gives some examples for their usage. The xDLMS-Initiate.response PDU is transported in the
user-information field of the received AARE APDU.

The ACSE_Protocol_Version, Application_Context_Name, Application-Ids_and_Titles, Security_
Mechanism_Name and the Responding_Authentication_Value parameters carry the value of
the corresponding fields of the received AARE APDU.

The Implementation_Information parameter, if present, carries the value of the implemen�
tation-information field of the received AARE APDU.

Use

The COSEM client application layer uses this service primitive to indicate to the client
application process whether the previously proposed application association is accepted or
not. It may be generated as a result of a received AARE APDU (remote confirmation). It may
also be generated locally in the following cases:

• in case of a pre-established and/or non-confirmed application association;

• if the requested application association already exists;

• due to a locally detected error (missing or not correct parameters, failure during the
establishment of lower layer connections or missing physical connection).

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 22 � 62056-53  IEC:2002(E)

6.5.2 Application association release

6.5.2.1 Overview

Figure 10 shows the services provided by the client application layer for releasing an existing
application association.

COSEM client application process

COSEM client application layer

C
O

SE
M

-R
EL

EA
SE

.re
q

C
O

SE
M

-R
EL

EA
SE

.c
nf

C
O

SE
M

-A
BB

O
R

T.
in

d

Figure 10 � Client services for releasing an application association

In the COSEM environment, an application association is unambiguously identified by the
corresponding lower protocol layer addresses (SAPs). Therefore, the application association
can be non-ambiguously released by disconnecting the appropriate lower connection.
Consequently, there is no APDU associated to the RELEASE service: the service is simply
accomplished at the lower protocol layer level.

Graceful disconnection � an application/data link level disconnection, which does not imply
physical disconnection � can be requested only by the COSEM client application process by
invoking the COSEM-RELEASE.request service. This is a remotely confirmed9 service, and
implies a message exchange between the client and server supporting layers.

The client application process is informed about the result of the requested disconnection via
the COSEM-RELEASE.confirm service primitive.

Any existing application association shall be aborted when the physical connection is
disconnected. Requesting a physical channel disconnection is done outside of the protocol,
therefore it is not within the scope of this standard. A COSEM-ABORT.indication primitive is
provided to indicate a non-solicited physical link disconnection to the application process.

6.5.2.2 COSEM-RELEASE.request

Function

This service primitive is invoked by the COSEM client application process to request the
release of an existing application association with a remote COSEM server application
process.

Service parameters

The semantics of this service primitive is as follows:

COSEM-RELEASE.request

�������
9 Locally confirmed only when an error condition occurs, for example there is no response from the server.

IEC 277/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 23 �

(
User_Information
)

The User_Information parameter is optional. If present, it shall be passed on to the supporting
layer. Specification of the content of this parameter is not within the scope of this standard.

Use

The client application process uses this service primitive to gracefully release an existing
application association with a remote server application process. As an application associ-
ation is bound to a supporting layer connection on a one-to-one basis, the invocation of this
service shall not imply sending an APDU. Instead, the COSEM client application layer shall
initiate the disconnection of the corresponding lower layer connection by invoking the
corresponding XX-DISCONNECT.request service of the supporting lower protocol layer.

The protocol for releasing an application association is described in 7.3.6.

6.5.2.3 COSEM-RELEASE.confirm

Function

The COSEM client application layer invokes this service primitive to indicate to the application
process whether the previously received request for releasing the application association is
accepted.

NOTE The server cannot refuse a release request.

Service parameters

The semantics of the primitive are as follows:

COSEM-RELEASE.confirm
(
Result,
Failure_type,
User_Information
)

In case of a remote confirmation, the Result parameter indicates the success or the failure of
the corresponding association release request. In case of a local confirmation, the Result
parameter is always set to ERROR.

In the case of non-acceptance, the Failure_type indicates the reason for the failure.

NOTE This parameter is generated locally.

The User_Information field may be present only when the association is remotely confirmed.
In this case, it contains user specific information carried by the supporting lower protocol
layer(s), if this is possible. Specification of its content is not within the scope of this standard.

Use

The COSEM client application layer uses this service primitive to indicate to the client
application process the result of the previously requested release of an application
association. This service primitive shall be originated either as a result of the invocation of a
XX-DISCONNECT.confirm service (where XX is the supporting lower protocol layer), or by a
locally detected error � missing or not correct parameters, or communication failure at lower
protocol layer level.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 24 � 62056-53  IEC:2002(E)

6.5.2.4 COSEM-ABORT.indication

Function

This service is invoked by the client application layer to indicate to the client application
process an unsolicited disconnection of the physical layer.

Service parameters

The semantics of the primitive is as follows:

COSEM-ABORT.indication
(
Diagnostics
)

The optional Diagnostics parameter shall indicate the possible reason for the physical
disconnection, and may carry lower protocol layer dependent information as well. Specifi-
cation of the contents of this parameter is not within the scope of this standard.

Use

The client application layer uses this service primitive to indicate to the COSEM client
application process that a physical connection abort occurred in a non-solicited manner (e.g.
the physical line is cut).

6.5.3 Client/server type data communication services

6.5.3.1 Service overview

Figure 11 shows services provided by the client side application layer during the data
communications phase.

COSEM client application process

COSEM client application layer

G
E

T.
re

q G
E

T.
cn

f

S
ET

.re
q

S
ET

.c
nf

A
C

TI
O

N
.re

q

A
C

TI
O

N
.c

nf

Figure 11 � Client side data communication services

Data communication services rely on the services of the xDLMS_ASE. These services contain
references to attributes or methods of COSEM interface objects.

For COSEM servers, two types of referencing are specified in IEC 62056-62: Logical Name
(LN) and Short Name (SN). The COSEM client application layer provides only one service set,
using logical name referencing. Consequently, when the COSEM server device does not use
logical name referencing, the client application layer shall include an additional application
protocol component, see in Figure 6. The purpose of this is to �map� the LN service set
into/from the service set used by the server application process.

The service set provided at the COSEM client side is:

IEC 278/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 25 �

• COSEM interface object attribute related services: GET, SET (.request, .confirm);

• COSEM interface object method related service: ACTION (.request, .confirm).

The .request primitive of these services is invoked by the COSEM client application process.
The role of the protocol with regard to these services is to transport them as .indication to the
COSEM server application process.

NOTE Consequently, a .request APDU is identical to an .indication APDU and a .response APDU is identical to a
.confirm APDU. For APDU definitions, see 8.6.

All data communication services within a confirmed application association can be invoked in
confirmed or non-confirmed manner. In case of non-confirmed application associations, data
communication services may only be invoked in a non-confirmed manner.

In case of confirmed service invocation, the server application process shall return the
confirmation by invoking the corresponding .response service primitive. The receipt of this
response is indicated to the client application process via the .confirm service primitive.

Unconfirmed service invocation will not imply .response/.confirm primitive invocation. The
reason for this is to avoid collisions due to potential multiple responses in the case of
multicasting and/or broadcasting.

The protocol for confirmed service invocations is described in 7.4.1.1 and for unconfirmed
service invocations in 7.4.1.2.

6.5.3.2 GET.request

Function

This service is invoked by client application process to request the value(s) of one or all
attributes of one or more COSEM interface object(s) from the remote server application
process.

Service parameters

The semantics of the primitive is as follows:

GET.request
(
Invoke_Id,
Priority,
Service_Class,
Request_Type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor,},
Block_Number,
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters
)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 26 � 62056-53  IEC:2002(E)

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

The Request_type parameter indicates the type of the current GET.request service
invocation: NORMAL, NEXT or WITH-LIST. A GET.request always starts with a GET.request
type NORMAL or WITH-LIST. A GET.request with NEXT type is issued only when the
requested data is too long for being transferred in one .response APDU. The protocol for non-
transparent long data transfer with the GET service is described in 7.4.1.8.2.

A GET.request service shall contain one or more COSEM_Attribute_Descriptor service
parameters, each of them referencing one or all attributes of a COSEM interface object. The
COSEM_Attribute_Descriptor service parameter is a composite parameter, consisting of the
following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters component, in case of selective access (see
7.4.1.6) carries the additional data required for the selective GET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

One GET.request invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL or WITH-LIST.

The optional Block_Number parameter is present only when Request_type == NEXT. It
carries the number of the last correctly received block of long data.

Use

The client application process uses this service primitive to request the value(s) of one or all
attributes of one or more COSEM interface object(s) from the server application process.

6.5.3.3 GET.confirm

Function

This service is invoked by the client application layer to indicate the reception of a
GET.response APDU from the COSEM server application process.

Service parameters

The semantics of the primitive is as follows:

GET.confirm
(
Invoke_Id,
Priority,
Response_type,
Result, { Result , }

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 27 �

Block_Number
)

The Invoke_Id identifies the instance of this service invocation. Its value shall be equal to the
Invoke_Id of the corresponding GET.request service invocation.

The value of the Priority parameter indicates the priority level associated to the response
received. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding GET.request service invocation.

The Response_type parameter indicates whether this .confirm service invocation contains the
complete response to the previous GET.request service invocation, or it contains only a block
of the required data. This parameter shall carry one of the following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
GET.request;

• WITH-LIST: the service invocation contains the complete response for a GET.request
service of type WITH-LIST (including a list of attribute references);

• ONE-BLOCK: the service invocation contains one block of the complete response. The
Block_Number parameter carries the number of the data block carrying a part of the result
as raw data;

• LAST-BLOCK: the service invocation contains the last data block of the response.

The Result parameter shall carry either the requested data, or in case of error, the indication
of the type of error. If the encoded form of the Result parameter does not fit in one APDU,
then it shall be transported in blocks, carried by the result parameter of the Get-Confirm-With-
Datablock APDU, of type DataBlock-G. This parameter shall include the block number and the
encoded form of the result as raw data or data access result.

The number of Result parameters in the GET.confirm service shall be the same as the
number of COSEM_Attribute_Descriptor parameters in the corresponding GET.request
service � one response for each request.

Use

The client application layer uses this service primitive to indicate the reception of a
GET.response APDU.

6.5.3.4 SET.request

Function

This service primitive is invoked by the client application process to request the remote server
application process to set the value of one or more attributes of a COSEM interface object.

Service parameters

The semantics of the primitive is as follows:

SET.request
(
Invoke_Id,
Priority,
Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor , },

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 28 � 62056-53  IEC:2002(E)

Block_Number,
Data, { Data, }
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters
)

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal and high.

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

The Request_type parameter indicates whether the Data parameter of the service primitive
carries all the data necessary to set all the attributes referenced by the COSEM_
Attribute_Descriptor (list) or only a block of it. This parameter shall be set to one of the
following values:

• NORMAL: the service invocation contains the reference to one or all (Attribute_0 feature,
see 7.4.1.7.1) attribute(s) of one COSEM interface object and all the required data. The
optional Block_Number parameter shall not be present in the service invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object attribute
references and all the required data. The optional Block_Number parameter shall not be
present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to one or all attribute(s) of
one COSEM interface object and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• FIRST-BLOCK-WITH-LIST: the service invocation contains a list of COSEM interface
object attribute references and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the data. The
Block_Number parameter carries the number of the datablock carrying a part of the Data
parameter as raw data, and no COSEM_Attribute_Descriptor(s) shall be present;

• LAST-BLOCK: the service invocation contains the last block of the Data. The
Block_Number parameter carries the number of this data block, and no
COSEM_Attribute_Descriptor(s) shall be present.

NOTE In the case of ONE-BLOCK and LAST-BLOCK SET-Request-With-Datablock APDU shall be generated.

A SET.request service shall contain one or more COSEM_Attribute_Descriptor service
parameters, each of them referencing one or more attributes of a COSEM interface object.
The COSEM_Attribute_Descriptor service parameter is a composite parameter, consisting of
the following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 29 �

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance.

The optional Access_Selection_Parameters element, in case of selective access (see 7.4.1.6)
carries the additional data required for the selective SET operation. This parameter can be
used only when COSEM_Object_Attribute_Id != 0.

One SET.request invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only when Request_type == NORMAL, Request_type == WITH-LIST or Request_type ==
FIRST-BLOCK-XXX.

The optional Block_Number parameter is present when Request_type != NORMAL or WITH-
LIST. It carries the number of the data block within the current service invocation.

The Data parameter contains the data necessary to set the attributes identified by the
Attribute_descriptor parameter(s). If the encoded form of the data does not fit in one APDU,
then it shall be transported in blocks, carried by the datablock parameter of the appropriate
Set-Request-XX APDU, of type DataBlock-SA. This parameter shall include the block number
and the encoded form of the data as raw data. The protocol for long data transfer with the
SET service is described in 7.4.1.8.3.

The number of Data parameters in the SET.request service shall be the same as the number
of COSEM_Attribute_Descriptors: one Data for each COSEM_Attribute_Descriptor.

Use

The client application process uses this service primitive in order to request the remote server
application process to set the value of one or more attributes of one or more COSEM
interface objects.

6.5.3.5 SET.confirm

Function

This service primitive is invoked by the client application layer to indicate the reception of a
SET.response from the COSEM server application process.

Service parameters

The semantics of the primitive is as follows:

SET.confirm
(
Invoke_Id,
Priority,
Response_type,
Result { Result, },
Block_Number
)

The Invoke_Id identifies the instance of this service invocation. Its value is equal to the
Invoke_Id of the corresponding SET.request service invocation.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 30 � 62056-53  IEC:2002(E)

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter is equal to the value of the Priority parameter of the
corresponding SET.request service invocation.

The Response_type parameter indicates whether this .confirm service invocation contains the
response for the complete SET.request operation, or it is simply an acknowledge of the
previously received data block. This parameter shall carry one of the following values:

• NORMAL: the .confirm service contains the confirmation of the previous SET.request
operation, which carried a single COSEM interface object attribute reference. The Result
parameter carries the result of the required operation;

• WITH-LIST: the .confirm service contains the confirmation of the previous SET.request
operation, which carried a list of COSEM interface object attribute references. The Result
parameter carries the list of results for each required SET operation;

• ACK-BLOCK: this value indicates that this .confirm service contains the acknowledgement
for the last correctly received data block. The Block_Number parameter carries the
number of the received data block;

• LAST-BLOCK: the SET.confirm service is invoked with this value after the reception of the
last data block of a SET.request service, which carried a reference to a single COSEM
interface object attribute. This value indicates that this .confirm service contains the
response to the original SET.request service, which has been sent in several blocks. The
Result parameter carries the result of the required operation and the Block_Number
parameter carries the number of the last data block;

• LAST-BLOCK-WITH-LIST: the SET.confirm service is invoked with this value after the
reception of the last data block of a SET.request service, which carried a list of COSEM
interface object attribute references. This value indicates that this .confirm contains the
response to the original SET.request service, which has been sent in several blocks. The
Result parameter carries the list of result for each required set operation and the
Block_Number parameter carries the number of the last data block.

The number of Result parameters in the SET.confirm service with Response_type == WITH-
LIST and LAST-BLOCK-WITH-LIST shall be the same as the number of Attribute references
in the corresponding SET.request service � one result for each request. Each Result
parameter shall carry the result of the corresponding SET.request operation.

Use

The client application layer uses this service primitive to indicate the reception of a
SET.response APDU.

6.5.3.6 ACTION.request

Function

This service is invoked by the client application process to remotely invoke one or more
method(s) of one or more COSEM interface object(s) in the remote server application
process.

Service parameters

The semantics of the primitive is as follows:

ACTION.request
(
Invoke_Id,
Priority,
Service_Class,

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 31 �

Request_Type,
COSEM_Method_Descriptor, { COSEM_Method_Descriptor, },
Block_Number,
Method_Invocation_Parameters, { Method_Invocation_Parameters, }
)

COSEM_Method_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Method_Id
)

Method_Invocation_Parameters ::= Data

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal and high.

The Service_Class parameter indicates whether the service is invoked in a confirmed or
unconfirmed manner.

The Request_type parameter indicates whether the given invocation contains a complete
request or only a part of it. This parameter shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to one COSEM interface object
method and the Method_Invocation_Parameters required for the invocation of this method.
The optional Block_Number parameter shall not be present in the service invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object(s) method
references and all the required Method_Invocation_Parameters. The optional
Block_Number parameter shall not be present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to one COSEM interface
object method and the first part of the required Method_Invocation_Parameters. The
Block_Number parameter shall be set to 0001;

• WITH-LIST-AND-FIRST-BLOCK: the service invocation contains a list of COSEM interface
object methods and the first part of the required Method_Invocation_Parameters. The
Block_Number parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the Method_Invoca-
tion_Parameters. The Block_Number parameter carries the number of the parameter
block carrying a part of the Method_Invocation_Parameters parameter, and no COSEM_
Method_Descriptor shall be present;

• LAST-BLOCK: this value indicates that the current block is the last parameter block to be
transferred. The Block_Number parameter carries the number of this parameter block, and
no COSEM_Method_Descriptor(s) shall be present;

• NEXT: this value indicates that this .request contains an acknowledgement for a
previously received parameter block, and requests the server to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
block.

An ACTION.request service shall contain one or more COSEM_Method_Descriptor service
parameters, each of them referencing one method of a COSEM interface object. The

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 32 � 62056-53  IEC:2002(E)

COSEM_Method_Descriptor service parameter is a composite parameter, consisting of the
following components:

The { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance. The complete COSEM_
Method_Descriptor references one method of that object instance: this method is identified by
the COSEM_Object_Method_Id component.

The optional Block_Number parameter is present either when the .request contains a
parameter block to be sent or when the .request acknowledges a previously received
parameter block (Request_type == NEXT). The Block_Number parameter carries the number
of the last received parameter block.

Invoking a method may require additional parameters. The Method_Invocation_Parameters
parameter carries the data necessary for the invocation of the method(s) identified by the
COSEM_Method_Descriptor parameter. If the encoded form of the Method_ Invoca-
tion_Parameters does not fit in one APDU, then it shall be transported in blocks,

carried by the pBlock parameter of the appropriate Action-Request-XX APDU, of type
DataBlock-SA. This parameter shall include the block number and the encoded form of the
Method_Invocation_Parameters as raw data.

The ACTION.request service shall contain as many Method_Invocation_Parameters
then COSEM_Method_Descriptors: one Method_Invocation_Parameters for each COSEM_
Method_Descriptor. Therefore, even if the invocation of a method does not require additional
parameters, the corresponding Method_Invocation_Parameters component shall be present in
the service invocation � but it shall be empty.

The COSEM_Method_Descriptor parameter shall not be present when Request_type == ONE-
BLOCK or LAST BLOCK.

Use

This service primitive is used by the client application process to remotely invoke one or more
method(s) of one or more COSEM interface object(s) in the remote server application
process.

6.5.3.7 ACTION.confirm

Function

This service is invoked by the client application layer to indicate the reception of a
ACTION.response from the COSEM server application process.

Service parameters

The semantics of the primitive is as follows:

ACTION.confirm
(
Invoke_Id,
Priority,
Response_type,
Result, { Result, },
Block_Number,

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 33 �

Response_Parameters, { Response_Parameters, }
)

The Invoke_Id identifies the instance of this service invocation. Its value shall be equal to the
Invoke_Id of the corresponding ACTION.request service invocation.

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding ACTION.request service invocation.

The Response_type parameter indicates whether this .confirm service invocation contains the
complete response requested by the previous ACTION.request service invocation, it contains
only a block of the required data, or it is simply an acknowledge of a previously received block
of the ACTION.request service. This parameter shall carry one of the following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
ACTION.request which carried a single COSEM interface object method reference;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
ACTION.request service, including a list of COSEM interface object method references;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the parameter block carrying a part of
the response as raw data;

• LAST-BLOCK: this value indicates that the service invocation contains the last block of the
response as raw data;

• NEXT: this value indicates that service invocation contains an acknowledgement for the
previously received parameter block and requests the client to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
block.

The Result parameter carries the result of the invocation of the COSEM interface object
method(s).

The Response_Parameters carries the optional data to be returned as a result of the
invocation of the COSEM interface object methods.

The number of Result and Response_Parameters parameters in the ACTION.confirm service
primitive with Response_type == WITH-LIST or a .confirm service which is sent in several
parameter blocks shall be the same then the number of COSEM interface object method
references in the corresponding ACTION.request service � one Result and Response_
Parameter for each request.

If the encoded form of the Result and Response_Parameters do not fit in one APDU, then
they shall be transported in blocks, carried by the pBlock parameter of the Action-Response-
With-Pblock APDU, of type DataBlock-SA. This parameter shall include the block number and
the encoded form of the Result and Response_parameters as raw data.

Use

The client application layer uses this service primitive to indicate the reception of a
ACTION.response APDU.

6.5.4 Client side services for event notification

Figure 12 shows services provided by the client side application layer for event notification.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 34 � 62056-53  IEC:2002(E)

COSEM client application process

COSEM client application layer

E
ve

nt
N

ot
ifi

ca
tio

n.
in

d

Tr
ig

tg
er

_E
ve

nt
N

ot
ifi

ca
tio

n_
S

en
di

ng

Figure 12 � Client side services for event notification

The EventNotification service is the only non-client/server type service provided in COSEM.
Using the EventNotification.request service, the server application process is able to send an
unsolicited notification of the occurrence of an event to the remote client application.
Reception of the EventNotification message is indicated to the client application process via
the EventNotification.indication primitive. The protocol is described in 7.4.1.3.

In some cases, the supporting lower layer protocol(s) do (does) not allow sending a protocol
data unit in a real, unsolicited manner. In these cases, the client shall explicitly solicit sending
an EventNotification frame, by invoking the Trigger_EventNotification_sending service
primitive.

6.5.4.1 EventNotification.indication

Function

This service is invoked by the client application layer to indicate the reception of an
EventNotification.indication from the COSEM server application process.

Service parameters

The semantics of the primitive is as follows:

EventNotification.indication
(
Time,
Protocol_Parameters,
COSEM_Attribute_Descriptor,
Attribute_Value
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id
)

IEC 279/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 35 �

The optional Time service parameter indicates the time assigned to the event by the server.

The Protocol_Parameters service parameter contains all protocol parameters, which are
required to identify the source and the destination application processes of the
EventNotification.indication message.

The { COSEM_Class_Id, COSEM_Object_Instance_Id, COSEM_Object_Attribute_Id } triplet
identifies non-ambiguously one and only one attribute of a COSEM interface object instance.

The Attribute_Value service parameter carries the value of this attribute. More information
about the notified event may be obtained by interrogating this COSEM interface object.

Use

The client application layer uses this service primitive to indicate the reception of an
EventNotification.indication to the client application process.

6.5.4.2 Trigger_EventNotification_Sending.request

Function

This service is invoked by the client application process in order to trigger the server to send
the frame carrying the Event-Notification-Request APDU.

NOTE This service is necessary in case of lower layer protocols when the server is not able to send a real non-
solicited EventNotification message.

Service parameters

The semantics of the primitive is as follows:

Trigger_EventNotification_Sending.req
(
Protocol_Parameters
)

The Protocol_Parameters service parameter contains all lower protocol dependent information
which is required for triggering the server to send out an eventually pending frame containing
an Event-Notification-Request APDU. This information includes the protocol identifier, and all
the required lower layer parameters.

Use

Upon the reception of a Trigger_EventNotification_Sending.request service invocation from
the client application process, the client application layer shall invoke the corresponding
supporting layer service to send a trigger message to the server.

6.5.5 Client side layer management services

This subclause defines a special layer management service, used to manage the short name
mapper application service element. This client side service is necessary only if the server
uses SN referencing. All other layer management services are not within the scope of this
standard.

6.5.5.1 SetMapperTable.request

Function

This service is invoked by the client application process to provide mapping information to the
Client SN_MAPPER ASE. This service does not cause any data transmission between the

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 36 � 62056-53  IEC:2002(E)

client and the server. This service is necessary only if on the server side SN referencing is
used.

Service parameters

The semantics of the primitive is as follows:

SetMapperTable.request
(
Mapping_table
)

The Mapping_table parameter contains the contents of the attribute �object_list� for the
requested server and application association. The structure of the content is defined in
IEC 62056-62.

Use

The client application process uses this service primitive, in order to enhance the efficiency of
the mapping process if SN referencing is used.

6.5.5.2 Mapping client services for servers using Short names

For servers using SN referencing, the services listed above are mapped to the corresponding
xDLMS services (comp. IEC 61334-4-41) by the client Control function (see Figure 6) in the
following manner:

Client side xDLMS Service (LN ref.) Server side xDLMS Service (SN ref.)

GET.request ReadRequest

GET.confirm ReadResponse

SET.request (Service_Class=�confirmed�) WriteRequest

SET.request (Service_Class=�unconfirmed�) UnconfirmedWriteRequest

SET.confirm WriteResponse

ACTION.request (Service_Class=�unconfirmed�) UnconfirmedWriteRequest

ACTION.request (Service_Class=�confirmed�) Action with return parameters:

ReadRequest

VariableAccessSpecification:=
parametrised access

(IEC 61334-4-41)

Selector:= 0;

If no method invocation parameters
are supplied:

Parameter := null-data

Action without return parameters:

WriteRequest

If no method invocation parameters
are supplied:

Data := null-data

ACTION.confirm ReadResponse

If no data is returned then:

data:= null-data.

EVENTNOTIFICATION.indication InformationReportRequest

Details about the mapping of the logical names to short names are given in IEC 62056-62.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 37 �

6.6 Server COSEM application layer services

6.6.1 Application association establishment

6.6.1.1 Overview

Figure 13 shows the services provided by the server application layer for application
association establishment. These services are provided by the ACSE.

COSEM server application process

COSEM server application layer

C
O

SE
M

-O
PE

N
.in

d

C
O

SE
M

-O
PE

N
.re

s

Figure 13 � Server side services for application association establishment

6.6.1.2 COSEM-OPEN.indication

Function

This service is invoked by the server side of the application layer following the receipt of an
AARQ APDU, to indicate to the COSEM server application process that the peer (client)
application process requested the establishment of an application association.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.indication
(
Protocol_Connection_Parameters,
Dedicated _Key,
DLMS_Version_Number,
DLMS_Conformance,
Client_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application-Ids_and_Titles,
Security_Mechanism_Name,
Calling_Authentication_Value,
Implementation_Information,
User_Information,
Service_Class
)

IEC 280/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 38 � 62056-53  IEC:2002(E)

The Protocol_Connection_Parameters service parameter contains all the information
necessary to establish lower layer protocol connections. See Annex A.

The Dedicated_Key, DLMS_Version_Number, DLMS_Conformance and
Client_Max_Receive_PDU_Size parameters contain respectively the value of the dedicated-
key, the proposed-dlms-version-number, the proposed-conformance and the client-max-
receive-pdu-size parameters of the xDLMS-Initiate.request PDU. These parameters are
specified in IEC 61334-4-41 and in 8.4 of this standard. Annex C gives some examples for
their usage. The xDLMS-Initiate.request PDU shall be inserted in the user-information field of
the AARQ APDU received.

The ACSE_Protocol_Version, Application_Context_Name, Application_Ids_and_Titles,
Security_Mechanism_Name and the Calling_Authentication_Value parameters are carried by
the corresponding fields of the received AARQ APDU.

The xDLMS-ASE and the ACSE provide only the framework for transporting this information.
To provide and verify that information is the job of the appropriate COSEM Application
Process. Default and allowed values for these fields are defined in 7.3.7.

The Implementation_Information parameter, if present, carries the value of the
implementation-information field of the received AARQ APDU.

The User_Information parameter is optional. When present, it contains the information sent by
the Client Application Process using the same parameter in the corresponding .request
primitive.

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

Use

This service is used by the server side application layer to indicate the reception of a correctly
formatted AARQ APDU to the COSEM server application process. All lower layer connections
have to be already established.

The protocol for application association establishment is described in 7.3.1.

6.6.1.3 COSEM-OPEN.response

Function

This service is invoked by the server application process to indicate whether the previously
proposed application association is accepted or not.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.response
(
Protocol_Connection_Parameters,
Result,
Failure_type,
DLMS_Version_Number,
DLMS_Conformance,
Server_Max_Receive_PDU_Size,

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 39 �

ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Responding_Authentication_Value,
Implementation_Information
)

The Protocol_Connection_Parameters service parameter contains all the information required
to identify the protocol connections having been established.

The Result parameter indicates whether the COSEM server application process accepted the
association request or not.

In the case of non-acceptance, the Failure_type parameter indicates the reason for not
accepting the proposed application association.

The DLMS_Version_Number, DLMS_Conformance and Server_Max_Receive_PDU_Size
parameters contain respectively the value of the negotiated-dlms-version-number, negotiated-
conformance and server-max-receive-pdu-size parameters of the xDLMS Initiate.response
PDU. These parameters are specified in IEC 61334-4-41, and in 8.4 of this standard. Annex C
gives some examples for their usage. The xDLMS-Initiate.request PDU shall be inserted in
the user-information field of the AARE APDU to be sent.

The ACSE_Protocol_Version, Application_Context_Name, Application-Ids_and_Titles, Security_
Mechanism_Name and the Responding_Authentication_Value parameters shall be inserted
into the corresponding fields of the AARE APDU to be sent.

The Implementation_Information parameter, if present, shall be inserted in the implemen-
tation-information field of the AARE APDU to be sent.

Use

This service primitive is used by the COSEM server application process to indicate to the
application layer whether the previously proposed application association is accepted or not.
This primitive is invoked only, if the COSEM-OPEN.indication has been invoked in a
confirmed manner.

6.6.2 Application association release

Figure 14 shows the services provided by the server side application layer for disconnecting
an application association.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 40 � 62056-53  IEC:2002(E)

COSEM server application process

COSEM server application layer

C
O

SE
M

-R
EL

EA
SE

.in
d

C
O

SE
M

-R
EL

EA
SE

.re
s

C
O

SE
M

-A
BB

O
R

T.
in

d

Figure 14 � Server side services for releasing an application association

In the COSEM environment, an application association is unambiguously identified by the
corresponding lower layer addresses (SAPs). Therefore, it can be non-ambiguously released
by disconnecting the appropriate lower layer connections. Consequently, there is no APDU
associated to the RELEASE service: the service is simply accomplished at the lower protocol
layer level.

Graceful disconnection � an application/data link level disconnection, which does not imply
physical disconnection � can be requested only by the COSEM client application process by
invoking the COSEM-RELEASE.request service. This is a remotely confirmed10 service and
implies a message exchange between the client and the server supporting layers. The server
application responds to a COSEM-RELEASE.indication service with the invocation of the
COSEM-RELEASE.response service primitive.

Upon the reception of this response service primitive, the client application layer shall confirm
the preceding .request service with the COSEM-RELEASE.confirm service primitive to the
client application process.

Any existing application association shall be aborted when the physical connection is
disconnected. Requesting a physical channel disconnection is done outside of the protocol,
therefore it is not within the scope of this standard. A COSEM-ABORT.indication primitive is
provided to indicate a non-solicited physical link disconnection to the application process.

6.6.2.1 COSEM-RELEASE.indication

Function

This service primitive is invoked by the COSEM server application layer to indicate to the
server application process a supporting layer disconnection indication.

Service parameters

The semantics of the primitive is as follows:

COSEM-RELEASE.indication
(
User_Information
)

�������
10 Locally confirmed only if an error condition occurs, for example there is nothing received as the response for

the DISC frame.

IEC 281/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 41 �

The User_Information parameter is optional. When it is present, it shall contain User-specific
information carried by the supporting lower protocol layer(s). Specification of the contents of
this parameter is not within the scope of this standard.

Use

This service is used by the server application layer upon the reception of a supporting layer
disconnect indication with REASON == REMOTE, to indicate to the server application process
that a graceful release of the application association has been requested. The server must
accept this request.

6.6.2.2 COSEM-RELEASE.response

Function

This service primitive is invoked by the COSEM server application process to indicate to the
application layer whether the previously received request for releasing the application
association has been accepted.

NOTE The server cannot refuse a received request for disconnection.

Service parameters

The semantics of the primitive is as follows:

COSEM-RELEASE.response
(
Result,
User_Information
)

The Result parameter indicates whether the server application process can accept the
previous COSEM-RELEASE.request or not. Its value depends on whether the application
association, the release of which has been requested, was existing or not.

If the User_Information parameter is present, it shall be passed on to the supporting protocol
layer. Specification of its content is not within the scope of this standard.

Use

This service primitive is used by the server application process. Upon the invocation of this
service primitive, the server application layer shall invoke the .response service primitive of
the supporting layer, with the appropriate OK, NOK or NO_RESPONSE Result parameter.

6.6.2.3 COSEM-ABORT.indication

Function

This service is invoked by the server application layer to indicate to the server application
process an unsolicited disconnection of the physical layer.

Service parameters

The semantics of the primitive is as follows:

COSEM-ABORT.indication
(
Diagnostics
)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 42 � 62056-53  IEC:2002(E)

The optional Diagnostics parameter shall indicate the possible reason for the physical
disconnection, and can carry lower protocol layer dependent information. Specification of the
contents of this parameter is not within the scope of this standard.

Use

The server application layer uses this service primitive upon the reception of a supporting
layer disconnect indication service primitive with REASON == LOCAL, indicating that a
physical connection abort occurred in a non-solicited manner (e.g. the physical line is cut).

6.6.3 Client/server type data communication services

6.6.3.1 Service overview

Services provided during the data communications phase rely on services of the
xDLMS_ASE. These services contain references to attributes or methods of COSEM interface
objects. IEC 62056-62 defines two different types of referencing, by logical name (LN) and by
short name (SN). Therefore, two different server xDLMS_ASE-s � thus two different server
application layers � are specified. These server side application layers provide two different
sets of services. One set of services (GET, SET, ACTION and EventNotification) is using
exclusively LN references. The other set of services (Read, Write, Unconfirmed Write,
InformationReport) is using exclusively SN references.

However, during the lifetime of an established application association, there is only one
server xDLMS_ASE present in the COSEM server application layer. The type of this
xDLMS_ASE is negotiated during the connection establishment phase and only the selected
xDLMS_ASE is present within the server application layer. It explains, why using one or the
other set of services is exclusive. No Read/Write/UnconfirmedWrite services are provided by
the COSEM server ASO when the association is established within a context using LN
referencing, and no GET/SET/ACTION/EventNotification services are provided in the opposite
case.

6.6.3.2 Services provided with LN references

Figure 15 shows services provided by the server side application layer during the data
communications phase, when LN referencing is used:

COSEM server application process

COSEM server application layer

G
ET

.in
d G

ET
.re

s

SE
T.

in
d SE

T.
re

s

AC
TI

O
N

.in
d

AC
TI

O
N

.re
s

Ev
en

tN
ot

ifi
ca

tio
n.

re
q

Figure 15 � Server side data communications services using LN referencing

Three client/server type services may be supported when LN referencing is used: GET, SET
and ACTION. The .request primitive of these services is invoked by the COSEM client
application process. The role of the protocol with regard to these services is to transport them
to the COSEM server application process. The server application layer shall indicate the
reception of a request via the .indication service primitive to the server application process.

IEC 282/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 43 �

Each of these services can be requested in a confirmed or an unconfirmed manner. However,
in case of a non-confirmed application association, data communication services may only be
invoked in a non-confirmed manner.

In case of confirmed service invocation, the server application process shall return the
confirmation by invoking the corresponding .response service primitive. The receipt of this
response is indicated to the client application process via the .confirm service primitive.

Unconfirmed service invocation will not imply .response/.confirm primitive invocation. In
COSEM, the only reason to do it is to avoid collisions due to potential multiple responses in
the case of multicasting and/or broadcasting.

The protocol for confirmed service invocations is described in 7.4.1.1 and for unconfirmed
service invocations in 7.4.1.2.

The fourth, EventNotification Service is the only non-client/server service provided in COSEM.
By invoking this service, the server application process is able to send an unsolicited
notification of the occurrence of an event to the remote client.

6.6.3.2.1 GET.indication

Function

This service is invoked by the server application layer to indicate to the server application
process that a remote client has requested the value(s) of one or all attributes of one or more
COSEM interface object(s).

Service parameters

The semantics of the primitive is as follows:

GET.indication
(
Invoke_Id,
Priority,
Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor, },
Block_Number
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters
)

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There two priority levels: normal and high.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 44 � 62056-53  IEC:2002(E)

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

The Request_type parameter indicates the origin and the type of the current GET.indication
service invocation. It can be: NORMAL, WITH-LIST or NEXT.

The first GET.indication is always type NORMAL or WITH-LIST. It indicates the reception of a
NORMAL GET.request from the client. A GET.indication with NEXT type indicates that the
remote client is asking for the next data block. Non-transparent long data transfer with the
GET service is defined in 7.4.1.8.2.

A GET.indication service shall contain one or more COSEM_Attribute_Descriptor service
parameters, each of them referencing a COSEM interface object attribute. The
COSEM_Attribute_Descriptor service parameter is a composite parameter, consisting of the
following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters element, in case of selective access (See
7.4.1.6.) carries the additional data required for the selective GET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

One GET.indication invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL or WITH-LIST.

The optional Block_Number parameter is present only when Request_type==NEXT. It carries
the number of the last correctly received block of a long data, and no
COSEM_Attribute_Descriptor parameter shall be present.

Use

The server application layer generates the GET.indication service primitive upon the reception
of a GET.request from the supporting layer.

6.6.3.2.2 GET.response

Function

This service is invoked by the server application process in order to send a response to a
previously received GET.indication primitive.

Service parameters

The semantics of the primitive is as follows:

GET.response
(
Invoke_Id,
Priority,
Response_type,
Result, { Result , }
Block_Number

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 45 �

)

The Invoke_Id identifies the instance of this service invocation. Its value shall be equal to the
Invoke_Id of the corresponding GET.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the received
.indication. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding GET.indication service invocation.

The Response_type parameter indicates whether this .response service invocation contains
the complete response requested by the previous GET.request service invocation, or it
contains only a block of the required data. This parameter shall carry one of the following
values:

• NORMAL: the service invocation contains the complete response for a NORMAL
GET.request service;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
GET.request service;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the data block carrying a part of the
result as raw data;

• LAST-BLOCK: this value indicates that the current block is the last data block sent.

The Result parameter shall carry either the requested data, or in case of error, the indication
of the type of error. If the encoded form of the Result parameter does not fit in one APDU,
then it shall be transported in blocks, carried by the Result parameter of the appropriate Get-
Response-With-Datablock APDU, of type DataBlock-G. This parameter shall include the block
number and a part of the encoded form of the result as raw data or data access result.

The number of Result parameters in the GET.response service shall be the same as the
number of COSEM_Attribute_Descriptor parameters in the corresponding GET.indication
service � one response for each request.

Use

This service is used by the server application process. Upon the reception of the
GET.response service invocation, the COSEM server application layer shall build a GET-
Response-XX-APDU. In case of success � when the corresponding GET.indication has been
accepted � this APDU shall be built by encoding the received Data parameter otherwise the
APDU will contain the value of the data_access_result parameter. In both cases, the
Invoke_Id and the Priority parameter shall also be inserted into the APDU.

6.6.3.2.3 SET.indication

Function

This service primitive is invoked by the server application layer to indicate to the server
application process that a remote client has requested setting one or more attributes of a
COSEM interface object.

Service parameters

The semantics of the primitive is as follows:

SET.indication
(
Invoke_Id,
Priority,

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 46 � 62056-53  IEC:2002(E)

Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor , },
Block_Number,
Data, { Data, }
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters
)

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal and high.

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

The Request_type parameter indicates whether the Data parameter of the service primitive
carries a complete attribute or only a block of it. This parameter shall be set to one of the
following values:

• NORMAL: the service invocation contains the reference to one or all (Attribute_0 feature,
see 7.4.1.7.1) attribute(s) of one COSEM interface object and all the required data. The
optional Block_Number parameter shall not be present in the service invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object attribute
references and all the required data. The optional Block_Number parameter shall not be
present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to an attribute of one
COSEM interface object and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• FIRST-BLOCK-WITH-LIST: the service invocation contains a list of COSEM interface
object attribute references and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the data. The
Block_Number parameter carries the number of the data block carried by the Data
parameter, and no COSEM_Attribute_Descriptor(s) shall be present;

• LAST-BLOCK: this value indicates that the current is the last block of the data. The
Block_Number parameter carries the number of this data block, and no
COSEM_Attribute_Descriptor(s) shall be present.

A SET.indication service shall contain one or more COSEM_Attribute_Descriptor service
parameters, each of them referencing one or all attributes of a COSEM interface object. The
COSEM_Attribute_Descriptor service parameter is a composite parameter, consisting of the
following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 47 �

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters element, in case of selective access (See
7.4.1.6.) carries the additional data required for the selective SET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

One SET.indication invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL, Request_type == WITH-LIST or Request_type ==
FIRST-BLOCK-XXX.

The optional Block_Number parameter is present when Request_type != NORMAL or WITH-
LIST. It carries the number of the DataBlock within the current service invocation.

The Data parameter contains the data necessary to set the attributes identified by the
Attribute_descriptor parameter. If the encoded form of the data does not fit in one APDU, then
it shall be transported in blocks, carried by the datablock parameter of the appropriate SET-
Indication-XX APDU, of type DataBlock-SA. This parameter shall include the block number
and a part of the encoded form of the data as raw data.

The number of Data parameters in the SET.request service shall be the same as the number
of COSEM_Attribute_Descriptors: one Data for each COSEM_Attribute_Descriptor.

Use

The server application layer generates the SET.indication service primitive upon the reception
of a SET.request from the supporting layer.

6.6.3.2.4 SET.response

Function

This service primitive is invoked by the server application process to send a response to a
previously received SET.indication primitive.

Service parameters

The semantics of the primitive is as follows:

SET.response
(
Invoke_Id,
Priority,
Response_type,
Result { Result, },
Block_Number
)

The Invoke_Id identifies the instance of this service invocation. Its value shall be equal to the
Invoke_Id of the corresponding SET.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding SET.indication service invocation.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 48 � 62056-53  IEC:2002(E)

The Response_type parameter indicates whether this .response service invocation contains
the response for the complete SET.indication operation, or it is simply an acknowledge of the
previously received data block. This parameter shall carry one of the following values:

• NORMAL: the .response service contains the confirmation of the previous SET.indication
operation, which carried a single COSEM interface object attribute reference. The Result
parameter carries the result of the required operation;

• WITH-LIST: the .response service contains the confirmation of the previous SET.request
operation, which carried a list of COSEM interface object attribute references. The Result
parameter carries the list of results for each required set operation;

• ACK-BLOCK: this value indicates that this .response contains a positive or negative
acknowledgement for a previously received data block. The Block_Number parameter
carries the number of the last correctly received data block;

• LAST-BLOCK: the SET.response service is invoked with this value after the reception of
the last block of the data of a SET.request service, which carried a single COSEM
interface object attribute reference. This value indicates that this .response contains the
response to the original SET.indication service, which has been transferred in several
blocks. The Result parameter carries the result of the required operation and the
Block_Number parameter carries the number of the last data block;

• LAST-BLOCK-WITH-LIST: the SET.response service is invoked with this value after the
reception of the last block of the data of a SET.request service, which carried a list of
COSEM interface object attribute references. This value indicates that this .response
contains the response to the original SET.indication service, which has been transferred in
several blocks. The Result parameter carries the list of results for each required set
operation and the Block_Number parameter carries the number of the last data block.

The number of the Result parameters in the SET.response service primitive with
Response_type == WITH-LIST and LAST-BLOCK-WITH-LIST shall be the same as the
number of COSEM interface object attribute references in the corresponding SET.request
service � one result for each request. Each Result parameter shall carry the result of the
corresponding SET.request operation.

Use

This service is used by the server application process. Upon the reception of the
SET.response service invocation, the COSEM server application layer shall build a
SETresponse APDU. This APDU shall contain the response(s) for the corresponding
SET.request � one Data-Access-Result parameter for each attribute set request. In case of
success, this parameter shall contain a positive acknowledgement for the required set
operation, otherwise its value shall indicate the reason of the failure. In both cases, the
Invoke_Id and the Priority parameters shall also be inserted into the APDU.

6.6.3.2.5 ACTION.indication

Function

This service is invoked by the server application layer to indicate to the server application
process that a remote client has requested the invocation of one or more methods of one or
more COSEM interface objects.

Service parameters

The semantics of the primitive is as follows:

ACTION.indication
(
Invoke_Id,
Priority,

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 49 �

Service_Class,
Request_Type,
COSEM_Method_Descriptor, { COSEM_Method_Descriptor, },
Block_Number,
Method_Invocation_Parameters, { Method_Invocation_Parameters, }
)

COSEM_Method_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
Method_Id
)

Method_Invocation_Parameters ::= Data

The Invoke_Id identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal and high.

The Service_Class parameter indicates whether the service is invoked in a confirmed or
unconfirmed manner.

The Request_type parameter indicates whether the given invocation contains a complete
request or only a part of it. This parameter shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to a method of one COSEM
interface object and the Method_Invocation_Parameters required for the invocation of this
method. The optional Block_Number parameter shall not be present in the service
invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object methods and
all the required Method_Invocation_Parameters. The optional Block_Number parameter
shall not be present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to a method of one COSEM
interface object and the first part of the required Method_Invocation_Parameters. The
Block_Number parameter shall be set to 0001;

• WITH-LIST-AND-FIRST-BLOCK: the service invocation contains a list of COSEM interface
object method references and the first part of the required Method_Invocation_Para-
meters. The Block_Number parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the Method_
Invocation_Parameters. The Block_Number parameter carries the number of the para-
meter block carrying a part of the Method_Invocation_Parameters parameter, and no
COSEM_Method_Descriptor(s) shall be present;

• LAST-BLOCK: this value indicates that the current block is the last parameter block to be
transferred. The Block_Number parameter carries the number of the parameter block
carrying the last block of the Method_Invocation_Parameters and no COSEM_
Method_Descriptor(s) shall be present;

• NEXT: this value indicates that this .request contains an acknowledgement for a
previously received parameter block. The Block_Number parameter carries the number of
the last correctly received parameter block.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 50 � 62056-53  IEC:2002(E)

An ACTION.indication service shall contain one or more COSEM_Method_Descriptor service
parameters, each of them referencing one COSEM interface object method. The
COSEM_Method_Descriptor service parameter is a composite parameter, consisting of the
following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance. The complete COSEM_
Method_Descriptor references one method of that object instance: this method is identified
by the COSEM_Object_Method_Id component;

• the optional Block_Number parameter is present either when the .indication contains a
parameter block to be sent or when the .request acknowledges a previously received
parameter block (Request_type == NEXT). The Block_Number parameter carries the
number of the last received parameter block.

Invoking a method may require additional parameters. The Method_Invocation_Parameters
parameter carries the data necessary for the invocation of the method(s) identified by the
COSEM_Method_Descriptor parameter(s). If the encoded form of the Method_
Invocation_Parameters does not fit in one APDU, then it shall be transported in blocks,
carried by the pBlock parameter of the appropriate Action-Indication-XX APDU, of type
DataBlock-SA. This parameter shall include the block number and a part of the encoded form
of the Method_Invocation_Parameters as raw data.

The ACTION.indication service shall contain as many Method_Invocation_Parameters as
COSEM_Method_Descriptors: one Method_Invocation_Parameter for each COSEM_Method_
Descriptor. Therefore even if the invocation of a method does not require additional
parameters, the corresponding Method_Invocation_Parameters component shall be present in
the service invocation � but it shall be empty.

The COSEM_Method_Descriptors parameter shall not be present when Request_type ==
ONE-BLOCK or LAST BLOCK.

Use

The server application layer generates the ACTION.indication service primitive upon the
reception of an ACTION.request APDU from the supporting layer.

6.6.3.2.6 ACTION.response

Function

This service primitive is invoked by the server application process to send a response to a
previously received ACTION.indication primitive.

Service parameters

The semantics of the primitive is as follows:

ACTION.response
(
Invoke_Id,
Priority,
Response_type,
Result, { Result, },
Block_Number,
Response_Parameters, { Response_Parameters, }
)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 51 �

The Invoke_Id identifies the instance of this service invocation. Its value shall be equal to the
Invoke_Id of the corresponding ACTION.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the received
.response. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding ACTION.indication service invocation.

The Response_type parameter indicates whether this .response service invocation contains
the complete response requested by the previous ACTION.indication service invocation, it
contains only a block of the required data, or it is simply an acknowledge of a previously
received block of the ACTION.indication service. This parameter shall carry one of the
following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
Action.indication which carried a single method reference;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
ACTION.indication service, including a list of COSEM interface object method references;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the data block carrying a part of the
response as raw data;

• LAST-BLOCK: this value indicates that this .response primitive contains the last block of
the response as raw data;

• NEXT: this value indicates that this .response contains an acknowledgement for a
previously received parameter block and requests the client to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
Block.

The Result parameter carries the result of the invocation of the COSEM interface object
method(s).

The Response_Parameters carries the optional data to be returned as a result of the
invocation of the COSEM interface object methods.

The number of Result and Response_Parameters parameters in the ACTION.confirm service
primitive with Response_type == WITH-LIST or a .confirm service which is sent in several
parameter blocks shall be the same then the number of COSEM interface object method
references in the corresponding ACTION.request service � one Result and Response_
Parameter for each request.

If the encoded form of the Result and Response_Parameters does not fit into one APDU, then
they shall be transported in blocks, carried by the pBlock parameter of the Action-Response-
With-Pblock APDU, of type DataBlock-SA. This parameter shall include the block number and
the encoded form of the Result and Response_parameters as raw data.

Use

This service is used by the server application process. Upon the reception of the
ACTION.response service invocation, the COSEM server application layer shall build an
ACTION.response APDU. In case of success � when the corresponding ACTION.indication
has been accepted � this APDU shall contain only a positive acknowledgement, and � if the
requested ACTION has to return data, fitting in one APDU � the data to be returned.

When the required data does not fit into one APDU, � similarly to the GET.response service �
it is sent back to the client in data blocks, with the help of the transparent or non-transparent
long data transfer mechanism. These mechanisms are defined in 7.4.1.8.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 52 � 62056-53  IEC:2002(E)

In case of failure a negative acknowledgement is sent, indicating whether the required action
could not be accepted (action-error), or the required data cannot be accessed (data-access-
error).

In both cases, the Invoke_Id and the Priority parameters shall also be inserted into the APDU.

6.6.3.2.7 EventNotification.request

Function

This service is invoked by the server application process to send an EventNotification
message to the remote client application process.

Service parameters

The semantics of the primitive is as follows:

EventNotification.request
(
Time,
COSEM_Attribute_Descriptor,
Attribute_Value
)

COSEM_Attribute_Descriptor
(
COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id
)

The optional Time service parameter indicates the time assigned to the event by the server.

The { COSEM_Class_Id, COSEM_Object_Instance_Id, COSEM_Object_Attribute_Id } triplet
identifies non-ambiguously one and only one attribute of a COSEM interface object instance.
The Attribute_Value service parameter carries the value of this attribute. More information
about the notified event may be obtained by interrogating this COSEM interface object.

The EventNotification.request service invocation shall not contain protocol information: it shall
always be sent from the address of the server management logical device to the client
management application process. Both application processes are always present and in any
protocol profile they are bound to a fix address.

Use

This service is used by the server application process. Upon the reception of the
EventNotification.request service invocation, the COSEM server application layer shall build
the Even-Notification-Request APDU.

6.6.3.3 Services provided with Short name references

6.6.3.3.1 ReadRequest

The service is described in annex A of IEC 61334-4-41.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 53 �

The parameterized access (as additional variant of the VariableAccessSpecification) provides
the ReadRequest service with the capability to transport additional parameters.

Parameterized access is introduced by adding the following access method (compare IEC
61334-4-41, p. 221):

VariableAccessSpecification:= CHOICE
 ... [2]...
 ... [3]...
 parameterized access [4] IMPLICIT SEQUENCE{
variable_name ObjectName,
selector integer,
parameter Data
}

The meaning of the selector and of the access parameter depends on the referenced variable.
It is defined in the corresponding COSEM interface class specification, see in IEC 62056-62.

6.6.3.3.2 ReadResponse

The service is described in IEC 61334-4-41.

6.6.3.3.3 WriteRequest

The service is described in IEC 61334-4-41.

The parameterised access (as additional variant of the VariableAccessSpecification) provides
the WriteRequest service with the capability to transport additional parameters, as described
above (6.6.3.3.1).

6.6.3.3.4 WriteResponse

The service is described in annex A of IEC 61334-4-41.

6.6.3.3.5 UnconfirmedWriteRequest

The service is described in annex A of IEC 61334-4-41.

6.6.3.3.6 InformationReportRequest

The service is described in annex A of IEC 61334-4-41.

7 COSEM application layer protocol specification

The COSEM application layer is based on the extended DLMS � xDLMS, see Annex B � and
on the standard connection-oriented ACSE service elements. Therefore, the protocol of this
layer is based on the DLMS and ACSE protocols, as they are specified in IEC 61334-4-41 and
in ISO/IEC/TR2 8650-1 respectively.

Both the xDLMS and the application contexts can be negotiated during the application
association establishment.

The COSEM application protocol specification includes the specification of the protocol
machines for both the client and server side application layers, and the abstract syntax
(ASN.1) for the representation of APDUs. As the same APDU applies at the client side and at
the server side, for example a .request type APDU, sent by the client is the same as its peer

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 54 � 62056-53  IEC:2002(E)

.indication APDU, the abstract syntax specification is common for both application layer
entities and is given in clause 8.

7.1 State definitions for the client side control function

Figure 16 shows the state machine for the client side control function (CF, see Figure 5).

IDLE

ASSOCIATION
PENDING

ASSOCIATED

ASSOCIATION
RELEASE
PENDING

OPEN.req

 /OPEN.cnf(NOK),
 /ABORT.ind

 /OPEN.cnf(OK)

/ABORT.ind

RELEASE.req

 /RELEASE.cnf

 GET.req /GET.cnf
 SET.req /SET.cnf
 ACTION.req /ACTION.cnf
 /EventReport.ind

 Trigger_EventReport_sending.req
 /EventReport.ind

 /ABORT.ind

INACTIVE

Figure 16 � Partial state machine for the client side control function

NOTE On the state diagrams, the following conventions are used:

− service primitives with no �/� character as first character are �stimulants�: the invocation of these services is the
origin of the given state transition;

− service primitives with an �/� character as first character are �outputs�: the invocation of these services is done
on the state transition path.

Definitions of states are as follows:

• INACTIVE � in this state, the client CF (and the application layer) has no activity at all: it
neither provides services to the application process nor uses services of the supporting
protocol layer;

• IDLE � this is the state of the CF of the client application layer protocol entity when there
is no application association created, being released or currently established11. Never-
theless, some data exchange between the client and server, if the physical channel is
already established, is possible in this state;

State transitions between the INACTIVE and IDLE states are controlled outside of the
protocol. For example, it can be considered that the CF, and with it the application layer
including it, makes the state transition from INACTIVE to IDLE state by being instantiated and
bound on the top of the supporting protocol layer. The opposite transition may happen by
deleting the given instance of the CF (application layer).

• ASSOCIATION PENDING � the CF of the application layer entity enters this state when
the COSEM client application process invokes the COSEM-OPEN.request (OPEN.req)

�������
11 Note, that it is the state machine for the application layer: lower layer connections, including the physical

connection, are not taken into account. On the other hand, physical connection establishment is done outside
of the protocol.

IEC 283/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 55 �

service primitive. The CF may exit from this state either by sending a COSEM-
OPEN.confirmation (/OPEN.cnf) service primitive or, in the case of physical disconnection,
by sending a COSEM-ABORT.indication (/ABORT.indication) service primitive to the
application process. Depending on the result of the association request, the client CF shall
return to IDLE state (NOK), or shall enter the ASSOCIATED state;

• ASSOCIATED � the CF shall enter this state when the application association has been
successfully established. Data communication services � GET, SET, ACTION � are
provided only in this state. The client CF shall remain in this state until the AP explicitly
requires the release of the association by invoking the COSEM-RELEASE.request service
primitive (RELEASE.req), or the association is aborted due to a non-solicited physical
disconnection;

• ASSOCIATION RELEASE PENDING � the CF of the application layer entity enters this
state when the COSEM client AP invokes the COSEM-RELEASE.request service primitive
(RELEASE.req), requesting the disconnection of the established application association.
The CF shall remain in this state, waiting for the response to this request. As the server is
not allowed to refuse a release request, after exiting this state, the CF shall always enter
the IDLE state. The exit from this state can be originated either by the reception of the
release response from the remote server or by the reception of a DL-DIS-
CONNECT.indication service primitive meaning that the physical layer has been aborted.

7.2 State definitions for the server side control function

Figure 17 shows the state machine for the server side control function, see Figure 5.

IDLE

ASSOCIATION
/PENDING

ASSOCIATED

ASSOCIATION
RELEASE
PENDING

 /OPEN.ind

 OPEN.res(NOK),
 /ABORT.ind

 OPEN.res(OK)

/ABORT.ind

 /RELEASE.ind

 RELEASE.res

 /GET.ind GET.res
 /SET.ind SET.res
 /ACTION.ind ACTION.res

EventReport.req
or

InformationReport.req

 /ABORT.ind

INACTIVE

 /READ.ind READ .res
 /WRITE.ind WRITE .res
 /UNCONFIRMED WRITE.ind

 or

Figure 17 � Partial state machine for the server side control function

Definitions of the states are as follows:

• INACTIVE � in this state, the server CF (and the application layer) has no activity at all: it
neither provides services to the application process nor uses services of the supporting
protocol layer;

• IDLE � this is the state of the CF of the server application layer entity when there is no
application association created, being released or currently established. Nevertheless,
some data exchange between the client and server, if the physical channel is already
established, is possible in this state;

IEC 284/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 56 � 62056-53  IEC:2002(E)

• ASSOCIATION PENDING � upon the reception of a COSEM-OPEN.request message from
a remote client, the CF of the server application layer protocol entity shall exit the IDLE
state. It shall indicate the reception of this message to the server application process via
the COSEM-OPEN.indication service primitive (/OPEN.indication) and shall enter into
ASSOCIATION PENDING state. In this state, the Server CF is waiting for the response
from the application process. If the response is positive � meaning that the AP accepted
the proposed association � the CF shall enter the ASSOCIATED state. If the response is
negative � or if a physical disconnection is detected � the CF shall return to the IDLE
state;

• ASSOCIATED � the server CF shall enter this state when the application association has
been successfully established. Data communication services � GET, SET, ACTION or
READ, WRITE and UNCONFIRMED WRITE, depending on the established application
context � are provided only in this state. The server CF shall remain in this state until the
remote client explicitly requires the release of the association by invoking the COSEM-
RELEASE.request service (/RELEASE.ind), or the association is aborted due to a non-
solicited physical disconnection;

• ASSOCIATION RELEASE PENDING � upon the reception of a COSEM-RELEASE.request
service primitive from the remote client application process, the CF of the application layer
protocol entity shall indicate it to the application process (/RELEASE.indication) and shall
enter into this state. The CF shall remain in this state, waiting for the response invocation
from the AP. As the server is not allowed to refuse this request, the CF shall always enter
the IDLE state after leaving the ASSOCIATION RELEASE PENDING state. The exit from
this state can be also originated by the reception of a DL-DISCONNECT.indication service
primitive, meaning that the physical layer has been aborted.

7.3 Protocol for application association establishment/release

7.3.1 Establishment of an application association

Application association establishment with the help of the Association.request/ .indication./
.response/ .confirmation services of the standard ACSE, ISO/IEC/TR2 8650-1 is the key
element of COSEM interoperability. The participants of an application association are the
interoperable communications partners:

• a client application process, which is always the originator of an application association
request, and;

• a server application process12.

The client application process shall first13 invoke the COSEM-OPEN.request service of the
client COSEM ASO. Upon the reception of this service invocation, the Control function of the
client ASO shall first establish the required lower layer connections.

Supposing that there is no problem, the two supporting layers are connected, as the MSC
shows in Figure 18.

�������
12 In order to be able to provide multicast and broadcast services, in COSEM an AA can also be established

between a client and a group of server application processes.
13 Invoking the COSEM-OPEN.request service requires an already established physical connection, but the

establishment of this physical connection takes place outside the protocol.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 57 �

Client
Application

Process

Client Application Layer
Control Function is in

IDLE State

Client
Application

Layer -
Control

Function

Server
Application

Layer-
xDLMS

Server
Application

Layer-
ACSE

Server
Application

Layer -
Control

Function

Server
Application

Process

Physical connection is established (outside the protocol)

Server
supporting
Protocol

Layer
(XX)

Client
supporting
Protocol

Layer
(XX)

Client
Application

Layer-
xDLMS

Client
Application

Layer-
ACSE

COSEM-OPEN.req

Client Application Layer Control
Function is in ASSOCIATION

PENDING State XX-CONNECT.req

Server Application
Layer Control Function

is in IDLE State

Establishing
the Supporting

Layer
connection

Establishing
Lower Layer
connections

XX-CONNECT.ind

XX-CONNECT.res

XX-CONNECT.cnf

The Supporting Layer connection is established

xDLMS-Initiate.req

Build an xDLMS-
Initiate.req PDU

xDLMS-Initiate.req PDU
A-ASSOCIATE.req

Build an AARQ APDU
AARQ-pdu XX-DATA.request(AARQ)

XX-DATA.indication(AARQ)
AARQ APDU

Extract A-
ASSOCIATE.ind

parameters
A-ASSOCIATE.ind

xDLMS-Initiate.ind PDU
Extract xDLMS-

Initiate.ind
parameters xDLMS-Initiate.ind COSEM-

OPEN.ind
Server Application Layer Control

Function is in ASSOCIATION
PENDING state

COSEM-OPEN.resxDLMS-Initiate.res

Build xDLMS-
Initiate.res PDU

xDLMS-Initiate.res PDU
A-ASSOCIATE.res

Build AARE APDU
AARE APDU

Client Application Layer Control
Function is in ASSOCIATED state

XX-DATA.req(AARE)
XX-DATA.ind(AARE)

AARE APDU
Set Application Context

Set DLMS Context

xDLMS-Initiate.res PDU

xDLMS-Initiate.cnf

A-ASSOCIATE.cnf

The requested Application Association is successfully established

COSEM-OPEN.cnf(OK)

Server Application Layer Control
Function is in ASSOCIATED

state

Figure 18 � MSC for successful application association establishment
IEC 285/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 58 � 62056-53  IEC:2002(E)

Once the lower layer connections are established, the client CF shall assemble an AARQ
APDU with the help of the two application service elements (ACSE and xDLMS) of the client
application layer. This AARQ APDU shall be the first message sent to the server application
layer.

The CF of the server application layer shall first give the received AARQ APDU to the ACSE,
which shall extract the ACSE related parameters, then give back the control to the CF. The
CF shall send the contents of the user-information field of the AARQ APDU to the xDLMS-
ASE, as a xDLMS-Initiate.indication DLMS PDU.

The xDLMS-ASE shall retrieve the parameters of the xDLMS-Initiate.indication. It shall then
give back the control to the CF, which shall invoke the COSEM-OPEN.indication service
primitive with the appropriate parameters, extracted from the AARQ APDU14, to the COSEM
server application process. At the same time, the server Control function shall enter the
�ASSOCIATION PENDING� state.

The server application process shall analyze the received COSEM-OPEN.indication primitive,
and decide whether it accepts the proposed application associations or not15. Following this
verification, the COSEM server application process shall invoke the COSEM-OPEN.response
service to indicate the acceptance or non-acceptance of the proposed association. In case of
success, the CF shall assemble the appropriate AARE APDU, then shall send it to the remote
client application layer via the existing supporting layer connection, and the server application
layer shall enter the �ASSOCIATED� state. From this moment, the server is able to receive
data communication service .request(s) and send .responses within this association. In other
words, the association has been established, and the server has entered the data
communications phase.

At the client side, the parameters of the received AARE APDU shall be extracted by the help
of the ACSE and the xDLMS-ASE, and shall be sent to the client application process via the
COSEM-OPEN.confirm service primitive. At the same time, the client application layer shall
enter the �ASSOCIATED� state. From this moment, the application association is established
within the negotiated application and xDLMS contexts.

7.3.2 Establishment of special application associations

7.3.2.1 Pre-established application associations

Pre-established application associations need not to be established using the COSEM-OPEN
service. This standard does not specify the way of establishing these associations. Pre-
established associations should be considered to exist when the physical connection is
established between the client and the server devices.

A pre-established association can be either confirmed or non-confirmed, depending on the
way it is pre-established.

7.3.2.2 Establishment of non-confirmed application associations

A non-confirmed COSEM-OPEN.request invocation shall result in the establishment of a non-
confirmed application association. Within this application association, the client COSEM
application layer shall accept only non-confirmed xDLMS service requests (GET, SET,
ACTION). The main purpose of having this type of association is to allow multicasting and
broadcasting.

�������
14 Some service parameters of this COSEM-OPEN.indication primitive (address information, User_Information,

Service_Class) do not come from the AARQ APDU, but from the supporting layer frame carrying the AARQ
APDU.

15 The application service elements only extract the parameters, like the application context, authentication
related parameters, etc. The interpretation of these parameters and the decision whether the association can
be accepted or not, is the job of the COSEM server application process.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 59 �

A non-confirmed COSEM-OPEN.request invocation may be locally confirmed in the case of a
locally detected error.

7.3.3 The AARQ and AARE APDUs

The standard connection-oriented ACSE provides several functional units in order to
negotiate ACSE user requirements during association establishment. In COSEM, only two of
them are used: the kernel and the authentication functional units.

The kernel functional unit is always available � it is the default functional unit. The
authentication functional unit is present only when it is explicitly requested16. The selection of
the authentication functional unit supports additional fields on the AARQ and AARE APDUs.

The AARQ and AARE APDUs specifications are as follows:

AARQ-apdu ::= [APPLICATION 0] IMPLICIT SEQUENCE
 {

protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT {version1},
application-context-name [1] Application-context-name,
called-AP-title [2] AP-title OPTIONAL,
called-AE-qualifier [3] AE-qualifier OPTIONAL,
called-AP-invocation-id [4] AP-invocation-identifier OPTIONAL,
called-AE-invocation-id [5] AE-invocation-identifier OPTIONAL,
calling-AP-title [6] AP-title OPTIONAL,
calling-AE-qualifier [7] AE-qualifier OPTIONAL,
calling-AP-invocation-id [8] AP-invocation-identifier OPTIONAL,
calling-AE-invocation-id [9] AE-invocation-identifier OPTIONAL,
− The following field shall not be present if only the kernel is used.
− sender-acse-requirements [10] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [11] IMPLICIT mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
calling-authentication-value [12] EXPLICIT authentication-value OPTIONAL,
implementation-information [29] IMPLICIT implementation-data OPTIONAL,
user-information [30] IMPLICIT association-information OPTIONAL

 }

and

AARE-apdu ::= [APPLICATION 1] IMPLICIT SEQUENCE
 {

protocol-version [0] IMPLICIT BIT STRING {version1 (0) } DEFAULT
 {version1},

application-context-name [1] Application-context-name,
result [2] Association-result,
result-source-diagnostic [3] Associate-source-diagnostic,
responding-AP-title [4] AP-title OPTIONAL,
responding-AE-qualifier [5] AE-qualifier OPTIONAL,
responding-AP-invocation-id [6] AP-invocation-identifier OPTIONAL,
responding-AE-invocation-id [7] AE-invocation-identifier OPTIONAL,
 -- The following field shall not be present if only the kernel is used.
responder-acse-requirements [8] IMPLICIT ACSE-requirements OPTIONAL,
 -- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [9] IMPLICIT mechanism-name OPTIONAL,
 -- The following field shall only be present if the authentication functional unit is selected.
responding-authentication-value [10] EXPLICIT authentication-value OPTIONAL,
implementation-information [29] IMPLICIT implementation-data OPTIONAL,
user-information [30] IMPLICIT association-information OPTIONAL

 }

�������
16 The presence of this functional unit � and the optional fields corresponding to the usage of this functional unit �

depend on the authentication security level.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 60 � 62056-53  IEC:2002(E)

The values of the AARQ and AARE fields in COSEM are the following:

• protocol-version: the ACSE protocol-version. The default value is used;

• application-context-name: the appropriate COSEM application-context-name is used.
Application-context-names for the default COSEM application contexts are specified in
7.3.7.1;

• OPTIONAL called, calling and responding titles, qualifiers and identifiers: These optional
fields carry the contents of the optional Application_Ids_and_Titles parameter of the
COSEM_OPEN service. The usage of these fields is as it is specified in the ACSE
standard ISO/IEC 8649;

NOTE If these fields are present in the AARQ, but the server is not able to recognize them, then it may ignore
them. In this case, these parameters shall not influence the association establishment and the AARE shall not
contain any of these fields. On the other hand, if the server recognizes these parameters, it shall take into account
the value of these parameters to establish the application association, and these fields shall also be present in the
AARE.

• sender and responder acse requirements: when present, it carries the value of BIT
STRING { authentication (0) };

• mechanism-name: when present, it contains the name of the authentication mechanism.
COSEM authentication mechanism names are specified in 7.3.7.2;

NOTE In the AARQ, the mechanism name defines the authentication mechanism required by the client, i.e. the
authentication mechanism which the server is expected to use. In the AARE, the mechanism name defines the
authentication mechanism required by the server, i.e. the mechanism which the client is expected to use.

• calling and responding authentication value: when present, it is specific to
implementation and is not within the scope for this standard;

• implementation-information: the usage of this field is based on prior agreement between
the communicating stations. This usage is not defined in this standard;

• user-information: this parameter shall always be present and shall contain an �
optionally encrypted � xDLMS-Initiate.request PDU in the case of AARQ APDU and a
xDLMS-Initiate.response PDU or DLMS-ConfirmedServiceError PDU in the case of an
AARE APDU;

NOTE In the COSEM environment, the response-allowed parameter of the xDLMS-Initiate.request PDU shall
always be set to TRUE.

• result: this parameter carries the result of the proposed application association
establishment;

• result-source-diagnostics: this field carries the result and eventually the reason of the
rejection of the association establishment request, as it is specified in ISO/IEC/TR2 8650-1.
When no diagnostics are included, a null value is assigned to the result-source-diag-
nostics field.

Both the AARQ and the AARE APDUs encoded in BER (ISO/IEC 8825). On the other hand,
the user-information field of these APDUs, carrying the xDLMS-Initiate.request/.response (or
ConfirmedServiceError) DLMS PDU-s shall be encoded in A-XDR, see IEC 61334-6 Examples
for AARQ/AARE APDU encoding are given in Annex C.

7.3.4 Managing the parameters for application association establishment

According to the protocol described above, an application association establishment is
proposed by the client, and accepted or not accepted by the server. The conditions under
which the server accepts or rejects the establishment of an AA are defined in the following
subclauses.

There are two contexts negotiated via the COSEM-OPEN service: the COSEM application
context and the xDLMS context. The elements of the COSEM application context are carried
by the fields of the AARQ APDU. The xDLMS context is defined by the parameters of the
xDLMS-Initiate.request/.response PDUs, carried by the user-information field of the
AARQ/AARE. See also Annex B.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 61 �

Upon the receipt of the AARQ APDU, the server shall first check the COSEM application
context. If the proposed application context is not acceptable, the proposed application
association shall be refused. (e.g. application context name is different, the authentication
mechanism name and authentication value are expected but not provided, the authentication
value is not correct, etc.).

The parsing order of the AARQ and AARE shall be the following:

a) lower layer parameters, service class;
NOTE These parameters are not carried by the AARQ/AARE, but they are provided by the supporting layer.

b) AARQ syntax;
c) ACSE protocol version;
d) application context name;
e) authentication related fields:

• if sender ACSE requirements is present but bit 0=0 or if the parameter is not
present: any following authentication parameters may be ignored,

• if sender ACSE requirements is present and bit 0=1, and the following
authentication parameters are inconsistent, then an error message shall be
returned.

If the server refuses the proposed application association with the reason of non-fit at the
COSEM application context level, it shall send back an AARE APDU, containing diagnostics
information about the failure. In this case, the user-information field of the response AARE
APDU shall contain the server�s own xDLMS context: the supported DLMS version number,
the supported conformance block and the server-max-receive-pdu-size.

If the proposed COSEM application context is acceptable, the server shall check the proposed
xDLMS context. The parsing order shall be the following:

a) proposed-dlms-version-number
b) client-max-receive-pdu-size.

If this context is also acceptable, the server shall accept the proposed association and shall
send back an AARE APDU, containing the indication of the success and a correctly
constructed xDLMS-Initiate.response PDU in the user-information field. This shall carry the
parameters of the negotiated xDLMS context.

In this case, when the AARE contains an xDLMS-Initate.response PDU, the value of the
negotiated-conformance field of this PDU shall always be the negotiated conformance block:
a bit per bit AND of the received conformance block and the server�s own conformance block.
See 8.5.

If the xDLMS context proposed by the client cannot be accepted, the server shall refuse the
proposed association. In this case � application context fits but xDLMS context does not fit
(e.g. the value of the negotiated conformance block is zero) � the server shall send back an
AARE APDU, with �no-reason-given� as diagnostics information. The user-information field of
this AARE shall contain a correctly constructed DLMS-ConfirmedServiceError message,
indicating the reason for the failure.

7.3.5 Repeated COSEM-OPEN.request service invocations

The handling of a COSEM-OPEN.request invocation with the parameters of an already estab-
lished AA depends on the type of the newly requested AA and the type of this existing AA.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 62 � 62056-53  IEC:2002(E)

7.3.5.1 Handling repeated non-confirmed COSEM-OPEN.requests

7.3.5.1.1 Client side

If the existing AA has been established with the help of a confirmed COSEM-OPEN.request,
the newly invoked non-confirmed OPEN.request shall not imply any action towards the server.
The previously established association shall be kept as it is, and the application layer shall
locally (and negatively) confirm the second COSEM-OPEN.request with a COSEM-
OPEN.confirm, indicating that the COSEM-OPEN.request has been locally failed because an
AA is already existing.

If the existing AA has been established with the help of a non-confirmed COSEM-
OPEN.request, the client application layer shall issue an AARQ with the parameters of the
new COSEM-OPEN.request, and shall replace the previous AA with the new one.

The flow chart on Figure 19 summarizes non-confirmed COSEM-OPEN.request handling at
the client side.

AA already
established ?

COSEM-OPEN.req
(service class: non-confirmed)

Existing AA is
confirmed ?

Keep existing AA

COSEM-OPEN.cnf
(LOCAL, FAILURE,

AA already ON)

Delete existing AA

Send AARQ with the
connection-less

XX.DATA.req service

Create AA

YES

NO
NOYES

COSEM-OPEN.cnf
(LOCAL, OK)

Figure 19 � Handling non-confirmed COSEM-OPEN.request at the client side

If the existing AA is a pre-established AA, the second COSEM-OPEN.request shall not imply
any action towards the server. The pre-established association shall be kept as it is, and the
application layer shall locally (and negatively) confirm the second COSEM-OPEN.request with
a COSEM-OPEN.confirm, indicating that the COSEM-OPEN.request has been locally failed
because of an already existing pre-established AA.

7.3.5.1.2 Server side

If the server receives an AARQ containing the parameters of an already established AA,
transported within a connectionless XX-DATA.indication service of the supporting lower
protocol layer (meaning that it is a non-confirmed COSEM-OPEN.request), the server
behaviour shall depend on the type of the already existing AA.

IEC 286/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 63 �

If this, existing AA is a non-confirmed AA, the existing AA shall be deleted (released), and the
server shall try to establish the AA corresponding to the newly received request. Even if it is
not ensured that this new AA can be created, (e.g. the received AARQ does not contain the
right password) the previous AA shall be released.

On the other hand, if the received AARQ indication contains the parameters of an already
established confirmed AA, the received AARQ shall be simply discarded, and the existing AA
shall be kept as it is.

The flow chart of Figure 20 summarizes non-confirmed COSEM-OPEN.indication handling at
the server side.

Finally, if the existing AA is a pre-established AA, the second COSEM-OPEN.request shall not
imply any action: the pre-established association shall be kept as it is, and the received
AARQ shall be discarded (no COSEM-OPEN.indication shall be generated).

AA already
established ?

XX-DATA.ind(AARQ)

Existing AA is
confirmed ?

Keep existing AA

Delete existing AA

Create new AA

YES

NO

NO
YES

COSEM-OPEN.ind
(service class: non-confirmed)

Discard received
message

Figure 20 � Handling the reception of a non-confirmed AARQ at the server side

7.3.5.2 Handling repeated confirmed COSEM-OPEN.requests

7.3.5.2.1 Client side

If the existing AA has been established with the help of a confirmed COSEM-OPEN.request,
the newly invoked confirmed COSEM-OPEN.request shall not imply any action towards the
server: the previously established association shall be kept as it is, and the application layer
shall locally (and negatively) confirm the second COSEM-OPEN.request with a COSEM-
OPEN.confirm, indicating that the COSEM-OPEN.request has been locally failed because of
an already existing AA.

IEC 287/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 64 � 62056-53  IEC:2002(E)

If the existing AA has been established with the help of a non-confirmed COSEM-
OPEN.request, the client application layer shall try to establish the newly requested AA, by
establishing the required lower layer connection(s) and then sending the AARQ APDU to the
server with the help of the connection-oriented XX-DATA.request service. In this case, if the
establishment of the newly requested confirmed AA fails (for any reason) the previously
existing non-confirmed AA shall be kept. Otherwise � if the establishment of the newly
requested AA is successful � the previously existing non-confirmed AA shall be replaced with
the new, confirmed AA.

Finally, if the newly requested AA corresponds to a pre-established AA, the second COSEM-
OPEN.request shall not imply any action towards the server. The pre-established association
shall be kept as it is, and the application layer shall locally (and negatively) confirm the
second COSEM-OPEN.request with a COSEM-OPEN.confirm, indicating that the COSEM-
OPEN.request has been locally failed because of an already existing pre-established AA.

7.3.5.2.2 Server side

Reception of an AARQ in a confirmed way is possible only on an already established lower
protocol layer connection. If the received AARQ indication contains the parameters of an
already established AA, the server behaviour shall depend on the type of this already existing
AA. If it has been established in a confirmed manner, the reception of the AARQ shall be
considered as an error: the existing AA shall be kept and the received AARQ shall be
discarded.

In the case when the already existing AA has been established in a non-confirmed manner,
the received AARQ shall be handled normally. The parameters of the AARQ shall be decoded
and the server application layer shall generate a COSEM-OPEN.indication service primitive
with these parameters. If the COSEM application process decides that the requested AA can
be accepted, the server shall replace the previously existing non-confirmed type AA with the
new one. Otherwise, if the requested AA cannot be accepted, the previously established non-
confirmed AA shall be kept. In both cases, the server shall send back an AARE APDU with
the appropriate information to the client.

Finally, if the newly requested AA corresponds to a pre-established AA, the second COSEM-
OPEN.request shall not imply any action: the pre-established association shall be kept as it
is, and the received AARQ shall be discarded (no COSEM-OPEN.indication shall be
generated).

7.3.6 Releasing an application association

7.3.6.1 Overview

An existing application association can be released gracefully or non-gracefully. Graceful
release means that it is the protocol machine, which notifies its peer that it is releasing the
association. Graceful release can be initiated only by the client application process.

Non-graceful release means that the association is unexpectedly terminated. The reason for
such an event is always outside of the protocol: it can be, for example the detection of a
physical disconnection not initiated by the application process.

7.3.6.2 Graceful release of an application association

Graceful release of an application association is always initiated by the client application by
invoking the COSEM-RELEASE.request service.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 65 �

According to the protocol of the ACSE, an A_RELEASE.request APDU should be generated.
However, as in the COSEM environment the existence of an application association is bound
to the corresponding lower protocol layer connection on a one per one basis, the invocation
of the COSEM-RELEASE.request service shall imply directly the invocation of a XX-
DISCONNECT.request service primitive. This request shall initiate the disconnection of the
lower protocol layers. As a result of the required message exchanges at the lower protocol
layer level, the disconnect request shall be indicated to the server application layer via the
XX-DISCONNECT.indication service primitive, as it is shown in Figure 21.

Client
application

process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

COSEM-
RELEASE.req

XX-DISCONNECT.req
XX-DISCONNECT.ind

Client application layer CF
is in ASSOCIATION

RELEASE PENDING state

Server application layer CF
is in ASSOCIATION

RELEASE PENDING state
COSEM-RELEASE.ind

COSEM-RELEASE.resXX-DISCONNECT.res

Server application layer CF
is in IDLE state

Server supporting
layer connection is
DISCONNECTED

Client supporting
layer connection is
DISCONNECTED

XX-DISCONNECT.cnfCOSEM-
RELEASE.cnf

Client application layer CF
is in IDLE state

The application association is released, lower layer connection(s) are disconnected

Figure 21 � Graceful release of an application association

The server application layer shall interpret this XX-DISCONNECT.indication as a request for
releasing the application association, and shall indicate this request to the COSEM server
application process via the COSEM-RELEASE.indication service primitive.

The COSEM server application process shall accept the required disconnection and shall
invoke the COSEM-RELEASE.response service with the appropriate parameters.

Upon the receipt of the COSEM-RELEASE.response service invocation, the server application
layer shall invoke the XX-DISCONNECT.response service of the supporting protocol layer
with the appropriate service parameters. At the same moment, the Control function of the
server application layer shall enter the �IDLE� state17.

�������
17 The release of the existing application association may require internal communication among the application

service elements (ACSE, xDLMS-ASE) and the Control function inside the server application layer. These
interactions are not shown in the figures.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 66 � 62056-53  IEC:2002(E)

Invocation of the XX-DISCONNECT.response service primitive causes the server supporting
layer(s) to disconnect the related connection(s) and to inform about it the peer supporting
layer(s). The reception of this information shall be indicated to the client application layer by
the XX-DISCONNECT.confirm primitive, which is relayed to the client application process by
the client application layer via the COSEM-RELEASE.confirm service primitive. The
invocation of this primitive means that the association has been successfully released.

7.3.6.3 Non-graceful release of an application association

Non-graceful release of application associations in COSEM may be the result of a detected
physical disconnection. Disconnection of the physical connection can be requested voluntarily
by the client or by the server (outside of the protocol), or may be the result of an external
event. In both cases, the detection of a physical disconnection is indicated to the Control
function of the application layer on both sides with the help of the XX-
DISCONNECT.indication service of the supporting protocol layer.

Figure 22 shows the message sequence chart for aborting the application association.

Client

application
process

Client
application

layer
control

function

Client
supporting
protocol

layer
(XX)

Server
application

layer
control

function

COSEM-
ABORT.ind

Client
physical

layer

Server
supporting
protocol

layer
(XX)

Server
physical

layer
Channel

Server
application

process

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Physical
connection

breaks

Lower protocol layer connection(s) are aborted

XX-
DISCONNECT

.ind COSEM-
ABORT.ind

XX-
DISCONNECT

.ind

Server
layer CF is in IDLE

state
Client

layer CF is in IDLE
state

The application association is non-gracefully released

Figure 22 � Aborting an application association following a PH-ABORT.indication

NOTE The non-graceful release of application association is not selective: if it happens, all the existing
association(s) shall be aborted.

7.3.7 Registered COSEM names

Within an OSI environment, many different types of network objects must be identified with
globally unambiguous names. These network objects include abstract syntaxes, transfer
syntaxes, application contexts, authentication mechanism names, etc. Names for these
objects in most cases are assigned by the committee developing the particular basic ISO
standard or by implementers� workshops, and should be registered. For the COSEM
environment these objects are assigned by the DLMS User Association, and are specified in
this standard.

The decision no. 1999.01846 of OFCOM, Switzerland attributes the following prefix for object
identifiers specified by the DLMS User Association.

{ joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) }

IEC 289/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 67 �

For COSEM, object identifiers are specified for naming the following items:

• COSEM application context names (for LN and SN references, without or with cyphering);

• COSEM authentication mechanism names.

7.3.7.1 The COSEM application context

In order to effectively exchange information within an application association, the pair of AE-
invocations shall be mutually aware of, and follow a common set of rules that govern the
exchange. This common set of rules is called the application context of the application
association.

The application context that applies to an application association is determined during its
establishment18. The following methods may be used:

• identifying a pre-existing application context definition;

• transferring an actual description of the application context.

In the COSEM environment, it is intended that an application context pre-exists and it is
referenced by its name during the establishment of an application association.

The application context name is specified as OBJECT IDENTIFIER ASN.1 type. COSEM
identifies the application context name by the following object identifier value:

COSEM_Application_Context_Name :: =

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(x)}

where the value of the context_id parameter selects a pre-existing application context.

There are four application context names specified:

COSEM_Application_Context_Name-Logical_Name_Referencing_no_ciphering ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(1)}

COSEM_Application_Context_Name-Short_Name_Referencing_no_ciphering ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(2)}

COSEM_Application_Context_Name-Logical_Name _with_ciphering ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(3)}

COSEM_Application_Context_Name-Short_Name_Referencing_with_ciphering ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(4)}

�������
18 An application association has only one application context. However, the set of rules that make up the

application context of an application association may contain rules for alteration of that set of rules during the
lifetime of the application association.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 68 � 62056-53  IEC:2002(E)

The meaning of these COSEM application contexts is:

• there are two ASEs present within the application-entity invocation, the ACSE and the
xDLMS-ASE ;

• the xDLSM-ASE is as it is specified in 61134-4-4119;

• the transfer syntax is A-XDR;

• Context_id(1): logical name referencing, no ciphering used;

• Context_id(2): short name referencing, no ciphering used;

• Context_id(3): logical name referencing, ciphering used;

• Context_id(4): short name referencing, ciphering used.
NOTE Ciphering algorithms are not defined in this standard.

In order to establish one of these default application contexts, the ACSE AARQ and the AARE
APDUs shall carry one of the above values.

7.3.7.2 COSEM authentication mechanism names

Authentication is one of the security aspects addressed by the COSEM specification. In order
to provide different levels of security for authentication support, COSEM specifies three levels
of authentication securities:

• no authentication (lowest level) security;

• low level, password based authentication security (LLS) identifying only the client;

• high-level, four-pass authentication security (HLS) identifying both the client and the
server.

COSEM uses the authentication feature of the connection-oriented ACSE and for high-level
authentication, also the methods of the association LN/SN objects. The process of LLS and
HLS authentication is described in IEC 62056-62. To identify the authentication mechanism
used, the following object identifiers for authentication mechanism names are specified:

COSEM_Authentication_Mechanism_Name :: =

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(x)}

The value of the mechanism_id parameter selects one of the specified security mechanisms.

There are three authentication mechanism names specified:

default-COSEM-lowest-level-security-mechanism-name20 ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(0)}

default-COSEM-low-level-security-mechanism-name ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(1)}

�������
19 With the COSEM extensions to DLMS, see Annex B.
20 This mechanism is used for client identifier purposes in the case of multicasting and broadcasting.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 69 �

default-COSEM-high-level-security-mechanism-name ::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(2)}

NOTE The mechanism name for high-level security starts from 2 and is registered by the DLMS UA.

The mechanism name element of the AARQ/AARE APDU is present only, when authentication
is used. See 7.3.3.

7.4 Protocol for data communications

All data communication services are client/server services, except the EventNotification
services. Data communication is always initiated by the client by invocation of
GET/SET/ACTION.request services. Upon invocation of any of these services, the client
application layer protocol machine builds the corresponding APDU and sends it to the peer
server application layer.

Data communication service requests can be invoked in confirmed or unconfirmed manner.
When a service is invoked in a confirmed manner, the server shall respond to the request,
otherwise no application level confirmation is expected. See 7.4.1.1.

Unconfirmed services might be invoked in two different ways: individually addressed or
broadcast (multicast). See 7.4.1.2.

There is a fourth, non-client/server data communications service supported, the
EventNotification service. By requesting this service, the server application process is able to
send an unsolicited notification of the occurrence of an event to the remote client. See
7.4.1.3.

7.4.1 Protocol for the xDLMS services using LN referencing

7.4.1.1 Protocol for confirmed services

For confirmed data communication services, the following service primitives are available:

• GET (.request/.indication/.response/.confirm);

• SET (.request/.indication/.response/.confirm);

• ACTION (.request/.indication/.response/.confirm).

GET and SET services are referencing attribute(s) of COSEM interface object instances. The
ACTION service is referencing a method of a COSEM interface object instance (e.g. capture a
pre-defined set of data). For definition of attributes and methods of COSEM interface classes,
see IEC 62056-62.

The COSEM client may invoke the .request primitive of these services in a confirmed manner
within a confirmed application association only.

The COSEM server application process, upon the receipt of a data communication service
indication, shall check whether the service can be provided or not (validity, client access
rights, availability, etc.). If everything is OK, it locally applies the required service on the
corresponding �real� object. If a response is required, the COSEM server application process
shall generate the appropriate .response message.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 70 � 62056-53  IEC:2002(E)

Figure 23 shows a complete message sequence chart for a confirmed GET.request service
invocation in case of success.

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

GET.req(NORMAL)
XX-DATA.req(APDU)

XX-DATA.ind(APDU)
GET.ind(NORMAL)
GET.res(NORMAL,

Data) XX-DATA.req(APDU)
XX-DATA.ind(APDU) GET.cnf(NORMAL,

Data)

Figure 23 � MSC for a confirmed GET service in case of success

NOTE The message sequence on the figure above applies only if the transferred data does not exceed the
supported maximum size of the APDU. In order to be able to transfer longer data with the GET service, COSEM
provides an application layer level protocol. In addition, a data link layer level protocol is also available, which is
transparent for the application layer. See 7.4.1.8.1.

Figure 24 shows the complete message sequence chart for a confirmed SET service, in case
of success.

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

SET.req(NORMAL,
Data) XX-DATA.req(APDU)

XX-DATA.ind(APDU) SET.ind(NORMAL,
Data)

SET.res(NORMAL,
success) XX-DATA.req(APDU)

XX-DATA.ind(APDU) SET.cnf(NORMAL,
success)

Figure 24 � MSC for a confirmed SET service in case of success

In case of failure, the server � instead of a positive acknowledgement, shown on the above
figure � shall send a negative acknowledgement, indicating the reason for the failure, as it is
shown in Figure 25.

IEC 290/02

IEC 291/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 71 �

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

SET.req(NORMAL,
Data) XX-DATA.req(APDU)

XX-DATA.ind(APDU) SET.ind(NORMAL,
Data)

SET.res(NORMAL,
ERROR CODE)

XX-DATA.req(APDU)
XX-DATA.ind(APDU) SET.cnf(NORMAL,

ERROR CODE)

Figure 25 � MSC for the SET service in case of failure

NOTE The message sequence in the above figures applies only if the transferred data does not exceed the
supported maximum size of the APDU. In order to be able to transfer longer data with the SET service, COSEM
provides an application layer level protocol. This is described at 7.4.1.8.3.

The most complex behaviour is associated with the ACTION service, used for remote
invocation of a method of a COSEM interface object in the server. The reason for this
complexity is that the invocation of this method may imply data exchange in both client to
server and server to client directions, and this data may be too long to fit into one APDU.

Figure 26, illustrates the message sequence chart in the case, when the required service can
be granted by the server and the method invocation does not return data.

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

ACTION.req (NORMAL)
XX-DATA.req(APDU)

XX-DATA.ind(APDU) ACTION.ind (NORMAL)

ACTION.res (NORMAL,
success, no-data)

XX-DATA.req(APDU)
XX-DATA.ind(APDU) ACTION.cnf (NORMAL,

success, no-data)

Figure 26 � MSC for the ACTION service (simplest case)

NOTE When either the parameters of the ACTION.request or the ACTION.response service do not fit in one
APDU, the protocol defined in 7.4.1.8.4 for transferring long service parameters can be used.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 72 � 62056-53  IEC:2002(E)

7.4.1.2 Protocol for unconfirmed services

All client/server services may also be invoked in unconfirmed manner within an established
confirmed or unconfirmed application association. The following service primitives are
supported:

• GET (.request/.indication);

• SET (.request/.indication);

• ACTION (.request/.indication).

7.4.1.3 Protocol for the EventNotification service

This subclause specifies the protocol for the EventNotification.request service of the server
application layer, specified in 6.6.3.2.7.

Events, like alarms, fraud detection, or simply a counter overflow generally occur
asynchronously to any operation. As the server can send information only upon a request
from the client, the client may or may not gain knowledge about these events using COSEM
client/server services.

In order to ensure that the client is informed about such events, a special, non-client/server
type service, the EventNotification21 service is available. Although any logical device in a
server device may have events to be reported, event notification in COSEM is the
responsibility of the management logical device.

A server device may detect an event at any moment, and depending on the implemented
application behaviour, it may want to notify the client immediately. At this moment � from the
communications point of view � the server may be in one of the two following states:

a) no physical connection is established between the physical device containing the server,
and any client device (but this connection to the client device can be established 22);

b) there is already an established physical connection between the physical device
containing the server and a client device.

In case a), in order to notify the event, the server shall first establish a physical connection. In
case b), the following choices are available:

• the detected event may be reported via the existing connection;

• the current connection could be immediately aborted in order to start a new connection;

• the server may wait for the end of the current session before starting a new connection;

• etc.

Upon invocation of the EventNotification.request service, the COSEM server application layer
shall build an EventNotification.request APDU. This APDU shall be sent from the SAP of the
management logical device to the SAP of the client management application process, using
data communication services of the lower layers, in a non-solicited manner.

In some protocol profiles, the lower protocol layers do not allow to provide a really unsolicited
EventNotification service. In such cases, the client has to trigger the sending of the Event
Notification.request APDU, using the Trigger_EventNotification_Sending.request service,
defined in 6.5.4.2. The MSC shown in Figure 27 represents this case.
�������
21 When short name referencing is used, the service is called InformationReport at the server side.
22 Physical connection cannot be established when the server has only a local interface (e.g. an optical port as

defined in IEC 62056-21) and the hand held terminal, running the client application is not connected, or the
server has a PSTN interface, but the telephone line is not available. Handling such cases is implementation
specific.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 73 �

Client
physical

connection-
and protocol
identification

manager

Client
application

layer
control

function

Client
supporting
protocol

layer
(XX)

Client
physical

layer

PDU is pending

Client man-
agement
application

process

Server
physical

layer

Server
supporting
protocol

layer
(XX)

Server
application

layer
control

function

Server man-
agement
application

process

Server
physical

connection-
and protocol
identification

manager

No physical connection is established between the server and client devices

Event (to be notified) is detected

PH-CONNECT.req

Physical connection
establishment PH-CONNECT.cnfPH-CONNECT.ind

PH-
CONNECT_OK

EventNotifi-
cation.reqXX-

DATA.req

Protocol-Identification.req

Protocol-Identification.res

Profile-ID/
Parameters

Trigger_Event
Notification_
Sending.req XX-YYYY.req Profile-Specific-message (authorization)

Sending the pending PDUXX-DATA.indEventNotifi-
cation.ind

Figure 27 � Example: EventNotificaton triggered by the client

The first action of the server is to establish a physical connection to the client.

NOTE This physical connection establishment is done outside of the protocol stack.

Successful physical connection establishment is reported at both sides to the physical
connection manager process. At the server side, this shall indicate to the COSEM application
process, that the EventNotification.request service can be invoked now. When it is done, the
server application layer shall build an Event-Notification-Request APDU and shall invoke the
connectionless XX-Data.request service of the supporting protocol layer with the data
parameter carrying the Event-Notification-Request APDU.

At this moment, the supporting layer may not be able to send this PDU immediately, thus it
will be stored in the server�s supporting layer, waiting to be sent (pending).

When the client detects a successful physical connection establishment � and as there is no
other reason to receive an incoming call � it shall suppose that this call is originated by a
remote server, intending to send an EventNotification message.

The client, at this moment, may not know, which protocol profile is used by the calling server.
Therefore, it has to identify the protocol stack using the protocol identification service
described in IEC 62056-42. This is shown as a �Protocol-Identification.req� and a �Protocol-
Identification.res� message in Figure 27. After the identification of the protocol profile used by
the server, the client is able to instantiate the right protocol stack. If it is required in the given
profile, the client shall invoke the Trigger_EventNotification_Sending.request service of the
client application layer.

Upon invocation of this service, the client shall send its �authorization� to the server: this
�authorization� message depends on the profile used. When this authorization is received, the
server shall send the pending Event-Notification-Request APDU, using connectionless data
transmission services. The received Event-Notification-Request APDU shall be indicated to
the client application process as an EventNotification.indication. At this moment, the client is
notified about the event, the sequence is completed.

IEC 294/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 74 � 62056-53  IEC:2002(E)

The sequence described above is only an example: depending on the implemented behaviour,
servers may report events in different circumstances. In any case, in order to notify the client
about the detection of an event:

• the server shall use the EventNotification.request service invocation;

• this service invocation shall make the server application layer to build an
EventNotification.request APDU;

• the resulting supporting layer PDU shall be sent at the first opportunity to the client, using
the connectionless data communication services of the supporting layer. The nature of this
first opportunity depends on the communications profile used;

• the received supporting layer PDU, which includes the EventNotification.request message,
shall be indicated to the client application layer with the help of the connectionless XX-
DATA.indication service. Upon reception of this service, the client application layer shall
generate an EventNotification.indication23 service to the COSEM client application;

• event notifications are always sent from the management logical device to the
management application process.

7.4.1.4 Identifying a service invocation: using Invoke_Id

A complete confirmed data communication service sequence consists of the exchange of a
.request and a .response type message (indicated to the peer protocol layer via the .indication
and .confirmation service primitives). In the client/server model, requests are sent by the
client and responses are sent by the server. As the client is allowed to send several .requests
before receiving the .response for the previous one(s), it is necessary to make a reference in
the .response message to the corresponding .request message. Otherwise, it is not possible
to identify, which .request corresponds to a .response.

The Invoke-Id service parameter identifies a .request and the corresponding .response. The
value of this parameter is assigned by the client so that each .request primitive issued carries
a different Invoke_Id. The server shall copy the Invoke_Id of the received .request message
into the corresponding .response message.

The Invoke_Id is not present in the COSEM-OPEN services: these services are identified by
their address parameters.

The EventNotification service � as it is not a client/server type service � does not contain
Invoke_Id parameter either. There is no corresponding .response service, thus there is no
need to use Invoke_Id.

7.4.1.5 Using priority

COSEM defines two priority levels, NORMAL (FALSE) and HIGH (TRUE). This feature allows
receiving a response to a new request before the response to a previous request is
completed.

Normally, the server shall serve incoming service .requests in the order of their reception
(FIFS, First In, First Served24). However, it is possible to request to be served first by setting
the priority service parameter of a .request to HIGH: a .request with priority HIGH shall be
served before the previous requests with priority NORMAL. The .response primitive shall carry
the same priority flag as that of the corresponding .request. Managing priority is a negotiable
feature: its support is indicated by BIT 9 of the xDLMS conformance block.

NOTE If the feature is not supported, requests with HIGH priority shall be served with NORMAL priority.

�������
23 At the client side it is always EventNotification.indication, independently of the referencing scheme (logical

name or short name) used at the server side.
24 As service invocations are identified with an Invoke_Id � services with the same priority can be served in any

order.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 75 �

7.4.1.6 Selective access

GET/SET services typically reference the entire attribute of a COSEM interface object.
However, for certain attributes, selective access to just a part of the attribute may be
provided. The part of the attribute is identified by specific selective access parameters.25
These selective access parameters are defined as part of the attribute specification of the
given COSEM interface class specification, see IEC 62056-62.

The selective access specification always starts with an access selector, followed by an
access-specific access parameter list. In order to encode the selective access parameters, a
'selective-access-descriptor' type has been specified:

Selective-Access-Descriptor ::= SEQUENCE
{
access-selector Unsigned8,
access-parameters Data
}

Using this type, the required parameters for selective access are included in the
corresponding LN APDUs as an OPTIONAL field:

access-selection Selective-Access-Descriptor OPTIONAL

Selective access is a negotiable feature: its support is indicated by BIT 21 of the xDLMS
conformance block.

7.4.1.7 Multiple references in the same service request

7.4.1.7.1 The Attribute_0 reference

GET/SET services typically reference one attribute of a COSEM interface object. The attribute
referenced is identified by the value of the COSEM_Object_Attribute_Id service parameter.

By convention, attributes are numbered from 1 to n, where Attribute_1 is the logical name of
the COSEM interface object. Manufacturers may add proprietary methods and/or attributes to
any object, using negative numbers. See also 4.1. of IEC 62056-62.

The value of 0 (zero) for the COSEM_Object_Attribute_Id (Attribute_0)26 has a special
meaning: it references all attributes with positive index (public attributes).

A GET.request service with COSEM_Object_Attribute_Id = 0 requests the value of all public
attributes of the referenced object. The response to this request shall be a structure
containing the value for all public attributes (data) in the order of their appearance in the
given object specification. For attributes to which no access right is granted within the given
association, or which cannot be accessed for any other reason, a null_data type NULL value
shall be returned.

�������
25 Although the specification of these selection parameters is independent of the referencing method used (LN or

SN), the use of these parameters is different for services using logical name (LN) referencing (GET/SET), and
services using short name (SN) referencing (read/write). In this subclause selective access for the case of LN
referencing is discussed. Selective access with SN referencing is called �parameterized access�, and is
discussed in 7.4.2.7.

26 The Attribute_0 feature cannot be applied when short name referencing is used.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 76 � 62056-53  IEC:2002(E)

A SET.request service with COSEM_Object_Attribute_Id = 0 requests to set the value of all
public attributes of the referenced object. The data sent with this request shall be a structure,
containing for each public attribute, in the order if their appearance in the given object
specification, either a value or a null_data type NULL value. The meaning of this NULL value
is that the given attribute need not be set.

The response to this request shall be a structure containing the result for each public attribute
(data-access-result) in the order of their appearance in the given object specification,
indicating the success or failure of the requested SET operation. The response shall be
carried by a SET-Response-With-List � type APDU.

Attribute_0 referencing is a negotiable feature: its support for the GET service is indicated by
BIT 10, and for the SET service by BIT 8 of the xDLMS conformance block.

7.4.1.7.2 Attribute reference list

A complete (LN) reference for an attribute includes the following parameters:

class-id Cosem-Class-Id,
instance-id Cosem-Object-Instance-Id,
attribute-id Cosem-Object-Attribute-Id,
access-selection Selective-Access-Descriptor OPTIONAL

A .request service may contain one such reference or a list of such references. Specification
of the APDUs for the different types of .requests is given in 8.6.

7.4.1.8 Transferring long service parameters

7.4.1.8.1 Non-transparent and transparent transfer mechanisms

The service parameters of data communication services are transported by the APDUs,
exchanged between the peer layers, in an encoded form. In some cases, the APDU can be
longer than that which the protocol is able to transmit in one piece. In order to be able to
exchange such �long� data, two transporting mechanisms are available:

a) long data transfer using an application level protocol. This mechanism can be used with
any of the specified services (GET, SET and ACTION) and with any protocol profile and is
specified in the following subclauses;

b) long data transfer in a transparent manner to the client application. This feature can be
used only with lower layer protocols providing segmentation. As transparent long data
transfer is specified only for the direction from the server to the client, the server side
supporting protocol layer provides special services for this purpose to the server
application layer. As these services are specific to the supporting protocol layer, handling
these services is not within the scope of this specification � in other words no specific
application layer services and protocol are specified for this purpose. When the supporting
protocol layer supports transparent long data transfer, the server side application layer
implementation may be able to manage these services.

7.4.1.8.2 Application protocol for long data transfer with the GET service

Long data transfer with the GET service is specified only for the data in the GET.response
service primitive.

The length of the encoded form of service parameters for selective access and/or multiple
attribute references in the GET.request service shall not exceed the maximum allowed size of
APDUs.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 77 �

GET.request services shall be of type NORMAL or WITH-LIST. Upon reception of a
GET.request, the server application process shall assemble the requested data. If the data fit
into one APDU, the server application process shall invoke the GET.response service with
NORMAL or WITH-LIST type, with the value(s) of the required attribute(s) as the result
parameter.

If the data do not fit into one APDU and block transfer is supported (bit11 of the xDLMS
conformance block), the server application process shall send the data in blocks.

First, the data shall be encoded, as if they would fit into one APDU. The result is a series of
bytes, D1,D2,D3,�.DN. The server shall then assemble a DataBlock-G data structure (page 93)
with the following contents:

last-block (BOOLEAN) = FALSE
block-number (Unsigned32) = 0001
result (IMPLICIT OCTETSTRING)27 = the first K bytes of the encoded data (D1,D2,D3,�.DK)
This DataBlock-G shall be the first part of the response. The server application process shall
invoke the GET.response service with Response_type = ONE-BLOCK, with the Invoke_Id and
priority parameters copied from the GET.request invocation received and with the DataBlock-
G as result parameter.

Upon reception of this GET.response (signalled as .confirm), the client application process is
informed that the response for its request does not fit into one APDU and shall proceed for
the long data transfer. It shall store the data contents of the received APDU � (D1,D2,D3,�.DK)
� and shall acknowledge the received block by invoking the GET.request service with
Request_type = NEXT and with the following parameters:

invoke-id-and-priority = the same as that for the first GET.request;
block-number = the same as the Block-number of the received data block.
When the server receives the acknowledgement, it shall prepare and send the next data
block, including DK+1,DK+2,DK+3,�.DL, with block-number = 0002. This exchange of data blocks
and acknowledgements shall normally continue until the last Data Block, including
DM,DM+1,DM+2,�.DN is sent. The last-block (BOOLEAN) parameter of this DataBlock-G
sequence shall be set to TRUE and this data block shall not be acknowledged by the client.
After the reception of the last data block, the long data transfer with the GET service is
completed.

Figure 28 shows an example for the case, when the requested data can be sent in three
parts, and the transfer is not aborted.

�������
27 It is the raw-data CHOICE. (see page 93).

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 78 � 62056-53  IEC:2002(E)

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocol layer
(XX)

An association between the client and server application processes is already established

Server
application

process

GET.req
(NORMAL)

XX-DATA.req(Data)
-- Get-Request-
Normal APDU Sending GET.request

GET.res(ONE-
BLOCK, Block_no=1,

Data)

XX-DATA.ind(Data)
-- Get-Request-
Normal APDU GET.ind

(NORMAL)
XX-DATA.req(Data)

-- Get-Response-With-
Datablock APDU Sending GET.response

XX-DATA.ind(Data)
-- Get-Response-With-

Datablock APDU
GET.cnf(ONE-

BLOCK, Block_no=1,
Data)

GET.req(NEXT,
Block_no=1)

XX-DATA.req(Data)
-- Get-Request-Next-

Datablock APDU Sending GET.request
XX-DATA.ind(Data)

-- Get-Request-Next-
Datablock APDU GET.ind(NEXT,

Block_no=1)
GET.res(ONE-

BLOCK, success,
Block_no=2, Data)

XX-DATA.req(Data)
-- Get-Response-With-

Datablock APDU Sending GET.response
XX-DATA.ind(Data)

-- Get-Response-With
Datablock APDU

GET.cnf(ONE-
BLOCK, Block_no=2,

Data)
GET.req(NEXT,

Block_no=2)
XX-DATA.req(Data)
-- Get-Request-Next-

Datablock-APDU Sending GET.request
XX-DATA.ind(Data)

-- Get-Request-Next-
Datablock APDU GET.ind(NEXT,

Block_no=2)
GET.res(LAST-

BLOCK, success,
Block_no=3, Data)

XX-DATA.req(Data)
-- Get-Response-With-

Datablock APDU Sending GET.response
XX-DATA.ind(Data)

-- Get-Response-With
Datablock APDU

GET.cnf(LAST-
BLOCK, Block_no=3,

Data)

Figure 28 � Long data with the GET service in three data blocks

The server may generate the complete response (D1,D2,D3,�.DN) upon the receipt of the first
GET.request, or it could generate the series of data blocks of the response dynamically (on
the fly).

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
as follows:

• the server is not able to provide the next block of data for any reason. In this case, it shall
send back a Get-Response-With-Datablock APDU. In the DataBlock-G, the last-block shall
be set to TRUE, the block-number shall be equal to the block number expected by the
client (received block-number + 1), and the result shall contain a data-access-result
indicating the reason of the failure;

• the Block_Number parameter in a GET.indication of type NEXT is not equal to the
Block_Number parameter of the last block sent by the server. The server shall interpret
this case, as if the client would like to abort the ongoing transfer. The server, instead of
sending back the next data block, shall send a Get-Response-With-Datablock APDU. In
the DataBlock-G, the last-block shall be set to TRUE, the block-number shall be equal to
the block-number received in the Get-Request-Next APDU and the result shall be data-
access-result = long-get-aborted;

• the server may receive a GET.indication of type NEXT when no long data transfer is in
progress. In this case, the response shall be a Get-Response-With-Datablock APDU. In
the DataBlock-G, the last-block shall be set to TRUE, the block-number shall be equal to
the block-number received in the Get-Request-Next APDU and the result shall be data-
access-result = no-long-get-in-progress.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

IEC 295/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 79 �

Block transfer with the GET service is a negotiable feature: its support is indicated by BIT 11
of the xDLMS conformance block.

7.4.1.8.3 Application protocol for long data transfer with the SET service

Long data transfer with the SET service is specified only for the data in the SET.request
service primitive.

The length of the encoded form of service parameters for selective access and/or multiple
attribute references in the SET.response service shall not exceed the maximum allowed
APDU size.

The main difference between the GET and the SET .request services is that the client, before
issuing the first SET.request service invocation, already knows whether a long data transfer is
required or not. If long data transfer is required � and if block transfer is supported (bit12 of
the xDLMS conformance block) � the first SET.request service shall already contain the first
data block.

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocol layer
(XX)

An association between the client and server application processes is already established

Server
application

process

SET.req(FIRST-
BLOCK, Block_no=1,

DataBlock)
XX-DATA.req(Data)
-- Set-Request-With-

First-Datablock APDU Sending SET.request

SET.res(ACK-
BLOCK, Result=OK,

Block_no=1,)

XX-DATA.ind(Data)
-- Set-Request-With-

First-Datablock APDU
SET.ind(FIRST_BLOCK

, Block_no=1,
DataBlock)

XX-DATA.req(Data)
-- Set-Response-
Datablock APDU Sending SET.response

XX-DATA.ind(Data)
-- Set-Response-
Datablock APDU

SET.cnf(ACK-BLOCK,
Result==OK,
Block_no=1)
SET.req(ONE-

BLOCK, Block_no=2,
DataBlock)

XX-DATA.req(Data)
-- Set-Request-With-

Datablock APDU Sending SET.request
XX-DATA.ind(Data)
-- Set-Request-With-

Datablock APDU
SET.ind(ONE-

BLOCK, Block_no=2,
DataBlock)

SET.res(ACK-
BLOCK, Result=OK,

Block_no=2)
XX-DATA.req(Data)

-- Set-Response-
Datablock APDU Sending SET.response

XX-DATA.ind(Data)
-- Set-Response-
Datablock APDU

SET.cnf(ACK-
BLOCK,

Result==OK,
Block_no=2)

SET.req(LAST-
BLOCK, Block_no=3,

DataBlock)

XX-DATA.req(Data)
-- Set-Request-With-

Datablock APDU
-- Last-block = TRUE Sending SET.request

XX-DATA.ind(Data)
-- Set-Request-With-

Datablock APDU
-- Last-block = TRUE

SET.ind(LAST-
BLOCK, Block_no=3,

DataBlock)
SET.res(LAST-BLOCK,

Result=OK,
Block_no=3)

XX-DATA.req(Data)
-- Set-Response

-Last-Datablock APDU Sending SET.response
XX-DATA.ind(Data)

-- Set-Response-
Last-Datablock APDU

SET.cnf(LAST-BLOCK,
Result==OK,
Block_no=3)

Figure 29 � Long data transfer in three data blocks with the SET service.

In both cases, the first SET.request service invocation may contain a single attribute
reference, or a list of attribute references. Although the data contents of the SET.request may
be transmitted in several data blocks, attribute reference(s) shall be present only in the first
SET.request invocation service.

The client assembles data blocks in the same way as described in the previous chapter. Data
blocks are placed into DataBlock-SA structures as raw-data and are sent to the server.

IEC 296/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 80 � 62056-53  IEC:2002(E)

Each data block shall be acknowledged by the server with a SET.response service primitive,
of Response_type = ACK_BLOCK. The Result parameter indicates only the good (or not
good) reception of the data block.

The server shall acknowledge the whole SET.request service invocation after the reception of
the last data block, with a SET.response service primitive of type LAST-BLOCK or LAST-
BLOCK-WITH-LIST. The result parameter in this service indicates the result of the SET
operation.

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
as follows:

• the server is not able to handle the received next DataBlock-SA, for any reason. In this
case, it shall send back a Set-Response-Last-Datablock APDU, with a result parameter
indicating the reason for aborting the transfer and shall consider the transfer terminated;

• the Block_Number parameter in a received SET.indication of type ONE BLOCK is not
equal to the Block_Number parameter expected by the server (last received + 1). The
server shall interpret this as if the client would like to abort the ongoing transfer. The
server shall send back a Set-Response-Last-Datablock APDU with Data-Access-Result =
long-set-aborted;

• the server may receive a SET.indication of type ONE BLOCK when no long data transfer
is in progress. In this case, the response shall be a Set-Response-Last-Datablock APDU
with Data-Access-Result = no-long-set-in-progress.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

Block transfer with the SET service is a negotiable feature: its support is indicated by BIT 12
of the xDLMS conformance block.

7.4.1.8.4 Application protocol for long data transfer with the ACTION service

Remote invocation of a COSEM interface object method using the ACTION service may
require parameters, which in their encoded form are longer than the maximum APDU size
allowed. On the other hand, a method invocation may cause the server to send back data,
which do not fit into one APDU either. Therefore, long data transfer with the ACTION service
is available for both directions.

Long data transfer in the two directions shall take place in two stages:

• first, the client shall transmit the whole ACTION.request to the server (in parameter
blocks, if it is required);

• second, the server shall transmit the whole ACTION.response to the client (in parameter
blocks, if it is required).

Similarly to the SET service, the client, before issuing the first ACTION.request service
invocation, already knows whether a long data transfer is required or not. If long data transfer
is required � and if block transfer is supported (bit13 of the xDLMS conformance block) � the
first ACTION.request service invocation shall already contain the first data block.

In both cases, the first ACTION.request invocation may contain a single method reference, or
a list of method references. Although the data contents of the ACTION.request (the
Method_Invocation_Parameters) may be transmitted in several data blocks, method
reference(s) shall be present only in the first invocation of the ACTION.request service.

The client assembles the data block in the same way as it is described in 7.4.1.8.3. Data
blocks shall be placed into DataBlock-SA data structures as raw-data, and sent to the server.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 81 �

Once the complete ACTION.request is transmitted and the server has locally activated all
required methods, the server shall invoke the ACTION.response service. The response to one
method invocation shall contain a SEQUENCE of two parameters: the first parameter
indicates the result of the method invocation (result), and the second, optional one carries the
data required by the ACTION invocation. See page 90.

The ACTION.response service primitive may take one of the following forms:

• NORMAL: the corresponding ACTION.request contained only one method reference, and
the response fits into one APDU;

• WITH-LIST: the corresponding ACTION.request contained a list of method references, and
the complete response fits into one APDU;

• BLOCK: the corresponding ACTION.request could contain only one or a list of method
references (it determines only the contents of the parameter block). The response to that
ACTION.request does not fit into one APDU. In this case, the server shall initiate a long
data transfer, which shall take place similarly as it is described for the GET service in
7.4.1.8.2.

Figure 30 illustrates a case, when the client sends an ACTION.request, including multiple
method references in three blocks, and the server sends the response in two blocks. Similarly
to the GET service, the service is completed when the last block of the response is sent by
the server. This block is not acknowledged by the client.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 82 � 62056-53  IEC:2002(E)

Client
Application

Process

Client
Application

Layer

Client
supporting

Protocol Layer
(XX)

Server
Application

Layer

Server
supporting

Protocol Layer
(XX)

An Association between the Client and Server Application Processes is already established

Server
Application

Process

ACTION.req
(WITH-LIST-AND-

FIRST-BLOCK)

XX-DATA.req(Data)
-- Action-Request-With-

List-And-First-Pblock
APDU

Sending
ACTION.request

ACTION.res(ACK-
BLOCK, success,

Block_no=1)

Transfer of the ACTION.request is completed in three blocks

Transfer of the ACTION.response is completed in two blocks

XX-DATA.ind(Data)
--Action-Request-With-
List-And-First-Pblock

APDU

ACTION.ind
(WITH-LIST-AND-

FIRST-BLOCK)

XX-DATA.req(Data)
-- Action-Response-
Next-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
Next-Pblock APDU

ACTION.cnf(ACK-
BLOCK, success,

Block_no=1)
ACTION.req(ONE-

BLOCK, Block_no=2)

XX-DATA.req(Data)
-- Action-Request-With-

Pblock APDU
Sending

ACTION.request

XX-DATA.ind(Data)
-- Action-Request-With-

Pblock APDU ACTION.ind(ONE-
BLOCK, Block_no=2)
ACTION.res(ACK-
BLOCK, success,

Block_no=2)

XX-DATA.req(Data)
-- Action-Response-
Next-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
Next-Pblock APDU

ACTION.cnf(ONE-
BLOCK, success,

Block_no=2)

ACTION.req(LAST-
BLOCK, Block_no=3)

XX-DATA.req(Data)
--Action-Request-With-

Pblock APDU
Sending

ACTION.request

XX-DATA.ind(Data)
-- Action-Request-With-

Pblock APDU
ACTION.ind(LAST-

BLOCK, Block_no=3)

ACTION.res(ONE-
BLOCK, Block_no=1,

DataBlock)

XX-DATA.req(Data)
-- Action-Response-
With-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
With-Pblock APDU

ACTION.cnf(ONE-
BLOCK, Block_no=1,

DataBlock)
ACTION.req(NEXT,

Block_no=1)

XX-DATA.req(Data)
-- Action-Request-
Next-Pblock APDU

Sending
ACTION.request

XX-DATA.ind(Data)
-- Action-Request-
Next-Pblock APDU ACTION.ind(NEXT,

Block_no=1)
ACTION.res(LAST-

BLOCK, Block_no=2,
DataBlock-SA)

XX-DATA.req(Data)
-- Action-Response-
With-Pblock-APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
With-Pblock-APDU

ACTION.cnf(LAST-
BLOCK, Block_no=2,

DataBlock-SA)

Figure 30 � Long data transfer with the ACTION service

The first part of the long transfer (client->server) is similar to the SET service and the second
part of the transfer (server->client) is similar to the GET service: the ACTION service can be
considered as a combined SET/GET service.

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
the same as the cases described in 7.4.1.8.2. and 7.4.1.8.3.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

Block transfer with the ACTION service is a negotiable feature: its support is indicated by
BIT 13 of the xDLMS conformance block. If block transfer is supported, it should be supported
in both directions.

IEC 297/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 83 �

7.4.2 Protocol for the xDLMS services using SN referencing

7.4.2.1 Protocol for confirmed services

The following services are supported when invoked in a confirmed manner:

• Read;

• Write.

As it is defined in 5.3.2, the COSEM client application process always invokes data
communication services with logical name references. When the server uses short name
referencing, the client application layer shall transform service invocations using LN
referencing to service invocations using SN referencing. This is done by the short name
mapper service element of the ASO. The mapping is defined in 6.5.5.2. These SN referencing
services shall then be transmitted to the server.

Upon the receipt of a service request, the server application process checks whether the
service can be provided or not (validity, client access right, availability, etc.). If everything is
OK, it locally applies the required service to the corresponding �real� object. The COSEM
server application process generates then the appropriate response message using SN
referencing. This message shall be re-translated to the appropriate service using LN
referencing by the client application layer.

A complete message sequence for the ReadRequest/Response service invocation is shown in
Figure 31.

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocoll layer
 (XX)

An association between the client and server application processes is already established

Server
application

process

GET.request(LN)
(NORMAL) XX-DATA.req(Data)

-- Read.request
(SN) APDU

Sending XX-DATA.ind(Data)
-- Read.request

(SN) APDU
Read.indication(SN)

Read.response(Data) XX-DATA.req(Data)
-- Read.response

APDU
Sending

XX-DATA.ind(Data)
-- Read.response

GET.confirm()
(NORMAL,Data,

Data-Access-
Result)

Figure 31 � MSC for the ReadRequest/Response services

NOTE The message sequence applies only if the size of data to be transferred does not exceed the maximum
APDU size supported. Non-transparent long-data transfer (see 7.4.1.8) is not available with short name
referencing.

IEC 298/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 84 � 62056-53  IEC:2002(E)

7.4.2.2 Protocol for unconfirmed services

For unconfirmed requests, the following service is available:

• UnconfirmedWriteRequest.

The COSEM client may only invoke this .request primitive when an application association
has already been established. Upon the receipt of this request, the client application layer
shall invoke the connectionless data transfer service of the supporting protocol layer (XX-
DATA.request) with the correctly formatted APDU as data parameter.

At the supporting layer level, the resulting XX-PDU shall be transmitted using the connection-
less data transmission service to the indicated destination address. Three different kinds of
destination addresses are possible: individual, group or broadcast. Depending on the
destination address type, the receiving station shall handle incoming messages differently, as
follows:

• XX-PDUs with an individual address of a COSEM logical device. If they are received within
an established application association they shall be sent to the addressed COSEM logical
device, otherwise shall be discarded;

• XX-PDUs with a group address of a group of COSEM logical devices. These shall be sent
to the addressed group of COSEM logical devices. However, the received message shall
be discarded if there is no association established between a client and the addressed
group of COSEM logical devices;

• XX-PDUs with the broadcast address shall be sent to all addressed COSEM logical
devices. However, the received message shall be discarded if there is no association
established between a client and the ALL_STATION address.

7.4.2.3 Protocol for the InformationReport Service

This subclause specifies the protocol for the EventNotification.request service of the server
application layer, specified in 6.6.3.3.6.

Events, like alarms, fraud detection, or simply a counter overflow generally occur asyn-
chronously to any operation.

In order to ensure that the client is informed about such an event, a special, non- client/server
type service, the InformationReport28 service is available. Although any logical device of a
server may have events to be reported, event notification in COSEM is the responsibility of
the management logical device.

A server device may detect an event, which should be notified to a client, at any moment. At
this moment, from the communications point of view, the server may be in two different states,
as follows:

a) no physical connection is established between the physical device including the server,
which detected the event and any client device (but this connection to the client device
can be established 29);

b) there is already an established physical connection between the physical device including
the server, which detected the event, and a client application.

�������
28 When logical name referencing is used, the service is called EventNotification at the server side. At the client�s

side the received InformationReport SN service is mapped to an EventNotification.indication service as
described below.

29 Physical connection cannot be established when the server has only a local interface (e.g. IEC 62056-21 optical
link), and the hand held terminal, housing the client application is not connected, or the telephone line is not
available for a server which has a PSTN connection. Handling such cases is implementation specific.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 85 �

In case a), in order to notify the event, the server shall first establish a physical connection.
In case b) the following choices are available:

• the detected event might be reported via the existing connection;

• the current connection could be immediately aborted in order to start a new connection;

• the server may wait for the end of the current session before starting a new connection;

• etc.

Upon invocation of the InformationReport.request service, the COSEM server application shall
build an InformationReport.request APDU. This APDU shall be sent from the SAP of the
management logical device to the SAP of the client management device, using of data
services of the lower layers, in a non-solicited manner.

In some profiles the lower layers do not allow to provide a really non-solicited
InformationReport.request service. In such cases, the client shall trigger the sending of the
InformationReport.request APDU in using the Trigger_EventNotification_Sending.request
service.

Figure 27 shows an example for the EventNotification service: this example also applies to
the InformationReport service. The difference is that in the case of SN referencing, the server,
instead invoking the EventNotification.request service, shall invoke the Information
Report.request service of the server side application layer, and, of course, the transmitted
APDU shall correspond to this, InformationReport service. At the client side there is no
change: upon the receipt of an InformationReport APDU, the client application layer shall
generate an EventNotification.indication primitive to the client application process.

7.4.2.4 Mapping of an InformationReport service to a EventNotification.indication
service

The InformationReport service description and the description of the corresponding APDU can
be found in IEC 61334-4-41 as:

InformationReportRequest::= SEQUENCE{
current-time GeneralizedTime OPTIONAL
variable-access-specification SEQUENCE OF VariableAccessSpecification,
list-of-data

};
where the current-time parameter defines the time instance when the event occurred. The
variable-access-specification parameter contains a list of short names describing the
attributes, which contain information relevant to the event. The list-of-data parameter carries
the values of the attributes defined in the variable-access-specification.

While the InformationReportRequest APDU may carry several attribute names and their
contents, the EventNotification.ind (see 6.5.4.1.) contains only one attribute reference.
Therefore, in the case when the InformationReportRequest APDU contains more than one
attribute, it must be mapped to several EventNotification.ind services. The service parameters
are mapped as follows:

EventNotification.ind InformationReport

Time (optional) current-time (optional)

COSEM_Class_Id,

COSEM_Object_Instance_Id,

COSEM_Object_Attribute_Id

variable�name (as part of the
variable-access-specification)

attribute value Data (as part of list-of-data)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 86 � 62056-53  IEC:2002(E)

7.4.2.5 Identifying a service invocation

This feature is not provided in conjunction with SN referencing.

7.4.2.6 Using priority

A priority feature is not provided in conjunction with SN referencing. The server treats the
services on a �first come first served� basis.

7.4.2.7 Selective access

READ/WRITE services typically reference the entire attribute of a COSEM interface object.
However, for certain attributes selective access to just part of the attribute may be provided.
The part of the attribute is identified by specific selective access parameters. These selective
access parameters are defined as part of the attribute specification of the COSEM interface
object specification. See in IEC 62056-62.

The selective access specification starts with an optional access selector, followed by an
access-specific access parameter list. In order to encode the selective access parameters
into the Read/WriteRequest service, the �VariableAccessSpecification� part of the DLMS
specification has been extended as follows:

VariableAccessSpecification:= CHOICE
 ... [2]...
 ... [3]...
 parameterized access [4] IMPLICIT SEQUENCE{

variable_name ObjectName,
access_selector integer,
parameter Data
}

The meaning of the access_selector and of the parameter depends on the variable
referenced. It is defined in IEC 62056-62.

Parameterized access is a negotiable feature. Its support is indicated by BIT 18 of the xDLMS
conformance block.

7.4.2.8 Multiple references in the same service invocation

Reference to multiple short names is possible with the Read, Write and UnconfirmedWrite
Services (see in IEC 61334-4-41).

Support of multiple references is a negotiable feature. It is indicated by the BIT 14 of the
xDLMS conformance block.

7.4.2.9 Transferring long service parameters

Long service parameters are transmitted using the segmentation feature provided by the data
link layer as described in IEC 62056-46. (Only transparent long data transfer is allowed with
SN referencing.)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 87 �

8 Specification of COSEM data types

8.1 The COSEM APDUs

In addition to the APDUs defined in IEC 61334-4-41, some new APDUs have been specified
for COSEM in a manner that they are not in conflict with the DLMS PDUs. Thus, the APDUs
used in COSEM are the following:

COSEMpdu ::= CHOICE {

 -- standardized DLMS PDUs used in COSEM
 -- DLMS PDUs (no encryption selected30)

initiateRequest [1] IMPLICIT InitiateRequest,
readRequest [5] IMPLICIT ReadRequest,
writeRequest [6] IMPLICIT WriteRequest,

initiateResponse [8] IMPLICIT InitiateResponse,
readResponse [12] IMPLICIT ReadResponse,
writeResponse [13] IMPLICIT WriteResponse,

confirmedServiceError [14] ConfirmedServiceError,

unconfirmedWriteRequest [22] IMPLICIT UnconfirmedWriteRequest,
informationReportRequest [24] IMPLICIT InformationReportRequest,

-- the two ACSE APDUs
aarq AARQ-apdu
aare AARE-apdu,

-- APDUs used for data communication services using LN referencing
get-request [192] IMPLICIT GET-Request,
set-request [193] IMPLICIT SET-Request,
event-notification-request [194] IMPLICIT EVENT-NOTIFICATION-Request,
action-request [195] IMPLICIT ACTION-Request,

get-response [196] IMPLICIT GET-Response,
set-response [197] IMPLICIT SET-Response,
action-response [199] IMPLICIT ACTION-Response,

-- global ciphered pdus
glo-get-request [200] IMPLICIT OCTET STRING,
glo-set-request [201] IMPLICIT OCTET STRING,
glo-event-notification-request [202] IMPLICIT OCTET STRING,
glo-action-request [203] IMPLICIT OCTET STRING,

glo-get-response [204] IMPLICIT OCTET STRING,
glo-set-response [205] IMPLICIT OCTET STRING,
glo-action-response [207] IMPLICIT OCTET STRING,

-- dedicated ciphered pdus
ded-get-request [208] IMPLICIT OCTET STRING,
ded-set-request [209] IMPLICIT OCTET STRING,
ded-event-notification-request [210] IMPLICIT OCTET STRING,
ded-actionRequest [211] IMPLICIT OCTET STRING,

ded-get-response [212] IMPLICIT OCTET STRING,
ded-set-response [213] IMPLICIT OCTET STRING,
ded-action-response [215] IMPLICIT OCTET STRING

�������
30 Ciphered application contexts will use the corresponding ciphered DLMS PDUs.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 88 � 62056-53  IEC:2002(E)

8.2 The AARQ and AARE APDUs

AARQ-apdu ::= [APPLICATION 0] IMPLICIT SEQUENCE
-- [APPLICATION 0] == [60H] = [96]

 {
protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT {version1},
application-context-name [1] Application-context-name,
called-AP-title [2] AP-title OPTIONAL,
called-AE-qualifier [3] AE-qualifier OPTIONAL,
called-AP-invocation-id [4] AP-invocation-identifier OPTIONAL,
called-AE-invocation-id [5] AE-invocation-identifier OPTIONAL,
calling-AP-title [6] AP-title OPTIONAL,
calling-AE-qualifier [7] AE-qualifier OPTIONAL,
calling-AP-invocation-id [8] AP-invocation-identifier OPTIONAL,
calling-AE-invocation-id [9] AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the kernel is used.
sender-acse-requirements [10] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [11] IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
calling-authentication-value [12] EXPLICIT Authentication-value OPTIONAL,
implementation-information [29] IMPLICIT Implementation-data OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

 }

AARE-apdu ::= [APPLICATION 1] IMPLICIT SEQUENCE
-- [APPLICATION 1] == [61H] = [97]

 {
protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT {version1},
application-context-name [1] Application-context-name,
result [2] Association-result,
result-source-diagnostic [3] Associate-source-diagnostic,
responding-AP-title [4] AP-title OPTIONAL,
responding-AE-qualifier [5] AE-qualifier OPTIONAL,
responding-AP-invocation-id [6] AP-invocation-identifier OPTIONAL,
responding-AE-invocation-id [7] AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the kernel is used.
responder-acse-requirements [8] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [9] IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
responding-authentication-value [10] EXPLICIT Authentication-value OPTIONAL,
implementation-information [29] IMPLICIT Implementation-data OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

 }

ACSE-requirements ::= BIT STRING { authentication (0) }

Application-context-name ::= OBJECT IDENTIFIER

Mechanism-name ::= OBJECT IDENTIFIER

Authentication-value ::= CHOICE
 {

charstring [0] IMPLICIT GraphicString,
bitstring [1] IMPLICIT BIT STRING,
external [2] IMPLICIT EXTERNAL,
other [3] IMPLICIT SEQUENCE

 {
other-mechanism-name Mechanism-name,
other-mechanism-value ANY DEFINED BY other-mechanism-name

}
 }

Implementation-data ::= GraphicString

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 89 �

Association-information ::= OCTETSTRING31

Association-result ::= INTEGER
 {

accepted (0),
rejected-permanent (1),
rejected-transient (2)

 }

Associate-source-diagnostic ::= CHOICE
 {

acse-service-user [1] INTEGER
{

null (0),
no-reason-given (1),
application-context-name-not-supported (2),
authentication-mechanism-name-not-recognised (11),
authentication-mechanism-name-required (12),
authentication-failure (13),
authentication-required (14)

},
acse-service-provider [2] INTEGER
{

null (0),
no-reason-given (1),
no-common-acse-version (2)

}
 }

8.3 Useful types

-- Useful Types

Integer8 ::= INTEGER(-128..127)
Integer16 ::= INTEGER(-32 768..32 767)
Integer32 ::= INTEGER(-2 147 483 648..2 147 483 647)
Integer64 ::= INTEGER(-263.. 263-1)
Unsigned8 ::= INTEGER(0..255)
Unsigned16 ::= INTEGER(0..65 535)
Unsigned32 ::= INTEGER(0..4 294 967 295)
Unsigned64 ::= INTEGER(0..264-1)

Invoke-Id-And-Priority ::= BIT STRING (SIZE(8))
 {

invoke-id (0�6),
priority (7)

 }

ObjectName ::= Integer16

Cosem-Class-Id ::= Unsigned16

Cosem-Object-Instance-Id ::= OCTET STRING (SIZE(6))

�������
31 In ISO/IEC/TR2 8650-1 the association-information field is specified as ::= SEQUENCE OF EXTERNAL. For

COSEM, this field shall always contain the A-XDR encoded DLMS-Initiate .request/.response pdus, (or a
ConfirmedServiceError-pdu when the requested xDLMS context is not supported by the server) as a BER
encoded OCTETSTRING.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 90 � 62056-53  IEC:2002(E)

Cosem-Object-Attribute-Id ::= Integer8

Cosem-Object-Method-Id ::= Integer8

Cosem-Attribute-Descriptor ::= SEQUENCE
 {

class-id Cosem-Class-Id,
instance-id Cosem-Object-Instance-Id,
attribute-id Cosem-Object-Attribute-Id

 }

Cosem-Method-Descriptor ::= SEQUENCE
 {

class-id Cosem-Class-Id,
instance-id Cosem-Object-Instance-Id,
method-id Cosem-Object-Method-Id

 }

Selective-Access-Descriptor ::= SEQUENCE
 {

access-selector Unsigned8,
access-parameters Data

 }

Cosem-Attribute-Descriptor-With-Selection ::= SEQUENCE
 {

cosem-attribute-descriptor Cosem-Attribute-Descriptor
access-selection Selective-Access-Descriptor OPTIONAL

 }

Get-Data-Result ::= CHOICE
 {

data [0] Data,
data-access-result [1] IMPLICIT Data-Access-Result

 }

Action-Response-With-Optional-Data :: = SEQUENCE
 {

result Action-Result,
return-parameters Get-Data-Result OPTIONAL

 }

ConfirmedServiceError ::= CHOICE
 {
 -- tag 0 is reserved

initiateError [1] ServiceError,
getStatus [2] ServiceError,32
getNameList [3] ServiceError,
getVariableAttribute [4] ServiceError,
read [5] ServiceError,
write [6] ServiceError,
getDataSetAttribute [7] ServiceError,
getTIAttribute [8] ServiceError,
changeScope [9] ServiceError,
start [10] ServiceError,
stop [11] ServiceError,
resume [12] ServiceError,

�������
32 Greyed lines are not applicable within the DLMS context.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 91 �

makeUsable [13] ServiceError,
initiateLoad [14] ServiceError,
loadSegment [15] ServiceError,
terminateLoad [16] ServiceError
initiateUpLoad [17] ServiceError,
upLoadSegment [18] ServiceError,
terminateUpLoad [19] ServiceError

 }

ServiceError ::= CHOICE
 {

application-reference [0] IMPLICIT ENUMERATED {
 -- DLMS provider only

other (0),
time-elapsed (1), -- time out since request sent
application-unreachable (2), -- peer AEi not reachable
application-reference-invalid (3), -- addressing trouble
application-context-unsupported (4), -- application-context incompatibility
provider-communication-error (5), -- error at the local or distant equipment
deciphering-error (6) -- error detected by the deciphering function

 },
hardware-resource [1] IMPLICIT ENUMERATED {
 -- VDE hardware troubles

other (0),
memory-unavailable (1),
processor-resource-unavailable (2),
mass-storage-unavailable (3),
other-resource-unavailable (4)

 },
vde-state-error [2] IMPLICIT ENUMERATED {
 -- Error source description

other (0),
no-dlms-context (1),
loading-data-set (2),
status-nochange (3),
status-inoperable (4)

 },
service [3] IMPLICIT ENUMERATED {
 -- service handling troubles

other (0),
pdu-size (1), -- pdu too long

 -- (refer to companion specification)
service-unsupported (2) -- as described in the conformance block

 },
definition [4] IMPLICIT ENUMERATED {
-- object bound troubles in a service
other (0),
object-undefined (1), -- object not defined at the VDE
object-class-inconsistent (2), -- class of object incompatible with asked service
object-attribute-inconsistent (3) -- object attributes are inconsistent
 },
access [5] IMPLICIT ENUMERATED {
 -- object access error

other (0),
scope-of-access-violated (1), -- access denied through authorization reason
object-access-invalid (2), -- access incompatible with object attribute
hardware-fault (3), -- access fail for hardware reason
object-unavailable (4) -- VDE hands object for unavailable
},

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 92 � 62056-53  IEC:2002(E)

initiate [6] IMPLICIT ENUMERATED {
-- initiate service error
other (0),
dlms-version-too-low (1), -- proposed DLMS version too low
incompatible-conformance (2), -- proposed services not sufficient
pdu-size-too-short (3), -- proposed pdu size too short
refused-by-the-VDE-Handler (4) -- VAA creation impossible or not allowed
},

load-data-set [7] IMPLICIT ENUMERATED {
 -- data set load services error

other (0),
primitive-out-of-sequence (1), -- according to the DataSet

 -- loading state transitions
not-loadable (2), -- loadable attribute set to FALSE
dataset-size-too-large (3), -- evaluated Data Set size too large
not-awaited-segment (4), -- proposed segment not awaited
interpretation-failure (5), -- segment interpretation error
storage-failure (6), -- segment storage error
data-set-not-ready (7) -- Data Set not in correct state for uploading
},

-- change-scope [8] IMPLICIT reserved.
task [9] IMPLICIT ENUMERATED {

-- TI services error
other (0),
no-remote-control (1), -- Remote Control parameter set to FALSE
ti-stopped (2), -- TI in stopped state
ti-running (3), -- TI in running state
ti-unusable (4) -- TI in unusable state

}
-- other [10] IMPLICIT ENUMERATED
}

Data ::= CHOICE
 {

null-data [0] IMPLICIT NULL,
array [1] IMPLICIT SEQUENCE OF Data,
structure [2] IMPLICIT SEQUENCE OF Data,
boolean [3] IMPLICIT BOOLEAN,
bit-string [4] IMPLICIT BIT STRING,
double-long [5] IMPLICIT Integer32,
double-long-unsigned [6] IMPLICIT Unsigned32,
floating-point [7] IMPLICIT OCTET STRING(SIZE(4))33,
octet-string [9] IMPLICIT OCTET STRING,
visible-string [10] IMPLICIT VisibleString,
time [11] IMPLICIT GeneralizedTime,
bcd [13] IMPLICIT Integer8,
integer [15] IMPLICIT Integer8,
long [16] IMPLICIT Integer16,
unsigned [17] IMPLICIT Unsigned8,
long-unsigned [18] IMPLICIT Unsigned16,
compact-array [19] IMPLICIT SEQUENCE

 {
contents-description [0] TypeDescription,
array-contents [1] IMPLICIT OCTET STRING

 }
long64 [20] IMPLICIT Integer64,
long64-unsigned [21] IMPLICIT Unsigned64,
enum [22] IMPLICIT ENUMERATED,
float32 [23] IMPLICIT OCTET STRING (SIZE(4)),

�������
33 The four bytes of this OCTET STRING shall contain a floating-point value formatted as it is specified as Short

Floating-Point Number format in IEEE Standard 754-1985.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 93 �

float64 [24] IMPLICIT OCTET STRING (SIZE(8)),
don�t-care [255] IMPLICIT NULL

 }

TypeDescription ::= CHOICE
 {

null-data [0] IMPLICIT NULL,
array [1] IMPLICIT SEQUENCE {

number-of-elements Unsigned16,
type-description TypeDescription

}
structure [2] IMPLICIT SEQUENCE OF TypeDescription,
boolean [3] IMPLICIT NULL,
bit-string [4] IMPLICIT NULL,
double-long [5] IMPLICIT NULL,
double-long-unsigned [6] IMPLICIT NULL,
floating-point [7] IMPLICIT NULL,
octet-string [9] IMPLICIT NULL,
visible-string [10] IMPLICIT NULL,
time [11] IMPLICIT NULL,
bcd [13] IMPLICIT NULL,
integer [15] IMPLICIT NULL,
long [16] IMPLICIT NULL,
unsigned [17] IMPLICIT NULL,
long-unsigned [18] IMPLICIT NULL,
long64 [20] IMPLICIT NULL,
long64-unsigned [21] IMPLICIT NULL,
enum [22] IMPLICIT NULL,
float32 [23] IMPLICIT NULL,
float64 [24] IMPLICIT NULL,
don�t-care [255] IMPLICIT NULL

 }

DataBlock-G ::= SEQUENCE -- G == DataBlock for the GET.response service
 {

last-block BOOLEAN,
block-number Unsigned32,
result CHOICE {

raw-data [0] IMPLICIT OCTETSTRING,
data-access-result [1] IMPLICIT Data-Access-Result
 }

 }

DataBlock-SA ::= SEQUENCE -- SA == DataBlock for the SET.request and
-- ACTION.request services

 {
last-block BOOLEAN,
block-number Unsigned32,
raw-data OCTETSTRING

 }

Data-Access-Result ::= ENUMERATED
 {

success (0),
hardware-fault (1),
temporary-failure (2),
read-write-denied (3),
object-undefined (4),
object-class-inconsistent (9),
object-unavailable (11),
type-unmatched (12),
scope-of-access-violated (13),
data-block-unavailable (14),
long-get-aborted (15),
no-long-get-in-progress (16),

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 94 � 62056-53  IEC:2002(E)

long-set-aborted (17),
no-long-set-in-progress (18),
other-reason (250)

 }

Action-Result ::= ENUMERATED
 {

success (0),
hardware-fault (1),
temporary-failure (2),
read-write-denied (3),
object-undefined (4),
object-class-inconsistent (9),
object-unavailable (11),
type-unmatched (12),
scope-of-access-violated (13),
data-block-unavailable (14),
long-action-aborted (15),
no-long-action-in-progress (16),
other-reason (250)

 }

8.4 The xDLMS-Initiate.request/response/ConfirmedServiceError PDUs

xDLMS-Initiate.request ::= SEQUENCE
 {

dedicated-key OCTET STRING OPTIONAL,
 -- shall not be encoded in DLMS without encryption

response-allowed BOOLEAN DEFAULT TRUE,
proposed-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
proposed-dlms-version-number Unsigned8,
proposed-conformance Conformance,
client-max-received-pdu-size Unsigned16

 }

xDLMS-Initiate.response ::= SEQUENCE
 {

negotiated-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
negotiated-dlms-version-number Unsigned8,
negotiated-conformance Conformance,
server-max-receive-pdu-size Unsigned16,
vaa-name ObjectName

 }
NOTE In COSEM, the quality-of-service parameter is not used. The meter shall accept any value and process the
xDLMS-Initiate.request without considering the value of this parameter.

ConfirmedServiceError ::= CHOICE
{

-- tag 0 is reserved
initiateError [1] ServiceError,
getStatus [2] ServiceError,
getNameList [3] ServiceError,
. . .
terminateUpLoad [19] ServiceError

}

where ServiceError is as follows:

ServiceError ::= CHOICE
{

. . .
initiate [6] IMPLICIT ENUMERATED

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 95 �

-- initiate service error
{

other (0),
DLMS-version-too-low (1), -- proposed DLMS version too low
incompatible-conformance (2), -- proposed services not sufficient
PDU-size-too-short (3), -- proposed PDU size too short
refused-by-the-VDE-Handler (4) -- vaa creation impossible or not allowed

}
. . .

}
NOTE See also Annex B.

8.5 The conformance block

In order to enable optimized COSEM server implementations a conformance block with
extended functionality is added. The COSEM conformance block can be distinguished from
the standard conformance block by its tag �APPLICATION 31�.

Conformance ::= [APPLICATION 31] IMPLICIT BIT STRING (SIZE(24)) {
-- the bit is set when the corresponding service or functionality is available

reserved (0) (0),
reserved (0) (1),
reserved (0) (2),
read (3),
write (4),
unconfirmed-write (5),
reserved (0) (6),
reserved (0) (7),
attribute0-supported-with-SET (8),
priority-mgmt-supported (9),
attribute0-supported-with-GET (10),
block-transfer-with-get (11),
block-transfer-with-set (12),
block-transfer-with-action (13),
multiple-references (14),
information-report (15),
reserved (0) (16),
reserved (0) (17),
parameterized-access (18),
get (19),
set (20),
selective-access (21),
event-notification (22),
action (23)

 }
The parameterized access (as additional variant of the VariableAccessSpecification) provides
the ReadRequest or the WriteRequest service with the capability to transport additional
parameters.

Parameterized access is introduced by adding the following access method (compare annex A
of IEC 61334-4-41, p. 221):

Variable-Access-Specification:= CHOICE {
 ... [2]...
 ... [3]...
 parameterized-access [4] IMPLICIT SEQUENCE{

variable-name ObjectName,
selector Integer,
parameter Data

}
 }

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 96 � 62056-53  IEC:2002(E)

The meaning of the selector and of the access parameter depends on the referenced variable.
It is defined in the corresponding COSEM IC specification.

8.6 Definition of APDUs for data communication

8.6.1 COSEM APDUs using logical name referencing
-- COSEM APDUs using logical name referencing

GET-Request ::= CHOICE
 {

get-request-normal [1] IMPLICIT Get-Request-Normal,
get-request-next [2] IMPLICIT Get-Request-Next,
get-request-with-list [3] IMPLICIT Get-Request-With-List

 }

Get-Request-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-attribute-descriptor Cosem-Attribute-Descriptor,
access-selection Selective-Access-Descriptor OPTIONAL

 }

Get-Request-Next ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
block-number Unsigned32

 }

Get-Request-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection

 }

GET-Response ::= CHOICE
 {

get-response-normal [1] IMPLICIT Get-Response-Normal,
get-response-with-datablock [2] IMPLICIT Get-Response-With-Datablock,
get-response-with-list [3] IMPLICIT Get-Response-With-List

 }

Get-Response-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result Get-Data-Result

 }

Get-Response-With-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result DataBlock-G

 }

Get-Response-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result SEQUENCE OF Get-Data-Result

 }

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 97 �

SET-Request ::= CHOICE
 {
 set-request-normal [1] IMPLICIT Set-Request-Normal,
 set-request-with-first-datablock [2] IMPLICIT Set-Request-With-First-Datablock,
 set-request-with-datablock [3] IMPLICIT Set-Request-With-Datablock,
 set-request-with-list [4] IMPLICIT Set-Request-With-List,
 set-request-with-list-and-first-datablock [5] IMPLICIT Set-Request-With-List-And-First-Datablock
 }

Set-Request-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-attribute-descriptor Cosem-Attribute-Descriptor,
access-selection Selective-Access-Descriptor OPTIONAL,
value Data

 }

Set-Request-With-First-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-attribute-descriptor Cosem-Attribute-Descriptor,
access-selection Selective-Access-Descriptor OPTIONAL,
datablock DataBlock-SA

 }

Set-Request-With-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
datablock DataBlock-SA

 }

Set-Request-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection,
value-list SEQUENCE OF Data

 }

Set-Request-With-List-And-With-First-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection,
datablock DataBlock-SA

 }

SET-Response ::= CHOICE
{
 set-response-normal [1] IMPLICIT Set-Response-Normal,
 set-response-datablock [2] IMPLICIT Set-Response-Datablock,
 set-response-last-datablock [3] IMPLICIT Set-Response-Last-Datablock,
 set-response-last-datablock-with-list [4] IMPLICIT Set-Response-Last-Datablock-With-List,
 set-response-with-list [5] IMPLICIT Set-Response-With-List
}

Set-Response-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result Data-Access-Result

 }

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 98 � 62056-53  IEC:2002(E)

Set-Response-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
block-number Unsigned32

 }

Set-Response-Last-Datablock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result Data-Access-Result,
block-number Unsigned32

 }

Set-Response-Last-Datablock-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result SEQUENCE OF Data-Access-Result,
block-number Unsigned32

 }

Set-Response-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
result SEQUENCE OF Data-Access-Result

 }

ACTION-Request ::= CHOICE
{
 action-request-normal [1] IMPLICIT Action-Request-Normal,
 action-request-next-pblock [2] IMPLICIT Action-Request-Next-Pblock,
 action-request-with-list [3] IMPLICIT Action-Request-With-List,
 action-request-with-first-pblock [4] IMPLICIT Action-Request-With-First-Pblock,
 action-request-with-list-and-first-pblock [5] IMPLICIT Action-Request-With-List-And-First-Pblock,
 action-request-with-pblock [6] IMPLICIT Action-Request-With-Pblock
}

Action-Request-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-method-descriptor Cosem-Method-Descriptor,
method-invocation-parameters Data OPTIONAL

 }

Action-Request-Next-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
block-number Unsigned32

 }

Action-Request-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-method-descriptor-list SEQUENCE OF Cosem-Method-Descriptor,
method-invocation-parameters SEQUENCE OF Data34

 }

�������
34 There shall be one method-invocation-parameters parameter corresponding to each method-Identifier. When

the invoked method � identified by the method-identifier � does not require additional parameters, the
corresponding data in the method-invocation-parameters SEQUENCE OF shall be present as null_data.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 99 �

Action-Request-With-First-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-method-descriptor Cosem-Method-Descriptor,
pblock DataBlock-SA

 }

Action-Request-With-List-And-With-First-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
cosem-method-descriptor-list SEQUENCE OF Cosem-Method-Descriptor,
pblock DataBlock-SA

 }

Action-Request-With-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
pBlock DataBlock-SA

 }

ACTION-Response ::= CHOICE
 {

action-response-normal [1] IMPLICIT Action-Response-Normal,
action-response-with-pblock [2] IMPLICIT Action-Response-With-Pblock,
action-response-with-list [3] IMPLICIT Action-Response-With-List,
action-response-next-pblock [4] IMPLICIT Action-Response-Next-Pblock

 }

Action-Response-Normal ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
single-response Action-Response-With-Optional-Data

 }

Action-Response-With-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
pblock DataBlock-SA

 }

Action-Response-With-List ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
list-of-responses SEQUENCE OF Action-Response-With-Optional-Data

 }

Action-Response-Next-Pblock ::= SEQUENCE
 {

invoke-id-and-priority Invoke-Id-And-Priority,
block-number Unsigned32

 }

EVENT-NOTIFICATION-Request :: = SEQUENCE
 {

time OCTET STRING35 OPTIONAL,
cosem-attribute-descriptor Cosem-Attribute-Descriptor,
attribute-value Data

 }

�������
35 The contents of this OCTET STRING is an encoded date_time, as it is specified in IEC 62056-62.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 100 � 62056-53  IEC:2002(E)

8.6.2 DLMS APDUs using short name referencing

-- APDUs using short name refencing

ReadRequest ::= SEQUENCE OF Variable-Access-Specification

ReadResponse ::= SEQUENCE OF CHOICE
 {

data [0] Data,
data-access-error [1] IMPLICIT Data-Access-Result

 }

WriteRequest ::= SEQUENCE
 {

variable-access-specification SEQUENCE OF Variable-Access-Specification,
list-of-data SEQUENCE OF Data

 }

WriteResponse ::= SEQUENCE OF CHOICE
 {

success [0] IMPLICIT NULL,
data-access-error [1] IMPLICIT Data-Access-Result

 }

UnconfirmedWriteRequest ::= SEQUENCE
 {

variable-access-specification SEQUENCE OF Variable-Access-Specification,
list-of-data SEQUENCE OF Data

 }

InformationReportRequest ::= SEQUENCE
 {

current-time GeneralizedTime OPTIONAL,
variable-access-specification SEQUENCE OF Variable-Access-Specification,
list-of-data SEQUENCE OF Data

 }

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

62056-53  IEC:2002(E) � 101 �

Annex A
(normative)

The 3-layer, connection-oriented, HDLC based profile

A.1 Introduction

The COSEM application layer is the only layer which contains COSEM specific service
element, the extended DLMS application service element (xDLMS-ASE).

This application layer may be used with a variety of lower layer protocols to accomplish the
communication function. A full protocol stack � including the application layer � is called
communication profile (see clause 4).

A communications profile is characterized by:

• the lower protocol layers;
• the type (connection-oriented or connectionless) of the application control service element

(ACSE) included in the application layer.

The first communication profile specified and standardized for COSEM is the 3-layer,
connection-oriented, HDLC based profile. This profile consists of three protocol layers:

• the COSEM application layer, including the connection oriented ACSE in the application
layer, as defined in this standard;

• the data link layer, based on the ISO/IEC 13239 HDLC protocol, as defined in IEC 62056-46,

• the physical interface layer, as defined in IEC 62056-42.

A.2 The HDLC-based data link layer � Overview

For the purposes of this profile, the following selections from the HDLC standard ISO/IEC 13239
have been made:

• unbalanced connection-mode data link operation36;

• two-way alternate data transfer;

• the selected HDLC class of procedure is UNC (Unbalanced operation Normal response
mode Class), extended with UI frames;

• frame format type 3;

• non-basic frame format transparency.

In the unbalanced connection-mode data link operation, two or more stations are involved.
The primary station assumes responsibility for the organization of data flow and for
unrecoverable data link level error conditions by sending command frames. The secondary
station(s) respond by sending response frames.

The basic repertoire of commands and responses of the UNC class of procedures is extended
with the Unnumbered Information (UI) frame to support connectionless data communication
services, in order to provide multicasting and broadcasting and non-solicited information
transfer from server to the client.

�������
36 In COSEM, the primary station corresponds to the client application, and the secondary station corresponds to

the secondary station

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

� 102 � 62056-53  IEC:2002(E)

Using the unbalanced connection-mode data link operation implies that the client and server
side data link layers are different in terms of the sets of HDLC frames and their state
machines.

A.2.1 Services of the HDLC based data link layer

This HDLC based data link layer provides services for:

• data link layer connection management;
• connection oriented data communication (I frames);
• connectionless data communication (UI frames).

A.2.1.1 Services at the client side

Figure A.1 summarizes the data link layer services used by the COSEM client application
layer, in the case of the three-layer, HDLC-based, CO communication profile.

.

D
L-

C
O

N
N

EC
T.

re
q

Client application layer

D
L-

C
O

N
N

EC
T.

cn
f

D
L-

D
IS

C
O

N
N

EC
T.

re
q

D
L-

D
IS

C
O

N
N

EC
T.

cn
f

D
L-

D
IS

C
O

N
N

EC
T.

in
d

D
L-

D
AT

A.
re

q

D
L-

D
AT

A.
in

d

Client data link layer

Figure A.1 � Data link services used by the client COSEM application layer

For some services, the correspondence between an application layer (ASO) service
invocation and the supporting data link layer service invocation is straightforward (e.g.
invoking the COSEM-OPEN.request service directly implies the invocation of a DL-
CONNECT.request service). For other services, this direct service mapping cannot be
established.

A.2.1.2 Services at the server side

Figure A.2 summarizes the data link layer services used by the COSEM server application
layer, in the case of the three-layer, HDLC based, CO communications profile.

IEC 299/02

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
05

6-5
3:2

00
2

https://iecnorm.com/api/?name=898119859df14b161043db63c978f9aa

